TABLE OF CONTENTS

GENERAL INFORMATION/CROSS REFERENCES

- **DISCRETES**
- DIGITAL
- ANALOG SWITCHES AND MULTIPLEXERS
- DATA ACQUISITION
- TIMERS, COUNTERS, AND DISPLAY DRIVERS
- CONSUMER CIRCUITS

APPENDICES/PHYSICAL DIMENSIONS

ENGINEERING SOLUTIONS ON A CHIP FROM INTERSIL

Product offerings described in this data book reflect Intersil's commitment to industry leadership as a producer of advanced low-power analog and digital semiconductor components and data acquisition systems.

These components are fabricated using a wide variety of process technologies and are intended to provide state-of-the-art performance and maximum cost effectiveness.

Product areas in which Intersil demonstrates its innovative approach to providing engineering solutions on a chip include:

FIELD EFFECT AND DUAL MATCHED BIPOLAR TRANSISTORS

A complete line of high-performance junction FETs, dual JFETs, MOSFETs and matched dual bipolar devices.

DIGITAL

Very low-power CMOS ROMs and EPROMs, as well as high-speed HMOS ROMs; CMOS microprocessors, peripherals and UARTs.

ANALOG SWITCHES AND MULTIPLEXERS

The industry's broadest offering of highest-performance switches, including a video-RF switch with excellent isolation at 100 MHz, and multiplexers featuring the least error as well as unprecedented input overload protection.

ANALOG-TO-DIGITAL AND DIGITAL-TO-ANALOG CONVERTERS

3½- and 4½-digit display output (DVM) analog-to-digital converters; 12-, 14- and 16-bit microprocessor-compatible analog-to-digital converters; and high-speed precision digital-to-analog converters up to 14 bits.

LINEAR

A new set of low-power devices with unequalled performance— $1-\mu V$ offset voltage op amps, $4-\mu A$ quiescent current regulators and supply monitors, 95-per-cent-efficient voltage converters and 1ppm/°C voltage references; a complete family of CMOS op amps; and a wide variety of special analog function circuits.

TIMERS, COUNTERS AND DISPLAY DRIVERS

A wide range of low-power counters, timers and multidigit LED, LCD and vacuum fluorescent display decoder/drivers, including those with full alphanumeric capability.

General Information

Explanation of Terms, Indices, and Special Subsections A-2

Alphanumeric Index A-3

Base Number Index A-5

Functional Index A-7

Obsolete Products
List A-9

IC Alternate Source Index A-10 Discrete Cross
Reference A-

Analog Switch Cross

Reference A-21

Data Acquisition Cross

Reference A-23

Watch & Clock Cross Reference

A-24

Linear Cross Reference

A-25

ANTE PROPERTY OF THE PROPERTY

EXPLANATION OF TERMS, INDICES AND SPECIAL SUBSECTIONS

PRODUCTION DATA SHEET

This is a full, final data sheet, and describes a mature product in full production. Although Intersil reserves the right to make changes in specifications contained in these data sheets at any time without notice, such changes are not common and are usually minor, generally relating to yield and processing improvements. These data sheets are not marked; others are marked preliminary.

PRELIMINARY DATA SHEET

A preliminary data sheet is issued in advance of the availability of production samples and generally indicates that at the time of printing, the device had not been fully characterized. In the case of a second-source part, the specifications are already determined, and a "preliminary" designation indicates the anticipated availability of the device.

ALPHANUMERIC INDEX

This part number index is arranged first by alpha sequence, (ie: ADCxxxx, DGxxx, Gxxx, ICLxxxx, ICMxxxx, etc.) then by numeric sequence (ie: LM100, LM101A, LM102, LM105, etc.) and ignoring package/temperature/pin number suffixes. The basic numbering sequence, is sorted by reading the part number characters from left to right. Reading the left character first (which is usually an alpha character), then the next character to the right and so forth.

BASE NUMBER INDEX

If only the basic part number is known, use the Base Number Index as a locator aid. The Base Number Index is organized in numeric sequence (with alpha prefixes appearing in bold type and numeric characters set in medium type). Devices are arranged in this index according to the numeric value of the first digit on the left, then the value of the second digit, then the third, and so on. For example, device number ICM7218 precedes ICL741, no package/temperature/pin number suffixes are included, but these may be obtained from the specific product data sheet.

FUNCTION INDEX

This is an index of Intersil device types categorized by product grouping and function. The first major subsection, DISCRETES, is further subdivided into categories for JFETs and Special Function devices.

All remaining major subsections (ANALOG SWIT-CHES/MULTIPLEXERS, DATA ACQUISITION, LINEAR, TIMERS/COUNTERS, TIMEKEEPING/DTMF, MEMORIES and MICROPROCESSORS/PERIPHERALS) are organized alphabetically by function. The Functional Index appears in its entirety in section A, and an appropriate subindex appears at the beginning of each major product section.

CROSS-REFERENCE GUIDES

Two cross-reference guides are provided: one for Discrete Devices and one for Integrated Circuits.

The Discrete Cross-Reference Guide indicates whether Intersil can provide the industry-standard type, or an Intersil preferred part instead.

The IC Alternate Source Cross-Reference Guide lists competitive manufacturer device types for which Intersil makes pin-for-pin replacements. In the left-hand column, the competitive device part number is organized alphabetically by manufacturer. The Intersil pin-for-pin replacement appears in the right hand column.

SELECTOR GUIDES

Selector guide tables appear at the front of each major product category subsection and provides a quick reference of key parameters for devices contained in that section.

DEVICE FUNCTION/PACKAGE CODES

Package dimensions and diagrams explaining device prefix and suffix codes appear in Appendix B.

DIE SELECTION CRITERIA

Many of Intersil's semiconductor products are available in die form. This subsection of Appendix B contains general information on criteria for transistor and integrated circuit die selection, including physical parameters, packaging for shipment, assembly, testing and purchase options.

HIGH-RELIABILITY PROCESSING

This subsection of Appendix B defines Intersil's commitment to 100 percent compliance with MIL-STD-883, MIL-STD-750, MIL-M-38510 and MIL-S-19500 specifications. It also outlines Intersil's programs for quality conformance, quality testing and limited use qualification and includes a glossary of military/aerospace Hi-Rel terms.

Intersil reserves the right to make changes in circuitry or specifications contained herein at any time without notice.

Intersil assumes no responsibility for the use of any circuits described herein and makes no representations that they are free patent infringement.

LIFE SUPPORT POLICY. INTERSIL'S PRODUCTS ARE NOT AUTHORIZED, NOR WARRANTED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES AND/OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF INTERSIL, INC.

For the purposes of this policy, critical components in life support systems and/or devices are defined as:

- A critical component is any component of a life support device or system
 whose failure to perform can be reasonably expected to cause the failure of
 the life support device or system, or to affect its safety or effectiveness.
- 2. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

Intersil cannot assume responsibility for use of any circuitry described other than circuitry entirely embodied in an Intersii product. No circuit patent licenses are implied. Intersil reserves the right to change the circuitry and specifications without notice at any time.

ALPHANUMERIC INDEX

				•			
TYPE #	PAGE	TYPE #	PAGE	TYPE #	PAGE	TYPE #	PAGE
2N2607	1-9	2N5115	1-37	3N173	1-60	ICH8500	5-208
2N2608	1-9	2N5116	1-37	3N188	1-61	ICH8510	5-214
2N2609	1-9	2N5117	1-39	3N189	1-61	ICH8515	5-222
2N3684	1-10	2N5118	1-39	3N190	1-61	ICH8520	5-214
2N3685	1-10	2N5119	1-39	3N191	1-61	ICH8530	5-214
2N3686 2N3687 2N3810 2N3811 2N3821	1-10 1-10 1-11 1-11 1-13	2N5196 2N5197 2N5198 2N5199 2N5397	1-40 1-40 1-40 1-40 1-41	μΑ723 μΑ733 μΑ740 μΑ741 μΑ748	** ** **	ICL101ALN ICL108ALN ICL301ALN ICL308LN ICL7104	5-46 5-46 5-46 5-46 4-166
2N3822 2N3823 2N3824 2N3921 2N3922	1-13 1-14 1-15 1-16 1-16	2N5398 2N5432 2N5433 2N5434 2N5452	1-41 1-42 1-42 1-42 1-43	µА777 AD503 AD590 AD741K AD7520	5-49 5-28 4-138	ICL7106 ICL7107 ICL7109 ICL7115 ICL7116	4-20 4-20 4-30 4-46 4-59
2N3954	1-17	2N5453	1-43	AD7521	4-138	ICL7117	4-59
2N3955	1-17	2N5454	1-43	AD7523	4-144	ICL7126	4-67
2N3956	1-17	2N5457	1-44	AD7530	4-138	ICL7129	4-75
2N3957	1-17	2N5458A	1-44	AD7531	4-138	ICL7134	4-86
2N3958	1-17	2N5458A	1-44	AD7533	4-148	ICL7135	4-98
2N3970	1-18	2N5460	1-45	AD7541	4-152	ICL7136	4-108
2N3971	1-18	2N5461	1-45	ADC0801	4-4	ICL7137	4-116
2N3972	1-18	2N5462	1-45	ADC0802	4-4	ICL7145	4-124
2N3993	1-19	2N5463	1-45	ADC0803	4-4	ICL7146	4-132
2N3994	1-19	2N5464	1-45	ADC0804	4-4	ICL741HS	5-44
2N4044	1-20	2N5465	1-45	D123	3-9	ICL741LN	5-46
2N4045	1-20	2N5484	1-46	D125	3-9	ICL7605	5-63
2N4091	1-22	2N5485	1-46	D129	3-13	ICL7606	5-63
2N4092	1-22	2N5486	1-46	DG118	3-6	ICL7611	5-73
2N4093	1-22	2N5515	1-47	DG123	3-6	ICL7612	5-73
2N4100	1-23	2N5516	1-47	DG125	3-6	ICL7613	5-73
2N4117	1-25	2N5517	1-47	DG139	3-15	ICL7614	5-73
2N4118	1-25	2N5518	1-47	DG142	3-15	ICL7615	5-73
2N4119	1-25	2N5519	1-47	DG143	3-15	ICL7621	5-73
2N4220	1-26	2N5520	1-47	DG144	3-15	ICL7622	5-73
2N4221	1-26	2N5521	1-47	DG145	3-15	ICL7631	5-73
2N4222	1-26	2N5522	1-47	DG146	3-15	ICL7632	5-73
2N4223	1-27	2N5523	1-47	DG161	3-15	ICL7641	5-73
2N4224	1-27	2N5524	1-47	DG162	3-15	ICL7642	5-73
2N4338	1-28	2N5638	1-49	DG163	3-15	ICL7650	5-88
2N4339	1-28	2N5639	1-49	DG164	3-15	ICL7652	5-96
2N4340	1-28	2N5640	1-49	DG180	3-19	ICL7660	5-104
2N4341	1-28	2N5902	1-50	DG181	3-19	ICL7663	5-111
2N4351	1-29	2N5903	1-50	DG182	3-19	ICL7664	5-111
2N4391	1-30	2N5904	1-50	DG183	3-19	ICL7665	5-121
2N4392	1-30	2N5905	1-50	DG184	3-19	ICL7667	5-128
2N4393	1-30	2N5906	1-50	DG185	3-19	ICL8001	5-135
2N4416	1-31	2N5907	1-50	DG186	3-19	ICL8007	5-139
2N4856	1-32	2N5908	1-50	DG187	3-19	ICL8008	5-142
2N4857	1-32	2N5909	1-50	DG188	3-19	ICL8013	5-144
2N4858	1-32	2N5911	1-51	DG189	3-19	ICL8017	5-151
2N4859	1-32	2N5912	1-51	DG190	3-19	ICL8018A	4-158
2N4860	1-32	2N6483	1-52	DG191	3-19	ICL8019A	4-158
2N4861	1-32	2N6484	1-52	DG200	3-28	ICL8020A	4-158
2N4867	1-33	2N6485	1-52	DG201	3-32	ICL8021	4-155
2N4868	1-33	3N161	1-56	DGM181	3-23	ICL8022	5-155
2N4869	1-33	3N163	1-57	DGM182	3-23	ICL8023	5-155
2N4878	1-34	3N164	1-57	DGM184	3-23	ICL8038	5-158
2N4879	1-34	3N165	1-58	DGM185	3-23	ICL8043	5-167
2N4880	1-34	3N166	1-58	DGM187	3-23	ICL8048	5-174
2N5018	1-36	3N170	1-59	DGM188	3-23	ICL8049	5-174
2N5019	1-36	3N171	1-59	DGM190	3-23	ICL8052A	4-166
2N5114	1-37	3N172	1-60	DGM191	3-23	ICL8063	5-182

^{**} Obsolete product, refer to page A-9.

ALPHANUMERIC INDEX

TYPE#	PAGE	TYPE #	PAGE	` TYPE #	PAGE	TYPE #	PAGE
ICL8068 ICL8069 ICL8075 ICL8076 ICL8077	4-166 5-190 5-192 5-192 5-192	1H5017 1H5018 1H5019 1H5020 1H5021	3-36 3-36 3-36 3-36 3-36	IM6654 IM7332 IM7364 IM82C43 IMF6485	2-11 2-18 2-21 2-24 1-54	LH2308 LH2310 LH2311 LM100 LM101A	5-55 ** ** **
	5-192 5-192 5-198 5-198 7-19	1H5022 1H5023 1H5024 1H5025 1H5026	3-36 3-36 3-36 3-41 3-41	IT100 IT101 IT120 IT121 IT122	1-64 1-64 1-65 1-65 1-65	LM102 LM105 LM107 LM108 LM110	** ** 5-24
ICM7038 ICM7045 ICM7050 ICM7051 ICM7070	7-5 7-10 7-19 7-23 7-27	1H5027 1H5028 1H5029 1H5030 1H5031	3-41 3-41 3-41 3-41 3-41	1T124 1T126 1T127 1T128 1T129	1-66 1-67 1-67 1-67 1-67	LM111 LM114 LM300 LM301A LM302	1-83 ** **
ICM7201 ICM7206 ICM7207 ICM7207A ICM7208	7-31 6-3 6-3	1H5032 1H5034 1H5035 1H5036 1H5037	3-41 3-41 3-41 3-41 3-41	IT130 IT131 IT132 IT136 IT137	1-68 1-68 1-68 1-69 1-69	LM305 LM307 LM308 LM310 LM311	5-24
ICM7209 ICM7211 ICM7212 ICM7213	7-39 6-14 6-14 7-42	1H5038 1H5040 1H5041 1H5042 1H5043	3-41 3-48 3-48 3-48 3-48	IT138 IT139 IT1700 IT1750 IT500	1-69 1-69 1-75 1-76 1-71	LM4250 M116 NE536 NE/SE592 NE592-8	** 1-84 ** 5-38 5-41
ICM7215 ICM7216 ICM7217 ICM7218 ICM7223	7-47 6-24 6-39 6-55 7-53	1H5044 1H5045 1H5046 1H5047 1H5048	3-48 3-48 3-48 3-48 3-48	IT501 IT502 IT503 IT504 IT505	1-71 1-71 1-71 1-71 1-71	OP05 OP07 SU536, U1897 U1898	5-8 5-16 1-92 1-92
ICM7223A ICM7223VF ICM7224 ICM7225 ICM7226	7:59 7:67 6:64 6:64 6:72	1H5049 1H5050 1H5051 1H5052 1H5053	3-48 3-48 3-48 3-56 3-56	IT550 IT5911 IT5912 ITE4091 ITE4092	1-74 1-51 1-51 1-22 1-22	U1899 U200 U201 U202 U231	1-92 1-85 1-85 1-85 1-86
ICM7227 ICM7231 ICM7232 ICM7233 ICM7234	6-39 6-84 6-84 6-84 6-84	IH5101 IH5108 IH5110 IH5111 IH5112	3-63 5-57 5-57 5-57	1TE4093 ITE4391 ITE4392 ITE4393 ITE4416	1-22 1-30 1-30 1-30 1-31	U232 U233 U234 U235 U257	1-86 1-86 1-86 1-86 1-87
ICM7235 ICM7236 ICM7240 ICM7241 ICM7242	6-104 6-110 6-116 7-75 6-127	IH5113 IH5114 IH5115 IH5140 IH5141	5-57 5-57 5-57 3-71 3-71	J105 J106 J107 J111 J112	1-77 1-77 1-77 1-78 1-78	U304 U305 U306 U308 U309	1-88 1-88 1-88 1-89 1-89
ICM7243 ICM7245 ICM7250 ICM7260 ICM7281	6-133 7-77 6-116 6-116 6-143	IH5142 IH5143 IH5144 IH5145 IH5200	3-71 3-71 3-71 3-71 3-71 3-28	J113 J174 J175 J176 J177	1-78 1-79 1-79 1-79 1-79	U310 U401 U402 U403 U404	1-89 1-90 1-90 1-90 1-90
ICM7555 ICM7556 ID100 ID101 IGC10000	6-155 6-155 1-62 1-62 2-34	1H5201 1H5208 1H5341 1H6108 1H6116	3-32 3-79 3-87 3-93 3-99	J201 J202 J203 J204 J308	1-80 1-80 1-80 1-80 1-82	U405 U406 VCR2N VCR3P VCR4N	1-90 1-90 1-92 1-92 1-92
IH5009 IH5010 IH5011 IH5012 IH5013	3.36 3.36 3.36 3.36 3.36	!H6201 !H6208 !H6216	3-105 3-109 3-115	J309 J310 LH0042 LH2101A	1-82 1-82 **	VCR7N	1-92
1H5014 1H5015 1H5016	3-36 3-36 3-36	1M6402 1M6403 IM6653	2-3 2-3 2-11	LH2108 LH2110 LH2111 LH2301A	5-55 ** **		* * * * * * * * * * * * * * * * * * *

^{**}Obsolete product, refer to page A-9.

BASE NUMBER INDEX

TYPE #	PAGE	TYPE #	PAGE	TYPE #	PAGE	TYPE #	PAGE
LH 0042 OP 05 OP 07 ADC 0801 ADC 0802	5-8 5-16 4-4 4-4	DG 164 3N 165 3N 166 3N 170 IT 1700	3-15 1-58 1-58 1-59 1-75	U 257 2N 2607 2N 2608 2N 2609 VCR 3P	1.87 1.9 1.9 1.9 1.92	2N 4118 2N 4119 2N 4220 2N 4221 2N 4222	1-25 1-25 1-26 1-26 1-26
ADC 0803 ADC 0804 ID 100 IT 100 LM 100	4-4 4-4 1-62 1-64	3N 171 3N 172 3N 173 J 174 J 175	1-59 1-60 1-60 1-79 1-79	LM 300 LM 301A ICL 301ALN LM 302 U 304	5-46 1-88	2N 4223 2N 4224 LM 4250 2N 4338 2N 4339	1-27 1-27 ** 1-28 1-28
ICL 101ALN ID 101 IT 101 LM 101A LM 102	5-46 1-62 1-64	IT 1750 J 176 J 177 DG 180 DG 181	1-76 1-79 1-79 3-19 3-19	LM 305 U 305 U 306 LM 307 ICL 308LN	* * 1-88 1-88 * * 5-46	2N 4340 2N 4341 2N 4351 2N 4391 ITE 4391	1-28 1-28 1-29 1-30 1-30
J 105 LM 105 J 106 J 107 LM 107	1-77 ** 1-77 1-77	DGM 181 DG 182 DGM 182 DG 183 DG 184	3-23 3-19 3-23 3-19 3-19	J 308 LM 308 U 308 J 309 U 309	1-82 5-24 1-89 1-82 1-89	2N 4392 ITE 4392 2N 4393 ITE 4393 2N 4416	1-30 1-30 1-30 1-30 1-31
ICL 108ALN LM 108 LM 110 J 111 LM 111	5-46 5-24 ** 1-78	DGM 184 DG 185 DGM 185 DG 186 DG 187	3-23 3-19 3-23 3-19 3-19	J 310 LM 310 U 310 LM 311 2N 3684	1-82 1-89 **	ITE 4416 2N 4856 2N 4857 2N 4858	1-31 1-32 1-32 1-32
ICM 1115 J 112 J 113 LM 114	7-19 1-78 1-78 1-83 1-84	DGM 187 3N 188 DG 188 DGM 188 3N 189	3-23 1-61 3-19 3-23 1-61	2N 3685 2N 3686 2N 3687 2N 3810 2N 3811	1-10 1-10 1-10 1-11 1-11	2N 4859 2N 4860 2N 4861 2N 4867 2N 4868	1-32 1-32 1-32 1-33 1-33
M 116 DG 118 IT 120 IT 121 IT 122	3-6 1-65 1-65 1-65	DG 189 U 1897 U 1898 U 1899	3-19 1-92 1-92 1-92 1-61	2N 3821 2N 3822 2N 3823 2N 3823 2N 3824 2N 3921	1-13 1-13 1-14 1-15 1-16	2N 4869 2N 4878 2N 4879 2N 4880 IT 500	1-33 1-34 1-34 1-34 1-71
D 123 DG 123 IT 124 D 125 DG 125	3-9 3-6 1-66 3-9 3-6	3N 190 DG 190 DGM 190 3N 191 DG 191	3-19 3-23 1-61 3-19	2N 3922 2N 3954 2N 3955 2N 3956	1-16 1-17 1-17 1-17	IH 5009 IT 501 IH 5010 IH 5011	3-36 1-71 3-36 3-36 3-36
IT 126 IT 127 IT 128 D 129 IT 129	1-67 1-67 1-67 3-13 1-67	DGM 191 VCR 2N DG 200 U 200 DG 201	3-23 1-92 3-28 1-85 3-32	2N 3957 2N 3958 2N 3970 2N 3971 2N 3972	1-17 1-17 1-18 1-18 1-18	IH 5013 IH 5014 IH 5015 IH 5016	3-36 3-36 3-36 3-36 3-36
IT 130 IT 131 IT 132 IT 136 IT 137	1-68 1-68 1-69 1-69	J 201 U 201 J 202 U 202 J 203	1-80 1-85 1-80 1-85 1-80	2N 3993 2N 3994 VCR 4N U 401 U 402	1-19 1-19 1-92 1-90 1-90	2N 5018 IH 5018 2N 5019 IH 5019 IT 502	1-36 3-36 1-36 3-36 1-71
IT 138 IT 139 DG 139 DG 142 DG 143	1-69 1-69 3-15 3-15 3-15	J 204 LH 2101A LH 2108 LH 2110 LH 2111	1-80 ** 5-55 **	U 403 U 404 2N 4044 2N 4045 U 405	1-90 1-90 1-20 1-20 1-90	IH 5020 IH 5021 IH 5022 IH 5023 IH 5024	3-36 3-36 3-36 3-36 3-36
DG 144 DG 145 DG 146 3N 161 DG 161	3-15 3-15 3-15 1-56 3-15	LH 2301A LH 2308 U 231 LH 2310 LH 2311	5-55 1-86 **	U 406 2N 4091 ITE 4091 2N 4092 ITE 4092	1-90 1-22 1-22 1-22 1-22	IH 5025 IH 5026 IH 5027 IH 5028 IH 5029	3-41 3-41 3-41 3-41 3-41
DG 162 3N 163, DG 163 3N 164	3-15 1-57 3-15 1-57	U 232 U 233 U 234 U 235	1-86 1-86 1-86 1-86	2N 4093 ITE 4093 2N 4100 2N 4117	1-22 1-22 1-23 1-25	AD 503 IT 503	1-71

^{**}Obsolete product, refer to page A-9.

BASE NUMBER INDEX

			_				,	
İ	TYPE #	PAGE	TYPE #	PAGE	TYPE #	PAGE	TYPE #	PAGE
	IH 5030	3-41	2N 5458	1-44	ICL 7109	4-30	ICM 7555	6-143
	IH 5031	3-41	2N 5459	1-44	ICL 7115	4-46	ICM 7556	6-143
	IH 5032	3-41	2N 5460	1-45	ICL 7116	4-59	ICL 7605	5-63
	IH 5034	3-41	2N 5461	1-45	ICL 7117	4-59	ICL 7606	5-63
	IH 5035	3-41	2N 5462	1-45	ICL 7126	4-67	ICL 7611	5-73
	IH 5036	3-41	2N 5463	1-45	ICL 7129	4-75	ICL 7612	5-73
	IH 5037	3-41	2N 5464	1-45	ICL 7134	4-86	ICL 7613	5-73
	IH 5038	3-41	2N 5465	1-45	ICL 7135	4-98	ICL 7614	5-73
	IT 504	1-71	2N 5484	1-46	ICL 7136	4-108	ICL 7615	5-73
	IH 5040	3-48	2N 5485	1-46	ICL 7137	4-116	ICL 7621	5-73
	IH 5041	3-48	2N 5486	1-46	ICL 7145	4-124	ICL 7622	5-73
	IH 5042	3-48	IT 550	1-74	ICL 7146	4-132	ICL 7631	5-73
	IH 5043	3-48	2N 5515	1-47	ICM 7201	**	ICL 7632	5-73
	IH 5044	3-48	2N 5516	1-47	ICM 7206	7-31	ICL 7641	5-73
	IH 5045	3-48	2N 5517	1-47	ICM 7207	6-3	ICL 7642	5-73
	IH 5046	3-48	2N 5518	1-47	ICM 7207A	6-3	ICL 7650	5-88
	IH 5047	3-48	2N 5519	1-47	ICM 7208	6-7	ICL 7652	5-96
	IH 5048	3-48	2N 5520	1-47	ICM 7209	7-39	ICL 7660	5-104
	IH 5049	3-48	2N 5521	1-47	ICM 7211	6-14	ICL 7663	5-111
	IT 505	1-71	2N 5522	1-47	ICM 7212	6-14	ICL 7664	5-111
	IH 5050 IH 5051 IH 5052 IH 5053 IH 5101	3-48 3-48 3-56 3-56	2N 5523 2N 5524 2N 5638 2N 5639 2N 5640	1-47 1-47 1-49 1-49 1-49	ICM 7213 ICM 7215 ICM 7216 ICM 7217 ICM 7218	7-42 7-47 6-24 6-39 6-55	ICL 7665 ICL 7667 μΑ 777 ICL 8001 ICL 8007	5-121 5-128 5-49 5-135 5-139
	IH 5108	3-63	AD 590	5-28	ICM 7223	7-53	ICL 8008	5-142
	IH 5110	5-57	2N 5902	1-50	ICM 7223A	7-59	ICL 8013	5-144
	IH 5111	5-57	2N 5903	1-50	ICM 7223VF	7-67	ICL 8017	5-151
	IH 5112	5-57	2N 5904	1-50	ICM 7224	6-64	ICL 8018A	5-158
	IH 5113	5-57	2N 5905	1-50	ICM 7225	6-64	ICL 8019A	5-158
	2N 5114	1-37	2N 5906	1-50	ICM 7226	6-72	ICL 8020A	5-158
	IH 5114	5-57	2N 5907	1-50	ICM 7227	6-39	ICL 8021	5-155
	2N 5115	1-37	2N 5908	1-50	µA 723	* *	ICL 8022	5-155
	IH 5115	5-57	2N 5909	1-50	ICM 7231	6-84	ICL 8023	5-155
	2N 5116	1-37	2N 5911	1-51	ICM 7232	6-84	ICL 8038	5-158
	2N 5117	1-39	IT 5911	1-51	ICM 7233	6-84	ICL 8043	5-167
	2N 5118	1-39	2N 5912	1-51	ICM 7234	6-84	ICL 8048	5-174
	2N 5119	1-39	IT 5912	1-51	ICM 7235	6-104	ICL 8049	5-174
	IH 5140	3-71	NE/SE 592	5-38	ICM 7236	6-110	ICL 8052A	4-166
	IH 5141	3-71	NE 592-8	5-41	ICM 7240	6-116	ICL 8063	5-182
	IH 5142	3-71	IH 6108	3-93	ICM: 7241	7-75	ICL 8068	4-166
	IH 5143	3-71	IH 6116	3-99	ICM: 7242	6-127	ICL 8069	5-190
	IH 5144	3-71	IH 6201	3-105	ICM: 7243	6-133	ICL 8075	5-192
	IH 5145	3-71	IH 6208	3-109	ICM: 7245	7-77	ICL 8076	5-192
	2N 5196	1-40	IH 6216	3-115	ICM: 7250	6-116	ICL 8077	5-192
	2N 5197	1-40	IM 6402	2-3	ICM 7260	6-116	ICL 8078	5-192
	2N 5198	1-40	IM 6403	2-3	ICM 7281	6-143	ICL 8079	5-192
	2N 5199	1-40	2N 6483	1-52	µA 733	* *	IM 82C43	2-24
	IH 5200	3-28	2N 6484	1-52	IM 7332	2-18	ICL 8211	5-198
	IH 5201	3-32	2N 6485	1-52	IM 7364	2-21	ICL 8212	5-198
	IH 5208 IH 5341 NE 536 SU 536 2N 5397	3-79 3-87 ** ** 1-41	IMF 6485 IM 6653 IM 6654 VCR 7N ICM 7038	1-54 2-17 2-17 1-92 7-5	μ A 740 μ A 741 ICL 741HS AD 741K ICL 741LN	5-44 5-46	ICH 8500 ICH 8510 ICH 8515 ICH 8520 ICH 8530	5-208 5-214 5-222 5-214 5-214
	2N 5398 2N 5432 2N 5433 2N 5434 2N 5452	1-41 1-42 1-42 1-42 1-43	ICM 7045 ICM 7050 ICM 7051 ICM 7070 ICL 7104	7-10 7-19 7-23 7-27 4-166	μ A 748 AD 7520 AD 7521 AD 7523 AD 7530	4-138 4-138 1-144 4-138	IGC 10000	2-28
	2N 5453 2N 5454 2N 5457	1-43 1-43 1-44	ICL 7106 ICL 7107	4-20 4-20	AD 7531 AD 7533 AD 7541	4-138 4-148 4-152	•	

^{**}Obsolete product, refer to page A-9.

		ONE 450 54	4.40	DIOITAL			- 1-
DISCRETES	Ţ	2N5452-54 2N5515-24	1-43	DIGITAL	-	Video/RF Swite	en
	1	2N5915-24 2N5902-9	1-50	Momory		1H5341	3-87
JFET Single		2N5902-9 2N5911/12	1-51	Memory		•	
_	ţ	2N6483-85	1-52	NMOS ROMs	_ 1	DATA	
Switches	İ	IMF6485	1-54		-18	ACQUISITION	
N-Channel	Page	IT500-5	1-71		21		
2N3970-72	1-18	. IT550	1-74	CMOS EPROMS	. 1	A/D Converters	3
2N4091-93	1-22	IT5911/12	1-51	IM6653/4 2-	-11	DVM Circuits	
2N4391-93	1-30	U231-35	1-86	Gate Arrays	- 1	•	
2N4856-61	1-32	U257	1-87	IGC10000 2-	28	ADC0801-4	4-4
2N5432-34	1-42	U401-6	1-90		- 1	ICL7106/7	4-20
2N5638-40	1-49	MOCEET Cuito	haail	Peripherals		ICL7109	4-30
ITE4091-3	1-22	MOSFET Switc	nesi	IM6402/3	2-3	ICL7115	4-46
ITE4391-3	1-30	Amplifiers			24	ICL7116/17	4-59
J105-7	1-77	N-Channel			_	ICL7126	4-67 4-75
J111-13	1-78 1-85	2N4351	1-29	ANALOG	•	ICL7129 ICL7135	4-98
U200-2 U1897-99	1-85	3N170/1	1-59	ii.	·]	†ICL7136	4-108
·	1-92	IT1750	1-76	SWITCHES AND		ICL7137	4-116
P-Channel	4.40	M116	1-84	MULTIPLEXERS	i	ICL8052A/7104	4-166
2N3993/4	1-19 1-36	P-Channel			J	ICL8068/7104	4-166
2N5018/19 2N5114-16	1-36	3N161	1-56	Multiplexers	1	†The ICL7136 is recom-	
IT100/1	1-64	3N163/64 .	1-57	-	-63	mended for all applica	
J174-77	1-79	3N172/73	1-60		-79	tions which currently	
U (1 - 7)		1T1700	1-75		-93	employ the ICL7126.	
JFET Single	•	Dual P-Channel			-99	D/A Converters	S
		3N165/66	1-58		109	AD7520/21/30/31	4-138
Amplifiers	1	3N188-91	1-61	IH6216 3-1		AD7520/21/30/31 AD7523	4-144
N-Channel				. •			4-148
2N3684-87	1-10	Bipolar Dual		. •		AD7533 AD7541	4-148 4-152
2N3684-87 2N3821/22	1-13	Bipolar Dual		Analog Switch		AD7533 AD7541 ICL7134	4-148 4-152 4-86
2N3684-87 2N3821/22 2N3823	1-13 1-14	Bipolar Dual Amplifiers		Analog Switch Drivers/		AD7533 AD7541 ICL7134 ICL7145	4-148 4-152 4-86 4-124
2N3684-87 2N3821/22 2N3823 2N3824	1-13 1-14 1-15	Bipolar Dual Amplifiers NPN Devices		Analog Switch		AD7533 AD7541 ICL7134	4-148 4-152 4-86
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19	1-13 1-14 1-15 1-25	Bipolar Dual Amplifiers NPN Devices 2N4044/45	1-20	Analog Switch Drivers/ Level Translators		AD7533 AD7541 ICL7134 ICL7145 ICL7146	4-148 4-152 4-86 4-124
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22	1-13 1-14 1-15 1-25 1-26	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100	1-23	Analog Switch Drivers/ Level Translators D123/125 D129 3	S 3-9 -13	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current	4-148 4-152 4-86 4-124
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24	1-13 1-14 1-15 1-25 1-26 1-27	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80	1-23 1-34	Analog Switch Drivers/ Level Translators D123/125 D129 3	S 3-9	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches	4-148 4-152 4-86 4-124 4-132
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41	1-13 1-14 1-15 1-25 1-26 1-27 1-28	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22	1-23 1-34 1-65	Analog Switch Drivers/ Level Translators D123/125 D129 3 IH6201 3-1	S 3-9 -13 105	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current	4-148 4-152 4-86 4-124
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416	1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124	1-23 1-34 1-65 1-66	Analog Switch Drivers/ Level Translators D123/125 D129 3	S 3-9 -13 105	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches ICL8018A/19A/20A	4-148 4-152 4-86 4-124 4-132
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416 2N4867-69	1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31 1-33	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124 IT126/29	1-23 1-34 1-65 1-66 1-67	Analog Switch Drivers/ Level Translators D123/125 D129 3 IH6201 3-1 Analog Switches	S 3-9 -13 105	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches ICL8018A/19A/20A LINEAR	4-148 4-152 4-86 4-124 4-132
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416 2N4867-69 2N5397/98	1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124 IT126/29 LM114	1-23 1-34 1-65 1-66	Analog Switch Drivers/ Level Translators D123/125 D129 3 IH6201 3-1 Analog Switches with Drivers	S 3-9 -13 105	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches ICL8018A/19A/20A	4-148 4-152 4-86 4-124 4-132
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416 2N4867-69	1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31 1-33 1-41	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124 IT126/29 LM114 PNP Devices	1-23 1-34 1-65 1-66 1-67 1-83	Analog Switch Drivers/ Level Translators D123/125 D129 3 IH6201 3-1 Analog Switches with Drivers DG118/123/125	\$ 3-9 -13 105 \$	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches ICL8018A/19A/20A LINEAR	4-148 4-152 4-86 4-124 4-132 4-138
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416 2N4867-69 2N5397/98 2N5457-59	1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31 1-33 1-41	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124 IT126/29 LM114 PNP Devices 2N3810/11	1-23 1-34 1-65 1-66 1-67 1-83	Analog Switch Drivers/ Level Translators D123/125 D129 3 IH6201 3-1 Analog Switches with Drivers DG118/123/125 DG139A Family 3	\$ 3-9 -13 105 3-6 -15	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches ICL8018A/19A/20A LINEAR Amplifiers	4-148 4-152 4-86 4-124 4-132 4-138
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416 2N4867-69 2N5397/98 2N5457-59 2N5484-86	1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31 1-33 1-41 1-44 1-46 1-31	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124 IT126/29 LM114 PNP Devices 2N3810/11 2N5117-19	1-23 1-34 1-65 1-66 1-67 1-83	Analog Switch Drivers/ Level Translators D123/125 D129 3 IH6201 3-1 Analog Switches with Drivers DG118/123/125 DG139A Family 3 DG180 Family 3	\$ 3-9 -13 105 3-6 -15 -19	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches ICL8018A/19A/20A LINEAR Amplifiers Driver Amplifier for	4-148 4-152 4-86 4-124 4-132 4-138
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416 2N4867-69 2N5397/98 2N5457-59 2N5484-86 ITE4416	1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31 1-33 1-41 1-44 1-46 1-31 1-80 1-82	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124 IT126/29 LM114 PNP Devices 2N3810/11 2N5117-19 IT130-32	1-23 1-34 1-65 1-66 1-67 1-83	Analog Switch Drivers/ Level Translators D123/125 D129 3 IH6201 3-1 Analog Switches with Drivers DG118/123/125 DG139A Family 3 DG180 Family 3 DGM181 Family 3	\$ 3-9 -13 105 3-6 -15 -19	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches ICL8018A/19A/20A LINEAR Amplifiers Driver Amplifier for Power Transistors ICL8063	4-148 4-152 4-86 4-124 4-132 4-138
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416 2N4867-69 2N5397/98 2N5457-59 2N5484-86 ITE4416 J201-4	1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31 1-33 1-41 1-44 1-46 1-31	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124 IT126/29 LM114 PNP Devices 2N3810/11 2N5117-19 IT130-32 IT136-39	1-23 1-34 1-65 1-66 1-67 1-83 1-11 1-39 1-68 1-69	Analog Switch Drivers/ Level Translators D123/125 D129 3 IH6201 3-1 Analog Switches with Drivers DG118/123/125 DG139A Family 3 DG180 Family 3 DGM181 Family 3 DG200 3	\$ 3-9 -13 105 3-6 -15 -19 -23 3-28	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches ICL8018A/19A/20A LINEAR Amplifiers Driver Amplifier for Power Transistors ICL8063 Driver Amplifier for	4-148 4-152 4-86 4-124 4-132 4-138
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416 2N4867-69 2N5397/98 2N5457-59 2N5484-86 ITE4416 J201-4 J308-10	1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31 1-33 1-41 1-44 1-46 1-31 1-80 1-82	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124 IT126/29 LM114 PNP Devices 2N3810/11 2N5117-19 IT130-32 IT136-39	1-23 1-34 1-65 1-66 1-67 1-83 1-11 1-39 1-68 1-69	Analog Switch Drivers/ Level Translators D123/125 D129 3 IH6201 3-1 Analog Switches with Drivers DG118/123/125 DG139A Family 3 DG180 Family 3 DGM181 Family 3 DG200 3 DG201 3	\$ 3-9 -13 105 3-6 -15 -19	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches ICL8018A/19A/20A LINEAR Amplifiers Driver Amplifier for Power Transistors ICL8063	4-148 4-152 4-86 4-124 4-132 4-138
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416 2N4867-69 2N5397/98 2N5457-59 2N5457-59 2N5484-86 ITE4416 J201-4 J308-10 U308-10	1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31 1-33 1-41 1-44 1-46 1-31 1-80 1-82 1-89	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124 IT126/29 LM114 PNP Devices 2N3810/11 2N5117-19 IT130-32 IT136-39 Special Functi	1-23 1-34 1-65 1-66 1-67 1-83 1-11 1-39 1-68 1-69	Analog Switch Drivers/ Level Translators D123/125 D129 3 IH6201 3-1 Analog Switches with Drivers DG118/123/125 DG139A Family 3 DG180 Family 3 DGM181 Family 3 DG200 3 DG201 3 IH5009-24 3	\$ 3-9 -13 105 3-6 -15 -19 -23 -28 -32	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches ICL8018A/19A/20A LINEAR Amplifiers Driver Amplifier for Power Transistors ICL8063 Driver Amplifier for Actuators, Motors	4-148 4-152 4-86 4-124 4-132 4-138 5-182
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416 2N4867-69 2N5397/98 2N5457-59 2N5484-86 ITE4416 J201-4 J308-10 U308-10 P-Channel 2N2607-9 2N5460-65	1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31 1-33 1-41 1-46 1-31 1-80 1-82 1-89	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124 IT126/29 LM114 PNP Devices 2N3810/11 2N5117-19 IT130-32 IT136-39 Special Functi High Speed Dual Di	1-23 1-34 1-65 1-66 1-67 1-83 1-11 1-39 1-68 1-69	Analog Switch Drivers/ Level Translators D123/125 D129 3 IH6201 3-1 Analog Switches with Drivers DG118/123/125 DG139A Family 3 DG180 Family 3 DGM181 Family 3 DG200 3 DG201 3 IH5009-24 3 IH5025-38 3 IH5040-51 3	\$ 3-9 -13 105 3-6 -15 -123 -28 -36 -36 -36 -36 -36 -36 -36 -36 -36 -36	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches ICL8018A/19A/20A LINEAR Amplifiers Driver Amplifier for Power Transistors ICL8063 Driver Amplifier for Actuators, Motors ICH8510/20/30	4-148 4-152 4-86 4-124 4-132 4-138 5-182
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416 2N4867-69 2N5397/98 2N5457-59 2N5457-59 2N5484-86 ITE4416 J201-4 J308-10 U308-10 P-Channel 2N2607-9	1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31 1-33 1-41 1-44 1-46 1-31 1-80 1-82 1-89	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124 IT126/29 LM114 PNP Devices 2N3810/11 2N5117-19 IT130-32 IT136-39 Special Functi High Speed Dual Di ID100/1	1-23 1-34 1-65 1-66 1-67 1-83 1-11 1-39 1-68 1-69	Analog Switch Drivers/ Level Translators D123/125 D129 3 IH6201 3-1 Analog Switches with Drivers DG118/123/125 DG139A Family 3 DG180 Family 3 DGM181 Family 3 DG200 3 DG201 3 IH5009-24 3 IH5025-38 3 IH5040-51 3 IH5052/3 3	\$ 3-9 -13 105 3-6 -15 -23 -28 -36 -41 -48 -36	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches ICL8018A/19A/20A LINEAR Amplifiers Driver Amplifier for Power Transistors ICL8063 Driver Amplifier for Actuators, Motors ICH8510/20/30 ICH8515	4-148 4-152 4-86 4-124 4-132 4-158 5-182 5-214 5-222
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416 2N4867-69 2N5397/98 2N5457-59 2N5484-86 ITE4416 J201-4 J308-10 U308-10 P-Channel 2N2607-9 2N5460-65 U304-6	1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31 1-33 1-41 1-46 1-31 1-80 1-82 1-89	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124 IT126/29 LM114 PNP Devices 2N3810/11 2N5117-19 IT130-32 IT136-39 Special Functi High Speed Dual Di ID100/1 Voltage Controlled	1-23 1-34 1-65 1-66 1-67 1-83 1-11 1-39 1-68 1-69	Analog Switch Drivers/ Level Translators D123/125 D129 3 IH6201 3-1 Analog Switches with Drivers DG118/123/125 DG139A Family 3 DG180 Family 3 DG180 Family 3 DG200 3 DG201 3 IH5009-24 3 IH5025-38 3 IH5040-51 3 IH5052/3 3 IH5140-45 3	\$ 3-9 -13 105 3-6 -15 -23 -28 -36 -41 -48 -36 -41 -48 -37	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches ICL8018A/19A/20A LINEAR Amplifiers Driver Amplifier for Power Transistors ICL8063 Driver Amplifier for Actuators, Motors ICH8510/20/30 ICH8515 Instrumentation	4-148 4-152 4-86 4-124 4-132 4-158 5-182 5-214 5-222
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416 2N4867-69 2N5397/98 2N5457-59 2N5457-59 2N5484-86 ITE4416 J201-4 J308-10 U308-10 U308-10 P-Channel 2N2607-9 2N5460-65 U304-6	1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31 1-33 1-41 1-46 1-31 1-80 1-82 1-89	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124 IT126/29 LM114 PNP Devices 2N3810/11 2N5117-19 IT130-32 IT136-39 Special Functi High Speed Dual Di ID100/1 Voltage Controlled Resistors	1-23 1-34 1-65 1-66 1-67 1-83 1-11 1-39 1-68 1-69	Analog Switch Drivers/ Level Translators D123/125 D129 3 IH6201 3-1 Analog Switches with Drivers DG118/123/125 DG139A Family 3 DG180 Family 3 DG480 Family 3 DG200 3 DG201 3 IH5009-24 3 IH5025-38 3 IH5040-51 3 IH5052/3 3 IH5140-45 3 IH5200 3	\$ 3-9 -13 105 3-6 -15 -23 -28 -36 -41 -48 -3-71 3-28	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches ICL8018A/19A/20A LINEAR Amplifiers Driver Amplifier for Power Transistors ICL8063 Driver Amplifier for Actuators, Motors ICH8510/20/30 ICH8515 Instrumentation Commutating Auto ICL7605/6	4-148 4-152 4-86 4-124 4-132 4-158 5-182 5-214 5-222
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416 2N4867-69 2N5397/98 2N5457-59 2N5457-59 2N5484-86 ITE4416 J201-4 J308-10 U308-10 U308-10 P-Channel 2N2607-9 2N5460-65 U304-6	1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31 1-33 1-41 1-46 1-31 1-80 1-82 1-89	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124 IT126/29 LM114 PNP Devices 2N3810/11 2N5117-19 IT130-32 IT136-39 Special Functi High Speed Dual Di ID100/1 Voltage Controlled Resistors	1-23 1-34 1-65 1-66 1-67 1-83 1-11 1-39 1-68 1-69	Analog Switch Drivers/ Level Translators D123/125 D129 3 IH6201 3-1 Analog Switches with Drivers DG118/123/125 DG139A Family 3 DG180 Family 3 DG180 Family 3 DG200 3 DG201 3 IH5009-24 3 IH5025-38 3 IH5040-51 3 IH5052/3 3 IH5140-45 3 IH5200 3	\$ 3-9 -13 105 3-6 -15 -23 -28 -36 -41 -48 -36 -41 -48 -37	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches ICL8018A/19A/20A LINEAR Amplifiers Driver Amplifier for Power Transistors ICL8063 Driver Amplifier for Actuators, Motors ICH8510/20/30 ICH8515 Instrumentation Commutating Auto	4-148 4-152 4-86 4-124 4-132 4-158 5-182 5-214 5-222
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416 2N4867-69 2N5397/98 2N5457-59 2N5484-86 ITE4416 J201-4 J308-10 U308-10 P-Channel 2N2607-9 2N5460-65 U304-6 JFET Dual Amplifiers	1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31 1-33 1-41 1-46 1-31 1-80 1-82 1-89	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124 IT126/29 LM114 PNP Devices 2N3810/11 2N5117-19 IT130-32 IT136-39 Special Functi High Speed Dual Di ID100/1 Voltage Controlled Resistors	1-23 1-34 1-65 1-66 1-67 1-83 1-11 1-39 1-68 1-69	Analog Switch Drivers/ Level Translators D123/125 D129 3 IH6201 3-1 Analog Switches with Drivers DG118/123/125 DG139A Family 3 DG180 Family 3 DG480 Family 3 DG200 3 DG201 3 IH5009-24 3 IH5025-38 3 IH5040-51 3 IH5052/3 3 IH5140-45 3 IH5200 3	\$ 3-9 -13 105 3-6 -15 -23 -28 -36 -41 -48 -3-71 3-28	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches ICL8018A/19A/20A LINEAR Amplifiers Driver Amplifier for Power Transistors ICL8063 Driver Amplifier for Actuators, Motors ICH8510/20/30 ICH8515 Instrumentation Commutating Auto ICL7605/6 Log-Antilog ICL8048/49	4-148 4-152 4-86 4-124 4-132 4-132 4-158 5-182 5-214 5-222 -Zero 5-63
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416 2N4867-69 2N5397/98 2N5457-59 2N5484-86 ITE4416 J201-4 J308-10 U308-10 P-Channel 2N2607-9 2N5460-65 U304-6 JFET Dual Amplifiers N-Channel	1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31 1-33 1-41 1-46 1-31 1-80 1-82 1-89	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124 IT126/29 LM114 PNP Devices 2N3810/11 2N5117-19 IT130-32 IT136-39 Special Functi High Speed Dual Di ID100/1 Voltage Controlled Resistors	1-23 1-34 1-65 1-66 1-67 1-83 1-11 1-39 1-68 1-69	Analog Switch Drivers/ Level Translators D123/125 D129 3 IH6201 3-1 Analog Switches with Drivers DG118/123/125 DG139A Family 3 DG180 Family 3 DG480 Family 3 DG200 3 DG201 3 IH5009-24 3 IH5025-38 3 IH5040-51 3 IH5052/3 3 IH5140-45 3 IH5200 3	\$ 3-9 -13 105 3-6 -15 -23 -28 -36 -41 -48 -3-71 3-28	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches ICL8018A/19A/20A LINEAR Amplifiers Driver Amplifier for Power Transistors ICL8063 Driver Amplifier for Actuators, Motors ICH8510/20/30 ICH8515 Instrumentation Commutating Auto ICL7605/6 Log-Antilog ICL8048/49 Operational,	4-148 4-152 4-86 4-124 4-132 4-138 5-182 5-214 5-222 -Zero 5-63 5-174
2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416 2N4867-69 2N5397/98 2N5457-59 2N5484-86 ITE4416 J201-4 J308-10 U308-10 P-Channel 2N2607-9 2N5460-65 U304-6 JFET Dual Amplifiers	1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31 1-33 1-41 1-46 1-31 1-80 1-82 1-89	Bipolar Dual Amplifiers NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124 IT126/29 LM114 PNP Devices 2N3810/11 2N5117-19 IT130-32 IT136-39 Special Functi High Speed Dual Di ID100/1 Voltage Controlled Resistors	1-23 1-34 1-65 1-66 1-67 1-83 1-11 1-39 1-68 1-69	Analog Switch Drivers/ Level Translators D123/125 D129 3 IH6201 3-1 Analog Switches with Drivers DG118/123/125 DG139A Family 3 DG180 Family 3 DG480 Family 3 DG200 3 DG201 3 IH5009-24 3 IH5025-38 3 IH5040-51 3 IH5052/3 3 IH5140-45 3 IH5200 3	\$ 3-9 -13 105 3-6 -15 -23 -28 -36 -41 -48 -3-71 3-28	AD7533 AD7541 ICL7134 ICL7145 ICL7146 D/A Current Switches ICL8018A/19A/20A LINEAR Amplifiers Driver Amplifier for Power Transistors ICL8063 Driver Amplifier for Actuators, Motors ICH8510/20/30 ICH8515 Instrumentation Commutating Auto ICL7605/6 Log-Antilog ICL8048/49	4-148 4-152 4-86 4-124 4-132 4-138 5-182 5-214 5-222 -Zero 5-63 5-174

FUNCTIONAL INDEX

Operational, FET	Input
LH0042	**
AD503	**
SU/NE536	. **
μΑ740	**
ICL8007	5-139
ICL8043	5-167
1CH8500	5-208
Operational, Gene	
Purpose	,,,,,,
OP-05	5-8
OP-07	5-16
LM101/301	**
LM107/307	**
LM108/308	5-24
	J-24 **
μΑ741	
ICL741HS	5-44
AD741K	
ICL741LN	5-46
μΑ748	**
μΑ777	5-49
LH2101/2301	* *
LH2108/2308	5-55
IH5101	**
ICL8008	5-142
Operational, High	
ICL8017	5-151
Operational, Low	Power
LM4250	
ICL76XX Series	5-73
IÇL8021-23	5-155
Video	
μΑ733	**
NE/SE592	5-38
NE592-8	5-41
Voltage Followers	•
LM102/302	
LM110/310	5.
LH2110/2310	**
0	
Comparators	
Dual	.]
LH2111/2311	* **
Low Power	1
ICL8001	5-135
Precision	· •
LM111/311	**
Sample and I	Hold
IH5110-15	5-57
	~ ~ ~
Temperature	
· •	
Sensor	See a
,	

· · ·	
Voltage Refe	-
ICL8069 ICL8075-9 ICL8211/12	5-190 5-192 5-198
Voltage Regulators	
LM100/300	**
LM105/305 μA723	**
ICL7663/64	5-111
Special Fund	tion
Multiplier ICL8013	5-144
Voltage Converte ICL7660	r 5-104
Waveform General ICL8038	tor 5-158
Low Battery Dete	ctors
ICL7665	5-121
ICL8211/12 Dual Power MOS	5-200 Driver
IQL7667	5-128
	7 7.77
*Not recommended new designs. Use ICL8211/12 or ICL7	for
new designs. Use ICL8211/12 or ICL7	for 665
new designs. Use ICL8211/12 or ICL7 TIMERS, COUNTERS,	for 665
new designs. Use ICL8211/12 or ICL7 TIMERS, COUNTERS, DISPLAY DRIVERS	for 665: AND
new designs. Use ICL8211/12 or ICL7 TIMERS, COUNTERS, DISPLAY DRIVERS Timers	for 665: AND
new designs. Use ICL8211/12 or ICL7 TIMERS, COUNTERS, DISPLAY DRIVERS Timers ICM7240/50/60 ICM7242	for 665: AND 6-116 6-127
new designs. Use ICL8211/12 or ICL7 TIMERS, COUNTERS, DISPLAY DRIVERS Timers ICM7240/50/60	for 665: AND 6-116
new designs. Use ICL8211/12 or ICL7 TIMERS, COUNTERS, DISPLAY DRIVERS Timers ICM7240/50/60 ICM7242 ICM7555	for 665: AND 6-116 6-127 6-155
new designs. Use ICL8211/12 or ICL7 TIMERS, COUNTERS, DISPLAY DRIVERS Timers ICM7240/50/60 ICM7242 ICM7555 ICM7556 Counters ICM7208	665. AND 6-116 6-127 6-155 6-155
new designs. Use ICL8211/12 or ICL7 TIMERS, COUNTERS, DISPLAY DRIVERS Timers ICM7240/50/60 ICM7242 ICM7555 ICM7556 Counters ICM7208 ICM7216 ICM7217/27	665. AND 6-116 6-127 6-155 6-155 6-7 6-24 6-39
new designs. Use ICL8211/12 or ICL7 TIMERS, COUNTERS, DISPLAY DRIVERS Timers ICM7240/50/60 ICM7242 ICM7555 ICM7556 Counters ICM7208 ICM7216 ICM7217/27 ICM7224/25 ICM7226	665. AND 6-116 6-127 6-155 6-155 6-7 6-24 6-39 6-64 6-72
new designs. Use ICL8211/12 or ICL7 TIMERS, COUNTERS, DISPLAY DRIVERS Timers ICM7240/50/60 ICM7242 ICM7555 ICM7556 Counters ICM7208 ICM7216 ICM7216 ICM7217/27 ICM7224/25 ICM7226 ICM7236	665. AND 6-116 6-127 6-155 6-155 6-7 6-24 6-39 6-64
new designs. Use ICL8211/12 or ICL7 TIMERS, COUNTERS, DISPLAY DRIVERS Timers ICM7240/50/60 ICM7242 ICM7555 ICM7556 Counters ICM7208 ICM7216 ICM7217/27 ICM7224/25 ICM7226 ICM7236 Counter	665. AND 6-116 6-127 6-155 6-155 6-7 6-24 6-39 6-64 6-72
new designs. Use ICL8211/12 or ICL7 TIMERS, COUNTERS, DISPLAY DRIVERS Timers ICM7240/50/60 ICM7242 ICM7555 ICM7556 Counters ICM7208 ICM7216 ICM7216 ICM7217/27 ICM7224/25 ICM7226 ICM7236	665. AND 6-116 6-127 6-155 6-155 6-7 6-24 6-39 6-64 6-72

Display Drive	rs
ICM7211/12 ICM7218 ICM7231-34 ICM7235 ICM7243 ICM7281	6-14 6-55 6-84 6-104 6-133 6-143
TIMEKEEPIN DTMF CIRCU	
Stopwatches	
ICM7045 ICM7215	7-10 7-47
Display	
Watches/Cloc	cks
ICM7223 ICM7223A ICM7223VF	7-53 7-59 7-67
Analog	٠
Watches/Cloc	cks
ICM1115 ICM7038 ICM7050 ICM7051 ICM7070	7-19 7-5 7-19 7-23 7-27 7-77
Clock Genera	tors
ICM7209 ICM7213	7-39 7-42
Frequency Di	vider
ICM7241	7-75
Touch Tone Encoder	,
ICM7206	7-31

AD590

^{**}Obsolete product, refer to page A-9.

OBSOLETE PRODUCTS

The products listed below have been designed into circuits in the past, but are no longer likely to be the most economic choice for new designs.

These products are still available for use in existing designs. Data sheets for these products are available upon request.

AM2502/3/4	AD503
AM25L02/3/4	SU/NE536
DG126A Family	μΑ740
G115/123	LM101/301
G116-19	LM107/307
G125-32	μΑ741
ICL7600/01	AD741K
ICL8052/7101	μΑ748
ICL8052/71C03	LH2101/2301
•	IH5101
ICL8052/53	LM4250
IH401	μ A 733
IMF5911/12	LM102/302
LD110/111	LM110/310
LD114	LH2110/2310
MM450/550	LH2111/2311
MM451/551	LM111/311
MM452/552	LM100/300
MM455/555	LM105/305
VCR5P	μΑ723
LH0042	ICM7201
	the state of the s

IC ALTERNATIVE SOURCE INDEX

•				
AMD Intersil	I AD/SSIND	AD7531KD	HI ₁ 1-0201-5	"DG201BK
AM9232 IM7332 AM9264 IM7364		AD7531KN AD7531LD	HI1-0201-8 HI3-0201-5	DG201AK/883B
LH2101 LH2101	AD7531LN	AD7531LN	HI0-0508-6	DG201CJ IH6108C/D
LH2301 LH2301 LH2311 LH2311		AD7533AD AD7533BD	HI1-0508-2 HI1-0508-5	IH6108MJE IH6108CJE
LM101 LM101	AD7533CD AD7533JN	AD7533CD	HI1 0508-8	IH6108MJE/883B
LM102 LM105 LM105	AD7533KN	AD7533JN AD7533KN	HI3-0508-5 HI0-0508A-6	IH6108CPE IH5108C/D
LM107 LM107 LM108 LM108	AD7533LN AD7533SD	AD7533LN AD7533SD	HI1-0508A-2 HI1-0508A-5	(H5108MJE,
LM110 LM110	AD7533TD	AD7533TD	HI1-0508A-8	IH5108IJE IH5108MJE/883B
LM111 LM111 LM301 LM301	AD7533UD AD7541AD	AD7533UD AD7541AD	HI3-0508A-5	IH5108CPE
LM302 LM302	AD7541BD AD7541JN	AD7541BD	HI0-0509-6	1H6208C/D
LM307 LM307	AD7541KN	AD7541#N AD7541KN	HI1-0509-2 HI1-0509-5	H6208MJE H6208CJE
LM308 LM308 LM310 LM310	AD7541SD AD7541TD	AD7541SD AD7541TD:	HI1-0509-8 HI3-0509-5	1H6208MJE/883B 1H6208CPE
LM311 LM311	Commodore		HI0-0509A-6	IH5208C/D
723 733 μΑ723 μΑ733	2332	Intersit IM7332	HI1-0509A-2 HI1-0509A-5	IH5208MJE IH5208IJE
741 μA741 748 μA748	2364	IM7364	HJ1-0509A-8	1H5208MJE/883B
, , , , , , , , , , , , , , , , , , ,	Datel	Intersil	HI3-0509A-5 HI0-0506-6	IH5208CPE
AMI Intersil	AMC-0013	ICL8013	HI1 0506-2	IH6116C/D IH6116MJI
\$68332 IM7332 \$68364 IM7364	DAC7520 DAC7521	AD7520 AD7521	HI1-0506-5, HI1-0506-8	1H6116CJI (H6116MJI/883B
	DAC7521 DAC7523 DAC7533	AD7523	HI3-0506-5	IH6116CPI
Analog Devices Intersil	DAC7541	AD7533 AD7541	HI0-0507-6 HI1-0507-2	IH6216C/D IH6216MJI
AD101 LM101 AD108 LM108	TT-590 WG-8038	AD590 ICL8038	HI1-0507-5 HI1-0507-8	IH6216CJI IH6216MJI/883B
AD301 LM301 AD308 LM308	VR-8069	ICL8069	HI3-0507-5	JH6216CPI
AD503 AD503	Eurosil	Intersil	HIO-5040-6	IH5040C/D
AD590 AD590 AD741 µA741	E1115	ICM1/145A	HI1-5040-2 HI1-5040-5	IH5040MJE IH5040CPE
AD7506/COM/CHIPS IH61160 AD7506/MIL/CHIPS IH61161	C/D E1151	ICM1115B	HI1-5040-8 HI0-5041-6	IH5040MJĒ/883B IH5041C/D
AD7506JD IH61160	CJI EASI	Intersil	HI1-5041-2	IH5041MJE
AD7506JD/863B IH6116J AD7506JN IH61160		ICM7240 ICL8038	HI1-5041-5 HI1-5041-8	. IH5041CPE IH5041MJE/883B
AD7506KD IH61160	CJI XRL555	ICM7555	HI0-5042-6 HI1-5042-2	IH5042C/D IH5042MJE
AD7506KN (H61160	CJI/883B XRL556 CPI XR2242	ICM7556 CM7242	HI1-5042-5	IH5042CPE
AD7506SD (H6116N AD7506SD/883B (H6116N	MJI MJI/883B Fairchild	Intersil	HI1-5042-8 HI0-5043-6	1H5042MJE/883B 1H5043C/D
AD7506TD [H61168	MJI "A101	LM101	HI1-5043-2 HI1-5043-5	IH5043MJE
AD7506TD/883B IH6116N AD7507/COM/CHIPS IH62160	MJI/883B	LM 102	HI1-5043-8	1H5043CPE 1H5043MJE/883B
AD7507/MIL/CHIPS IH62160 AD7507JD IH62160	M/D	LM105 LM107	HI0-5044-6 HI1-5044-2	IH044C/D IH5044MJE
AD7507JD/883B IH62160	CJI/883B #A+10	LM108 LM110	HI1-5044-5	IH5044CPE
AD7507JN IH62160 AD7507KD IH62160	JPI 1.04441	LM111	HI1-5044-8 HI0-5045-6	IH5044MJE/883B IH5045C/D
AD7507KD/883B IH62160	CJI/883B #A302	LM301 LM302	Hi1-5045-2 Hi1-5045-5	IH5045MJE IH5045CPE
AD7507SD IH6216N	MJI [LM305 . LM307	HI1-5045-8	1H5045MJE/883B
AD7507TD IH6216N	MJ#663B #A308	LM308	HI0-5046-6 HI1-5046-2	IH5046C/D IH5046MJE
AD7507TD/8838 IH6216N AD7520JD AD7520.	MJI/883B #A311	LM310 LM311	HI1-5046-5 HI1-5046-8	IH5046CPE IH5046MJE/883B
AD7502JN AD7520.	UN "A733	μΑ723 μΑ733	HI0-5047-6	IH5047C/D
AD7520KD AD7520I AD7520KN AD7520I	μΑ740	μA740	HI1-5047-2 HI1-5047-5	1H5047MJE 1H5047CPE
AD7520LD AD7520 AD7520LN AD7520	LD #A748	μΑ741 μΑ748	HI1-5047-8 HI0-5048-6	IH5047MJE/883B IH5048C/D
AD7520SD AD7520S	SD POTT	' μΑ777	HI1-5048-2 HI1-5048-5	IH5048MJE '
AD7520TD AD7520 AD7520UD AD7520I	טט עו	Intersil	HI1-5048-8	1H5048CJE,CPC 1H5048MJE/883B
AD7521JD AD7521, AD7521JN AD7521, AD7521KD AD7521	JD 9332	IM7332	HI0-5049-6 HI1-5049-2	1H5049C/D 1H5049MJE
AD7521KD AD7521)	KD	IM7364	HI1-5049-5 HI1-5049-8	IH5049CJE,CPE
AD7521KN AD7521I AD7521LD AD7521I	KN GTE	Intersil	HI0-5050-6	IH5049MJE/883B IH5050C/D
AD7521LD AD75211 AD7521LN AD75215 AD7521SD AD75215 AD7521TD AD7521	LN 2114 SD 2332	2114	HI0-5050-6 HI1-5050-2 HI1-5050-5 HI1-5050-8 HI0-5051-6	IH5050MJE IH5050CJE,CPE
AD7521TD AD7521	TD 2364	IM7332 IM7364	Hi1-5050-8	IH5050MJE/883B
AD7521UD AD7521U AD7523AD AD7523A AD7523BD AD7523B	AD Harris	Intersil	HIT-5051-2	IH5051C/D IH5051MJE
AD7523AD AD7523A AD7523BD AD7523C AD7523CD AD7523C	BD HA2720	ICL8021	HI1-5051-5 HI1-5051-8	1H5051GJE,CPE 1H5051MJE/883B
AD7523JN . AD7523J	00	1M6402 DG200B/D	LM101	LM101 ·
AD7523LN AD75231	LN 111.0200-2	DG200AK	LM4250	LM4250
AD7523SD AD7523S AD7523TD AD7523T	SD HI1-0200-5	DG200BK DG200BK	MicroPower	
AD7523UD AD7523L	UD HI1-0200-B	DG200AK/833B	Systems	Intersil
AD7530JD AD7530J AD7530JN AD7530J	HI2-0200-4	DG200AA DG200BA	MP7520JD MP7520JN	AD7520JD AD7520 IN
AD7530KD AD7530K	KD HI2-0200-5	DG200BA DG200AA/883B	MP7520JN MP7520KD MP7520KN	AD7520JN AD7520KD AD7520KN
AD7530LD AD7530L	HI3-0200-5	DG200CJ	MP7520KN MP7520LD	AD75ZULD
AD7530LN AD7530L AD7531JD AD7531J		DG201B/D DG201AK	MP7520LN MP7520SD	AD7502LN
AD7531JN AD7531J		DG201BK	MP7520TD	AD7520SD AD7520TD
			•	

	· · · · · · · · · · · · · · · · · · ·			:		
		4 4	AD75311 N (DAC1220LCN)	AD7531LN	NEC	Intersil
COL	tinued		AD7531LN (DAC1220LCN) AD7533AD (DAC1022LCD)	4 D T C O O 4 D	μPD816C	ICM7038B
	MP7520UD	AD7520UD AD7521JD	AD7533BD (DAC1021LCD) AD7533CD (DAC1020LCD) AD7533JN (DAC1022LCN)	AD7533BD AD7533CD AD7533JN AD7533JN AD7533LN AD7533LD AD7533TD	μPD820C	ICM1115B
	MP7521JD MP7521JN	AD7521JD AD7521JN	AD7533JN (DAC1020LCD)	AD7533JN	µPD833G µPD1963C	ICM7223, ICM7050
	MP7521KD	AD7521JN AD7521KD	AD7533KN (DAC1021LCN)	AD7533KN	μPD2332	IM7332
	MP7521KN	AD7521KN AD7521LD	AD7533LN (DAC1020LCN)	AD7533LN	μPD2364	łM7364
	MP7521LD MP7521LN	AD7521ED	AD7533SD (DAC1022LD) AD7533TD (DAC1021LC)	AD75333TD	NPC	Intersil
	MP7521SD '	AD7521SD	AD7533UD (DAC1020LD)	W6122200		
	MP7521TD	AD7521TD	AH0139CD AH0139D	DG139BK	SM5510	ICM1115B
	MP7521UD MP7523JN	AD7521UD AD7523JN	AH0139D/883	DG139AK DG139AK/883B	ОКІ	Intersil
	MP7523KN	AD7523KN	AH0142GD	DG142BK	MSM503	AD503
	MP7523LN MP7530JD	AD7523LN AD7530JD	AH0142D AH0142D/883	DG142AK DG142AK/883B	Panasonic/Matsushita	Intersil
	MP7530JN	AD7530JN	AH0143CD	DG143BK	MN6091	ICM7038B
	MP7530KD	AD7530KD	AH0143D	DG143AK	MN6093	ICM7051A
	MP7530KN MP7530LD	AD7530KN AD7530LD	AH0143D/883 AH0144CD	DG143AK/883B DG144BK		
	MP7530LN	AD7530LN	AH0144D	DG144AK	Phillips/Fasalec	Intersil
	MP7531JD	AD7531JD	AH0144D/883	DG144AK/883B	MB7B MB101	ICM7245U ICM7245B
	MP7531JN MP7531KD	AD7531JN AD7531KD	AD0145CD AH0145D	DG145BK DG145AK	MB101 MB103	CM7245E
	MP7531KN	AD7531KN	AH0145D/883	DG145AK/883B	′ MB105	ICM7245U
	MP7531LD	AD7531LD	AH0146CD	DG146BK	MB107 MB108	ICM7245D ICM7245E
	MP7531LN MP7533AD	AD7591LN AD7533AD	AH0146D AH0146D/883	DG146AK DG146AK/883B	MB143	ICM7245A
	MP7533BD	AD7533BD	AH0161CD	DG161BK	MB144	ICM7245F
	MP7533CD - '	AD7533CD AD7533JN	AH0161D	DG161AK	MB510	ICM1115B
	MP7533JN MP7533KN	AD7533KN	AH0161D/83 AH0162CD	DG161AK/883B DG162BK	Plessey	Intersil
	MP7533LN	AD7533LN AD7533SD	AH0162D AH0162D/883B	DG162AK DG162AK/883B	SC748	μA748
	MP7533SD MP7533TD	AD7533SD AD7533TD	AH0162D/883B AH0163CD	OG162AK/883B DG163BK	PMI	Intersil
	MP7533UD	AD7533UD	AH0163	DG163AK		
	MP7621AD	AD7541AD	AH0163D/883 AH0164CD	DG163AK/883B	PM308 SS\$741	LM308 . μΑ741
	MP7621BD MP7621JN	AD7541BD AD7541JN	AH0164D	DG164BK DG164AK	355147	
	MP7621KN	AD7541LN	AH0164D/883	DG164AK/883B	Raytheon	Intersil ^a
	MP7621SD	AD7541SD AD7541TD	AH5009CN AH5010CN	IH5009CPD IH5010CPD	LH2101	LH2101
	MP7621TD	AD754110	AH5011CN	IH5011CPE	LH2301	LH2301 LH2311
	Mitsubishi .	Intersil	AH5012CN	IH5012CPE	LH2311 LM101	LM101
	M58435P	ICM1115B	AN5013CN AH5014CN	1H5013CPD 1H5014CPD	LM105	LM105
			AH5015CN	IH5015CPE	LM107	LM107 LM108
	Motorola	Intersil	AH5016CN	IH5016CPE	LM108 LM301	LM301
	LM101	LM101	AM9709CN AM97C09CN	IH5009CPD IH5009CPD	LM305	LM305
	LM105	LM105	AM9710CN	IH5010CPD	LM307 LM308	LM307 LM308
	LM107 LM110	LM107 LM110	AM97C10CN	IH5010CPD IH5011CPE	LM300	LM311
	LM111	LM111	AM9711CN AM97C11CN	IH5011CPE	RC723	μΑ723` μΑ733
	LM301 LM305	LM301 LM305	AM9712CN	IH5012CPE	RC733 RC741	μΑ733 μΑ741
	LM307	LM307	AM97C12CN DM7555	IH5012CPE ICM7555	RC748	μΑ748
	LM308	LM308	DM7556	ICM7556	RM723	μΑ723 μΑ741
	LM310 LM311	LM310 LM311	LF.11201D	DG201AK	RM741 RM748	μΑ748 μΑ748
	MCM68332	IM7332	LF11201D/883 LF11508D	DG201AK/883B IH6108MJE		
	MCM68364	IM7364	LF11508D/883	1H6108MJE/883B	RCA	Intersil
	MC1723 MC1741	μΑ723 μΑ741	LF11509D. LF11509D(883	1H6208MJE 1H6208MJE/883B	CA101	LM101 LM107
	MC1748	μΑ748	LF 13201	DG201	CA107 CA111	LM111
	MHW590	AD590	LH0042	LH0042	GA301	LM301
	National		LH2108 LH2110	LH2108 LH2110	CA307 CA308	LM307 LM308
	Semiconductor	Intersit	LH2110 LH2111	LH2110 LH2111	CA311	LM311
	AD7520JD (DAC1022LCD)	AD7520JD	LH2301 LH2308	LH2301.	CA723	μ Α72 3
	AD7520JN (DAC1022LCN)	AD7520KD	L LH2310	LH2301 LH2308 LH2310	CA741 CA748	μΑ741 μΑ748
	AD7520KN (DAC1021LCD) AD7520KN (DAC1021LCN)	AD7520KD AD7520KN	LH2311	LH2311	CD22015E	ICM7051A
	AD7520LD (DAC1020LCD)	AD7520LD	LM100 LM101	LM100 LM101,	CPD6402	IM6402
	AD7520LD (DAC1020LCD) AD7520LN (DAC1020LCN)	AD7520LD AD7520LN AD7520SD	LM102	LM102	Samsong	Intersil
	AD75205K (DAC1022LD)	4D7520TD	LM105	LM105 .	K\$5240U01E	1CM7245U
	AD7520TD (DAC1021LD) AD7520UD (DAC1020LD)	AD7520UD	LM107 LM108	LM107 LM108	KS5240B01J	ICM7245A ICM7245B
	AD7521JD (DAC1222LCD) AD7521JN (DAC1222LCN) AD7521KD (DAC1221LCD)	AD7521JD	LM110	LM110	K\$5240B01H K\$5240B10H	ICM7245D
	AD7521JN (DAC1222LCN) AD7521KD (DAC1221LCD)	AD75213N AD7521KD	LM111	LM111	KS5240B12H	ICM7245E
	- AD7521KN (DAC1221LCN)	AUZSZIKN	LM300 LM301	LM300 LM301	K\$5240B20H	ICM7245F
•	A07521LD (DAC1220LCD)	AD7521LD AD7521LN	LM302	LM302	Sanyo	Intersil
	AD7521LD (DAC1220LCD) AD7521LN (DAC1220LCN) AD7521SD (DAC1222LD)	AD75215D	LM305 LM307	LM305 LM307	LC7523	AD7523
	AD7521TD (DAC1221LD)	AD752110	- LM307 - LM308	LM308		AD1 320
	AD7521UD (DAC1220LD)	AD7521UD AD7530JD	LM310	LM310 .	Signetics	Intersil
	AD7530JD (DAC1022LCD) AD7530JN (DAC1022LCN)	AD7530JN AD7530KD	LM311 LM4250	LM311 LM4250	μΑ723	μA723
	AD7530KD (DAC1021LCD)	- AD7530KD	LM723	μA723	μA733	дA733
	AD7530KN (DAC1021LCN) AD7530LD (DAC1020LCD)	AD7530KN AD7530LD	LM733	μ A73 3	μΑ740 μΑ741	μΑ740 μΑ741
	AD7530LN (DAC1020LCN) AD7531JD (DAC1222LCD)	AD7530LN	LM740 LM741	μΑ740 μΑ741	μA748	μA748 -
	AD7531JD (DAC1222LCD) AD7531JN (DAC1222LCN)	AD7531JD AD7531JN	LM742	μA748	LH2101 LH2108	LH2101 LH2108
	AD7531KD (DAC1221LCD)	AD7531KD '	MM52132	IM7332	LH2301	ŁH2301
	AD7531KD (DAC1221LCD) AD7531KN (DAC1221LCN)	AD7531KN AD7531LD	MM52164 MM74C946	IM7364 ICM7224	LH2308	LH2308
	AD7531LD (DAC1220LCD)	ADIOSILD		- -	•	

IC Alternate Source Index (continued)

		,			
continued					
Silicon General	Interell	DG186AP	DG186AK	T 1	
	Intersil	DG 186BA	DG186BA	TI .	Intersil
μΑ777 SG 101	μΑ777 LM101	DG1868P DG187AA	DG186BK	μΑ723 μΑ733	μΑ723 μΑ733
\$G 105	LM105	DG:187AL	DG187AA DG187AL	μ Α741	μΑ733 μΑ741
SG107 SG108	LM107 LM108	DG187AP	DG187AK	μΑ748 μΑ777	A748
SG110	LM110	DG187BA DG187BP	DG187BA DG187BK	£M101	μΑ 777 LM101
SG111 SG301	LM111	DG188AA	DG188AA	LM 105	LM 105
SG305	LM301 LM305	DG188AL -	DGM188AA	LM107 LM111	LM107 LM111
SG307	LM307	DG188AP	DG188AL DG188AK	LM301	LM301
9G308 SG311	LM308 LM311	DG188BA	DG188BA	LM305 LM307	LM305
SG4250	LM4250	DG188BP	DGM188BA DG188BK	LM311	LM307 LM311
SG723 SG733	μΑ723 μΑ733	DG189AL	DG189AL	SN74S188	DGM182BA
\$G741	μΑ733· μΑ741	DG189AP DG189BP	DG189AK DG189BK	TL182CL TL182CN	DGM182BA DGM182CJ
SG748	μA748	DG190AL	DG190AL	TL182IL	DGM182BA
SG7520 SG7521	AD7520 . AD7521	DG190AP DG190BP	DG190AK	TL182IN TL182ML	DGM182CJ DGM182AA
SG7523	AD7523	DG191AL	DG190BK DG191AL	TL185CJ	IH5045CJE
			DGM191AL	TL185CN TL185IJ	IH5045CPE
Siliconix	Intersil	DG191AP	DG191AK DGM191AK	TL185IN	IH5045CJE IH5045CPE
DF412	ICM7211	DG1918P	DG191BK	TĽ185MJ	IH5045MJE
DG123AL DG123AP	DG123AL DG123AK	DG200AA	DGM191BK	TL188CL TL188CN	1H5042CTW 1H5042CPE
DG123BP DG125AL	DG123BK	DG200AL	DG200AA DG200AL	TL 1881L	IH5042CTW
DG125AE DG125AB	DG125AL DG125AK	DG200AP	DG200AK	TL188IN TL188ML	IH5042CPE
DG125AP DG125BP	DG125BK	DG200BA	DG200BA	TL191CJ	!H5042MTW !H5043CJE.
DG139AL DG139AP DG139BP	DG139AL	DG200BP	DG200BK	TL1910N	IH5043CPE
DG 139AP DG 139BP	DG139AK DG139BK	DG200CJ DG201AP	DG200CJ DG201AK	TL 1911J TL 1911N	IH5043CJE IH5043CPE
DG142AL DG142AP DG142BP DG143AL	DG142AL	DG201BP	DG2018K	TL191MJ	1H5043MJE
DG142AP DG142BP	DG142AK DG142BK	DG201CJ	D:G201CJ	TL503	AD503
DG143AL	DG143AL	DG381AA DG381AK	DGM182AA DGM182AK	Toshiba	Intersil
DG143AP DG143BP	DG143AK	DG381AP	DGM182AK	TC8031P	ICM7038A
DG144AL	DG143BK DG144AL	DG381BA DG381BK	DGM1818A	TC8051P	ICM7038B
DG144AP	DG144AK	DG381BP	DGM181BK DGM181BK	TC8056PA TC8057P	ICM1115B ICM7038D
DG144AP DG145AL	DG144BK DG145AL	DG381CJ	DGM181CJ	TMM2114 TMM2332	2114
DG145AP	DG145AK	DG384AK DG384AP	DGM185AK DGM185AK	TMM2332	IM7332
DG145BP DG146AL	DG145BK DG146AL	DG384BK DG384BP	DGM184BK	TMM2364	IM7364
DG146AP	DG146AK	DG384BP DG384CJ	DGM184BK DGM184CJ		
DG146BP DG161AL	DG146BK DG161AL	DG387AA DG387AK	DGM188AA		
DG161AP	DG161AK	DG387AK DG387AP	DGM188AK 1 DGM188AK		
DG161BP DG162AL	DG161BK	DG387BA	DGM187BA		•
DG162AP	DG162AL DG162AK	DG387BK DG387BP	DGM1878K		
DG 162BP	DG162BK	DG390AK	DGM187BK DGM191AK		
DG163AL DG163AP	DG163AL DG163AK	DG390AP	DGM191AK		
DG1638P	DG163BK	DG390BK DG390BP	DGM190BK DGM190BK		
DG164AL DG164AP	DG164AL DG164AK	DG390CJ	DGM190CJ	,	
DG164BP	DG1648K	DG503 DG506AR	AD503 IH6116MJI		
DG180A'A DG180AL	DG180AA DG180AL	DG506BR	IH6116CJI		
DG180AP	DG180AL	DG506CJ DG507AR	1H6116CPI IH6216MJI		
DG180BA DG180BP	DG180BA	DG507BR	IH6216CJ1		
DG181AA	DG180BK DG181AA	DG507CJ DG508AP	IH6216CP1		•
DG181AL	DG181AL	DG508BP	IH6108MJE IH6108CJE		
DG181AP DG181BA	DG181AK DG181BA	DG508CJ	· IH6108CPE		
DG181BP	DG181BK 1	DG509AP DG509BP	1H6208MJE 1H6208CJE	* .	1
DG182AA	DG182AA DGM182AA	DG509CJ	IH6208CPE		
DG182AL	DG182AL	D123AL D123AP	D123AL		
DG182AP	DGM182AL	D1238P	D123AK D123BK	· .	i .
DG 182AF	DG182AK DGM182AK	D125AL	D125BJ		
DG182BA	DG182BA	D125AP	D125AL D125AK		is .
DG182BP	DGM1828A DG1828K	D125BP	D125BK		
	DGM 182BK	D130AL	D125BJ		
DG183AL DG183AP	DG183AL	D129AL D129AP	D129AL D129AK		
DG 1838P	DG183AK DG183BK	D129BP	D129BK		
DG184AL	DG184AL	Sprague	Interest		
DG184AP DG184BP	DG184AK DG184BK	UCN-4112M	Intersil		
DG185AL	DG185AL	UCN-4113M	ICM7051A ICM7038B		
DG185AP	DGM185AL DG185AK	UHP-503	AD503		*
an ioni	DGM185AK	Synertek	Interest		
DG1858P	DG185BK	SY2332	Intersil IM7332	• •	
DG186AA	DGM185BK DG186AA	SY2364	IM7332 IM7364		
DG186AL	DG186AL				

DISCRETE CROSS REFERENCE

ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EGUIVALENT
1005 100U 102M 102S 103M	2N5458 2N3684 2N5686 2N5457 2N5457	2N2606 2N2607 2N2608 2N2609 2N2609JAN	2N2607 2N2607 2N2608 2N2609 2N2609JAN	2N3331 2N3332 2N3333 2N3334 2N3335	2N5270 2N5268 IY132 IT132 IT132	2N3814 2N3815 2N3816 2N3816 2N3815A 2N3817	11132 11132 11130 111304 11130
1035 104M 105M 105U 106M	2N5459 2N5458 2N5458 2N4340 2N5485	2N2639 2N2640 2N2641 2N2642 2N2643	17120 17122 17120 17122 17122	2N3336 2N3347 2N3348 2N3349 2N3350	17132 17137 1 71 38 17139 17137	2N3817A 2N3819 2N382D 2N3821 2N3822	LT130A 2N5484 2N2608 2N3821 2N3822
107M 110U 120U 125U 1277A	2N5485 2N3686 2N3686 2N4339 2N3822	2N2644 2N2652 2N2652A 2N2720 2N2721	17122 17120 17120 17120 17122	2N3351 2N3352 2N3365 2N3365 2N3367	17138 17139 2N4340 2N4338 2N4338	. 2N3923 2N3924 2N3907 2N3908 2N3909	2N3823 2N3824 IT120 IT120 2N2609
1278A * 1279A 1280A 1281A 1282A	2N9821 2N3821 2N4224 2N3822 2N4341	2N2722 2N2802 2N2803 2N2804 2N2805	T120 T139 T139 T139 T139	2N3368 2N3369 2N3370 2N3376 2N3378	2N4341 2N4339 2N4338 2N2508 2N2608	2N3909A 2N3921 2N3922 2N3949 2N3950	ZN2609 2N3921 2N3922 IT132 IT132
1283A 1284A 1285A 1286A 130U	2N4340 2N4222 2N3B21 2N4220 2N3687	2N2806 2N2807 2N2841 2N2842 2N2843	IT139 IT139 2N2607 2N2607 2N2607 2N2607	2N3380 2N3382 2N3384 2N3388 2N3409	2N2609 2N3994 2N3993 2N5114 IT122	2N3954 2N3954A 2N3955 2N3955A 2N3956	2N3954 2N3954A 2N3955 2N3955A 2N3956
1325A 135U 14T 155U 1714A	2N4222 2N4339 2N4224 2N4416 2N4340	2N2844 2N2903 2N2903A 2N2910 2N2913	2N2607 IT122 IT120 IT122 IT122	2N3410 2N3411 2N3423 2N3424 2N3425	IT122 IT122 IT122 IT122 IT122 IT122	2N3957 2N3966 2N3967 2N3967A 2N3968	2N3957 2N4416 2N4221 2N4221 2N3685
1828 1835 1875 1985 1985	2N4391 2N3B23 2N4338 2N4340 2N4341	2N2914 2N2915 2N2915A 2N2916A 2N2916A	T120 T120 T120 T120 T120 T120	2N3436 2N3437 2N3438 2N3452 2N3453	2N4341 2N434D 2N4338 2N4220 2N4338	2N3968A 2N3969 2N3969A 2N397D 2N3971	2N3685 2N3688 2N3688 2N3970 2N3971
2000M 2001M 2005 200U 201S	2N3823 2N3823 2N4392 2N3824 2N4391	2N2917 2N2918 2N2919 2N2919A 2N2820	IT122 IT122 IT120 IT120 2N2920	2N3454 2N3455 2N3456 2N3457 2N3458	2N4338 2N4340 2N4338 2N4338 2N4338 2N4341	2N3972 2N3993 2N3993A 2N3994 2N3994A	2N3972 2N3993 2N3998 2N3994 2N3994 2N3994
202S 203S 204S 207BA 207BA	2N4392 2N3821 2N3821 2N3855 2N3955	2N292UA 2N2936 2N2937 2N2972 2N2972 2N2973	2N2920 T120 T120 T122 T122	2N3459 2N3460 2N3513 2N3514 2N3515	2N4339 2N4338 IF122 IF122 IF122	2N4009- 2N4010 2N4011 2N4015 2N4016	IT132 IT132 IT132 IT139 IT137
2080A 2081A 2093M 2094M 2095M	2N3955A 2N3955A 2N36B7 2N36B6 2N36B6 2N36B6	2N2974 2N2975 2N2976 2N2977 2N2978	17120 17120 17120 17120 17120	2N3516 2N3517 2N3521 2N3522 2N3574	IT122 IT122 IT122 IT122 IT122 2N2607	2N4D17 2N4D18 2N4D19 2N4D2D 2N4D21	T139 T139 T139 T139 T139
2098A 2099A 210U 213DU 2132U	2N3954 2N3955A 2N4416 2N6452 2N3955	2N2978 2N2980 2N2981 2N2982 2N3043	1T120 1T121 1T122 1T122 1T122 T121	2N3575 2N3578 2N3587 2N3587 2N3608 2N3680	2N2607 2N2608 IT122 3N172 IT120	2N4022 2N4023 2N4024 2N4025 2N4026	IT139 IT137 IT137 IT137 3N163
2134U 2136U 2138U 2139U 2147U	2N3956 2N3967 2N3958 2N3958 2N3958 2N3958	2N3D44 2N3D45 2N3D46 2N3D47 2N3D48	IT122 IT122 IT121 IT122 IT122 IT122	2N3684 2N3684A 2N3685 2N3685A 2N3686	2N3684 2N3684 2N3685 2N3685 2N3686	2N4038 2N4039 2N4065 2N4086 2N4087	2N4351 2N4351 3N163 3N166 3N166
2148U 2149U 231S 232S 233S	2N3958 2N3958 2N3954 2N3955 2N3955 2N3956	2N3049 2N3050 2N3051 2N3052 2N3059	IT139 IT139 IT139 IT139 IT139	2N3686A 2N3687 2N3687A 2N3726 2N3727	2N3686 2N3697 2N3697 IT131 IT13D	2N4082 2N4083 2N4084 2N4085 2N4081	2N3954 2N3955 2N3954 2N3955 2N4091
234\$ 2355 241U 250U 251U	2N3957 2N3958 2N4869 2N4091 - 2N4392	2N3066 2N3067 2N3068 2N3068 2N3059 2N3070	2N434D 2N4338 2N4338 2N4338 2N4341 2N4339	2N3728 2N3729 2N3800 2N3801 2N3802	T122 T121 T132 T132 T132	2N4091A 2N4091JAN 2N4091JANTX 2N4091JANTXV 2N4092	2N4091 2N4091JAN 2N4091JANTX 2N4091JANTXV 2N4092
2N2060 2N2060A 2N2060B 2N2223 2N2223A	(T120 (T121 (T121 (T121 (T122 (T121	2N3D71 2N3084 2N3085 2N3086 2N3087	2N4338 2N4339 2N4339 2N4339 2N4339	2N3903 2N3804 2N3804A 2N3805 2N3805A	IT132 IT130 IT130A IT130 IT130A	2N4092A 2N4092JAN 2N4092JANTX 2N4092JANTXV 2N4093	2N4D92 2N4D92JAN 2N4D92JANTX 2N4D92JANTXV 2N4D93
2N23B6 2N23B6A 2N2453 2N2453A 2N2453A	2N2B08 2N2B08 IT122 IT121 IT122	2N3088 2N3088A 2N3089 2N3089A 2N3113	2N4339 2N4339 2N4339 2N4339 2N2607	2N3806 2N3807 2N3808 2N3809 2N3810	17122 17122 17122 17122 2N3810	2N4093A 2N4093JAN 2N4093JANTX 2N4093JANTXV 2N4100	2N4093 2N4093JAN 2N4093JANTX 2N4093JANTXV 2N4100
2N2480A 2N2497 2N249B 2N249B 2N2500	17121 2N2608 2N2608 2N2609 2N2609 2N2609	2N3277 2N3278 2N3328 2N3329 2N3330	2N2606 2N2607 2N5265 2N5265 2N5266	2N381DA 2N3811 2N38114 2N3812 2N3813	2N381DA 2N3811 2N3811A IT132 IT132	2N4117 2N4117A 2N4118 2N4118A 2N4119	2N4117 2N4117A 2N411B 2N411BA 2N411BA 2N411B

	·		<u> </u>		· · · · · · · · · · · · · · · · · · ·		
ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT
2N4119A 2N4120 2N4139 2N4220 2N4220A	2N4119A 3N169 2N3822 2N4220 2N4220	2N5045 2N5048 2N5047 2N5078 2N5090	2N5453 2N5454 2N5454 2N5397 IT122	2N5484 2N5485 2N5486 2N5515 2N5516	2N5484 2N5486 2N5486 2N5515 2N5516	2N6484 2N6485 2N6502 2N6503 2N6550	2N8484 2N6485 11122 11122 2N4868A
2N4221 2N4221A 2N4222 2N4222A 2N4223	2N4221 2N4221 2N4222 2N4222 2N4222 2N4223	2N5103 2N5104 2N5105 2N5114 2N5114JAN	2N4418 2N4416 2N4416 2N5114 2N5114JAN	2N5517 2N5518 2N5519 2N5520 2N5521	2N5517 2N5518 2N5519 2N5520 2N5521	2N6568 2SC294 2SJ11 2SJ12 2SJ13	2N5432 17122 2N2607 2N2607 2N5270
2N4224 2N4267 2N4268 2N4302 2N4303	2N4224 3N163 3N161 2N4902 2N5459	2N5114JANTX 2N5114JANTXV 2N5115 2N5115JAN 2N5115JANTX	RN5114JANTX RN5114JANTXV RN5115 RN5115JAN RN5115JANTX	2N5522 2N5523 2N5524 2N5545 2N5546	2N5522 2N5523 2N5524 2N3954 2N3955A	2SJ15 2SJ16 2SJ47 2SJ48 2SJ49	2N2607 2N2607
2N4304 2N4338 2N4338 2N4340 2N4341	2N545B 2N433B 2N4339 2N4340 2N4341	2N5115JANTXV 2N5116 2N5116JAN 2N5116JANTX 2N5116JANTXV	VXT/ALTS 15/18/19/19/19/19/19/19/19/19/19/19/19/19/19/	2N5547 2N6648 2N5555 2N5656 2N5557	2N3955 2N4093 3310 2N3685 2N3684	2SJ50 2SJ78 - 2SJ79 2SJ80 2SK11	** ** ** 2N5457
2N4342 2N4343 2N4351 2N4352 2N4353	2N5461 2N5462 2N4351 3N163 3N172	2N5117 2N5118 2N5119 2N5120 2N5121	2N5117 2N6118 2N5119 IT131 IT132	2N5558 2N6561 2N5562 2N5563 2N5564	2N3684 U401 U402 U404 IT550	26K12 25K13 25K132 25K133 25K133	2N5457 2N5457
2N4350 2N4381 2N4381 2N4391 2N4392	2N5460 2N2609 2N5115 2N4391 2N4392	2N5122 2N5123 2N5124 2N5125 2N5158	IT132 IT131 IT132 IT132 2N5434	2N5565 2N5566 2N5582 2N5593 2N5594	IT550 IT550 2N3822 2N3822 2N3822 2N3822	25K135 25K15 25K17 25K178 25K178	2N4868 2N5484
2N4393 2N4416 2N4416A 2N4417 2N4445	2N4393 2N4416 2N4416A 2N4416 2N5432	2N5159 2N5163 2N5198 2N5197 2N5198	2N5433 2N3822 2N5196 2N5197 2N5198	2N5638 2N5639 2N5640 2N5647 2N5648	2N5638 2N5639 2N564D 2N4117A 2N4117A	25K18 25K180 25K19 25K23 25K30	2N3821 ** ITE4416 2N5459 2N5458
2N4446 2N4447 2N4448 2N4856 2N4856A	2N5434 2N5432 2N5434 2N4858 2N4856	2N5199 2N5245 2N5246 2N5247 2N5248	2N5199 ITE4416 2N5484 2N5486 2N5486	2N5649 2N5663 2N5654 2N5668 2N5669	2N4117A 2N5638 2N5639 2N5484 2N5485	25K32 25K33 25K34 25K37 25K41	2N3B22 2N5397 2N3822 2N5484 2N5459
2N4856JAN 2N4856JANTX 2N4856JANTXV 2N4857 2N4857A	2N4856JAN 2N4856JANTX 2N4856JANTXV 2N4857 2N4857	2N5254 2N5255 2N5256 2N5257 2N5258	17132 17132 17130 2N5457 2N5458	2N5670 2N5793 2N5794 2N5795 2N5796	2N5486 IT129 IT129 IT139 IT139 IT139	26K42 25K43 25K44 25K46 25K48	2N3822 ITE4092 ITE4416 2N5459 2N3821
2N4857JAN 2N4867JANTX 2N4857JANTXV 2N4858 2N4858A	2N4857JAN 2N4857JANTX 2N4857JANTXV 2N4858 2N4858	2N5259 2N5265 2N5266 2N5267 2N5268	2N5459 2N2607 2N2607 2N2608 2N2608	2N5797 2N5798 2N5799 2N5800 2N5801	2N2608 2N2608 2N2608 2N2606 2N4393	25K49 25K50 25K54 25K55 25K56	2N5484 1TE4416 2N3822 2N3822 2N5459
AN4858JAN XTANAKB58JANTX XTANAKB58JANTXV 204859 ARESPANS	2N4858JAN 2N4858JANTX 2N4858JANTXV 2N4859 2N4859	2N5269 2N5270 2N5277 2N5278 2N5358	2N2609 2N2609 2N4341 2N4341 2N4220	2N5802 2N5803 2N5843 2N5844 2N5802	2N4393 2N4392 IT130 IT130 2N5902	25K61 25K65 25K66 25K68 25K68 25K72	2N5397 J201 2N3821 2N3822 2N5196
2N4859JAN 2N4859JANTX 2N4860 2N4860A 2N4860JAN	2N4856JAN 2N4856JANTX 2N4860 2N4860 2N4857JAN	2N5359 2N5360 2N5361 2N5362 2N5363	2N4220 2N4221 2N4221 2N4222 2N4222	2N5903 2N5904 2N5905 2N5906 2N5907	2N5903 2N5904 2N5905 2N5906 2N5907	3GS 3N145 3N146 3N147 3N147	2N3821 3N163 3N162 3N189 3N189
2N48EDJANTX 2N48E1 2N48E1A 2N48E1JAN 2N48E1JANTX	2N4857JANTX 2N4861 2N4861 2N4858JAN 2N4858JANTX	2N5364 2N5391 2N5392 2N5393 2N5394	2N4222 2N4867A 2N4868A 2N4869A 2N4869A	2N5908 2N5909 2N5911 2N5912 2N5949	2N5908 2N5909 2N5911 2N5912 2N5486	3N149 3N150 3N151 3N151 3N155 3N155A	3N161 3N163 3N19D 3N163 3N163
2N4867 2N4867A 2N4868 2N4868A 2N4869	2N4867 2N4867A 2N4868 2N4868A 2N4868A 2N4868	2N5395 2N5396 2N5397 2N5398 2N5432	2N4869A 2N4869A 2N5397 2N5398 2N5432	2N5950 2N5951 2N5952 2N5953 2N5085	2N5486 2N5486 2N5484 2N5484 11122	3N156 3N156A 3N157 3N157 3N157A 3N158	3N163 3N163 3N163 3N163 3N163
2N4869A 2N4878 2N4879 2N4880 2N4897	2N4869A 2N4878 2N4879 2N488D ITT31	2N5433 2N5434 2N5452 2N5453 2N5454	2N5433 2N5434 2N5452 2N5453 2N5454	2N6086 2N6087 2N6088 2N6089 2N6090	T122 T121 F121 F122 T122 T121	3N158A 3N160 3N161 3N163 3N164	3N163 3N161 3N161 3N163 3N163 3N164
2N4938 2N4939 2N4940 2N4941 2N4942	ITI32 IT132 IT132 IT131 IT132	2N5457 2N5458 2N5458 2N5459 2N5460 2N5461	2N5457 2N5458 2N5459 2N5460 2N5461	2N6091 2N6092 2N6441 2N6442 2N6443		3N165 3N165 3N167 3N168 3N169	3N165 3N166 3N161 3N161 3N170
2N4955 2N4956 2N4977 2N4978 2N4979	IT122 IT122 2N5433 2N5433 2N4859	2N5462 2N5463 2N5464 2N5465 2N5471	2N5462 2N5463 2N5464 2N5465 2N5265	2N5444 2N6445 2N5446 2N6447 2N6448	17122 17121 17121 17121 17121	3N170 3N171 3N172 3N173 3N174	3N170 3N171 3N172 3N173 3N163
2N501B 2N5019 2N5020 2N5021 2N5033	2N5018 2N5019 2N2643 2N2607 2N5460	2N5472 2N5473 2N5474 2N5475 2N5478	2N5265 2N5265 2N5265 2N5265 2N5266	2NB451 2NB452 2NB453 2NB453 2NB454 2NB483	U310 U310 U310 U310 U310 2N6483	3N175 3N176 3N177 3N177 3N178 3N179	3N170 3N170 3N171 3N171 3N172 3N172

** -=			· · · · · · · · · · · · · · · · · · ·		<u> </u>	-	
ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT
3N180 3N181 3N182 3N183 3N188	3N172 3N161 3N161 3N161 3N161 3N168	8CYB9 8F244 8F244A 8F244B 8F244C	T122 2N5486 2N5484 2N5485 2N5486	8FX78 8FX82 8FX83 8FX99 8FY20	2N5397 2N5019 2N5019 IT120A IT122	CM652 CM653 CM697 CM800 CM856	2N5432 2N5433 2N5433 2N5433 2N5433
3N189 3N190 3N191 3N207 3N208	3N189 3N190 3N191 3N190 3N188	BF245 BF245A BF245B BF245C BF246	2N5496 2N4416 2N4416 2N4416 2N4416 2N5485	BFY81 BFY82 BFY83 BFY84 BFY85	T122 T122 T122 T122 T122 T122	CM850 CMX740 CP640 CP643 CP650	2N4868A 2N5432 2N4091 2N5434 2N5432
35K22 35K23 35K26 42T 436OTP	2N5486 2N5397 2N5397 2N4392 2N5462	BF246A BF246B BF246C BF247 BF247A	2N5539 2N5638 2N5638 2N4091 2N4091	BFY86 BFY91 BFY92 BN209 BSV22	1T122 1T122 1T122 1T122 1T122 2N4416	CP651 CP652 CP653 D1101 D1102	2N5433 2N5433 2N5433 2N5433 2N3821 2N3821
5033TP 588U 58T 59T 703U	2N5460 2N4416 2N5457 2N4416 2N4220	BF2478 BF247C BF256 BF25BA BF25BB	2N4091 2N4091 2N5484 2N5484 2N4416	85V78 85V79 85V8C 85X82 C21	2N4856A 2N4857A 2N4858A 2N3822 2N3821	D1103 D1177 D1178 D1179 D1180	2N4338 2N3821 2N3821 2N4338 2N4338 2N3822
704U 705U 707U 714U 734EU	2N4220 2N4224 2N4960 2N3822 2N4416	8F256C 8F320 8F320A 8F320B 8F320C	2N4416 2N5461 2N5460 2N5461 2N5462	C230B C38 C413N C610 C611	2N5196 2N4305 2N5434 2N4392 2N4221	D1181 D1182 D1183 D1184 D1185	2N4338 2N4338 2N4341 2N4340 2N4339
734U 751U 752U 759U 754U	2N5516 2N4340 2N4340 2N4341 2N4341	BF346 BF347 BF348 BF800 BF801	ITE4392 J201 J310 2N4867 2N4867	C612 C613 C614 C615 C620	2N4221 2N4221 2N4220 2N4221 2N4221 2N4220	D1201 D1202 D1203 D1301 D1302	2N4224 2N3821 2N4220 2N4222 2N4222 2N4220
756U A190 A191 A192	2N4341 2N4340 ITE4416 ITE4416 2N4416	9F802 BF804 BF805 8F806 BF808	2N4338 2N4338 2N4869 2N4869 2N4868	C621 C622 C623 C624 C625	2N4220 2N4220 2N4220 2N4220 2N4220 2N4220	D1303 D1420 D1421 D1422 D2T2218	2N4220 2N4868 2N3822 2N4869 IT129
A195 A196	2N5484 2N5484 2N5484 ITE4418 ITE4391	8F810 8F811 8F815 9F816 8F817	2N4958 2N4858 2N4858 2N4858 2N4858 2N4858	C850 C651 C652 C653 C6690	2N4220 2N4220 2N4220 2N4220 2N4220 2N4341	D2T2218A D2T2219 D2T2219A D2T29D4 D2T29D4A	IT129 IT129 IT129 IT129 IT139
A199 A5T3821 A5T3922	ITE4392 ITE4393 2N5484 2N5484 2N4416	9F818 8F010 8F011 8F012 8F013	2N4858 U401 U401 U402 U403	C6691 C6692 C673 C674 C680	2N4341 2N4338 2N4341 2N4341 2N4338	D2T2905 D2T2905A D2T918 DA102 DA402	17139 17139 17129 2N5196 2N5196
A5T5460 A5T5461 A5T5462 AD3954	2N4341 2N5460 2N5461 2N5462 2N3954	BF014 BF015 BF016 BF023 BF026	U404 U405 U406 IT5912 U403	C680A C581 C681A C682 D682A	2N4338 2N4338 2N4338 2N4339 2N4339 2N4339	DN3066A DN3067A DN3068A DN3068A DN3070A	2N3821 2N4338 2N4338 2N3822 2N3822 2N3821
AD3955 AD3956 AD3958	2N3954A 2N3955 2N3956 2N395B 2N5905	BFQ44 BFQ45 BFQ49A BFG49B BFQ49C	175912 175912 2N3055 2N3958 2N3958	C684 ·	2N4339 2N4339 2N422D 2N422O 2N422O 2N422O	DN3071A DN3365A ON3365B DN3366A DN3366B	2N4338 2N4220 2N4091 2N3686 2N4091
AD5907 AD5908 AD5909	2N5906 2N5907 2N5908 2N5909 2N4878	8FS21 8FS21A 8FS67 8FS67P 8FS68	2N5199 2N5199 2N3821 2N5458 2N3823	C6R5A C80 C81 C84 C85	2N4220 2N4338 2N4338 2N4338 2N4338 2N4338	DN3367A DN3367B DN3368A DN3368B DN3369A	2N3687 2N4051 2N4041 2N4221 2N4221 2N4339
AD813 AD813 AD814 AD815	2N4878 2N4878 2N4878 IT124 IT124	BFS68P BFS70 BFS71 BFS72 BFS73	2N4416 2N3821 2N3822 2N3823 2N3821	C92 C93 C94	2N485B 2N4091 2N4393 2N5457 2N5457	DN33698 DN337DA DN3370B DN3436A DN3436B	2N4220 2N4338 2N4338 2N4341 2N4222
AD818 AD820 AD821 AD822	T120A IT140 IT132 IT130A IT130A	BF574 BF575 BF576 BF577 BF578	2N4856 2N4857 2N4858 2N4859 2N4860	C95E C96E C97E	2N5457 2N5459 2N5484 2N3822 2N3822	DN3437A DN3437B DN3438A DN3438B DN3458A	2N4340 2N4220 2N4338 2N4339 2N4341
AD831 AD832 AD833 AD833A	2N5520 2N5521 2N5522 2N5523 2N5523 2N5524	BFS79 BFS80 BFT10 BFT11 BFW10	2N4861 2N4416A 2N5397 2N5019 2N3823	CC4446 CC697 CF2386	2N5432 2N5434 2N4656 2N5458 2N3824	DN34588 DN3459A DN34598 DN3460A DN3460B	2N4222 2N4339 2N4220 2N4338 2N4220
AD836 AD837 AD838 AD839	2N3954 2N3955 2N3955 2N3955 2N3956 2N3957	BFW39	2N3822 2N4418 2N4867 IT129 IT120	CM601 CM602	2N4858 2N4092 2N4091 2N4091 2N4091 2N4081	DNX3 DNX4	2N4338 2N4338 2N4338 2N4338 2N4869 2N4868
ADB41 ADB42 BC264 BC264A	2N552D 2N5521 2N5523 2N5458 2N5457	BFW51	2N3822 2N3822 2N4860 2N4224 IT132	CM641 CM642 CM643	2N4093 2N4093 2N4093 2N4092 2N4092 2N4092	DNX6 DNX7 DNX8 DNX9	2N4938 2N4416 2N4416 2N4339 2N5397
8C264C 8C264D 8CY87	2N5458 2N5458 2N4416 T121 T122	BFX36 BFX70 BFX71	17122 17131 17122 17122 17122	CM645 CM647 CM650	2N4092 2N4092 2N4091 2N5432 2N5433	DU4340 E100 E101 E102	2N5398 2N5458 J204 2N5457 2N5459

**CONSULT FACTORY

		1.03.00				· · · · · · · · · · · · · · · · · · ·
ALTERNATE INTERSIL SOURCE PRODUCT EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT
E105 J105 E106 J106 E107 J107 E108 J105 E108 J106	FF400 FM1100 FM1100A FM1101A FM1102	2N5457 2N3954A 2N5906 2N5906 2N3954	IT127 IT128 IT129 IT130 IT130A	IT127 IT128 IT129 IT13D IT130A	TE2978	T120 T120 T120 EN3665 EN3666
E110 J107 E111 J111 E111A J111 E112 J112 E112A J112	FM1102A FM1103 FM1103A FM1104 FM1104A	2N5906 2N3955 2N5908 2N5908 2N3957 2N5909	T131 IT132 IT135 IT137 IT138	IT131 IT132 IT136 IT137 IT138	ITE3347 ITE3348 ITE3349	2N3687 T137 T138 T139 T137
E113 J119 E113A J113 E114 J204 E174 J174 E175 J175	FM1105 FM1105A FM1106 FM1106A FM1107	2N3954A IT500 2N3954A IT500 2N3954	17139 T140 T1700 T1701 T1702	IT139 IT140 IT1700 SN172 SN163	ITE3680 ITE3800 ITE3802	T138 T120 T132 T132 T130
E176 J176 E177 J177 E201 J201 E202 J202 E203 J203	FM1107A FM110B FM110BA FM1109 FM1109A	17500 2N3955 17502 2N3957 17503	IT1750 IT2700 IT2701 IT400 IT500	IT1750 3N165 3N165 2N4392 IT500	ITE3807 ITE3808 ITE3809	IT132 IT132 IT132 IT132 IT130
5204 J204 E210 2N5397 E211 2N5397 E212 2N5397 E230 2N4867	FM1110 FM1110A FM1111 FM1111A FM1112	2N3955 2N5908 2N3957 2N5809 2N5196	17500P 17501 17501P 17502 17502P	(7500) (7501) (7501) (7502) (7502)	ITE3907 ITE3908 ITE4017	17130 17120 17120 17139 17139
E231 2N4868 E232 2N4869 E270 J270 E271 J271 E300 2N5297	FM1200 FM1201 FM1202 FM1203 FM1204	2N3954 2N3954 2N3954 2N3955A 2N3955	IT503 IT503P IT504 IT505 IT550	17503 17503 17504 17505 17550	ITE4020 ITE4021 ITE4022	IT139 IT139 IT139 IT139 IT137
E304 2N5486 E305 2N5484 E308 J308 E309 J309 E310 J310	FM1205 FM1206 FM1207 FM1206 FM1209	2N3954 2N3954 2N3954 2N3956A 2N3955	iT5911 IT5912 ITC2972 ITC2973 ITC2974	175911 175912 17122 17122 17120	TE4025 TE4091 TE4082	IT137 IT137 ITE4091 ITE4092 ITE4093
E311 J310 E312 2N5397 E400 2N3955 E401 2N3955 E402 2N3957	FM1210 FM1211 FM3954 FM3954A FM3955	2N3955A T5911 2N3954 2N3954A 2N3955	TC2975 TC2976 TC2977 TC2978 TC2979	T120 T120 T120 T120 T120 T120	ITE4119 '	2N4117 2N4118 2N4119 2N4338 2N4339
E410 2N3955 E411 IT5911 E412 IT5911 E413 2N5454 E414 2N3956	FM3955A FM3956 FM3957 FM3958 FP4339	2N3955A 2N3956 2N3957 IT5911 2N4339	ITC3347 ITC3348 ITC3348 ITC3350 ITC3351	T137 T138 T139 T137 T138	ITE4392	2N4340 2N4341 ITE4391 ITE4392 ITE4393
E415 2N3957 E420 IT5911 E421 IT5912 E430 J309(Xz) E431 J310(X2)	FP4340 FT0654A FT0654B FT0654C FT0654D	2N4340 2N5466 2N5466 2N5466 2N4221 2N4221	TC3352 TC3800 TC3802 TC3804 TC3806	IT139 IT132 IT132 IT130 IT132	ITE4416 ITE4867 ITE4868 ITE4869 J100	ITE4416 2N4867 2N4868 2N4869 2N5458
ESM25 U401 ESM25A U401 ESM4091 2N4091 ESM4092 2N4092 ESM4093 2N4093	FT3820 FT3820 FT3909 FT703 FT704	2N5019 2N5460 2N5018 3N161 3N163	TC3807 TC3808 TC3809 TC3810 TC3811	IT132 IT132 IT132 IT130 IT130	J101 J102 J103 J105 J105-1B	2N4338 2N5457 2N5459 J105 J105
ESM4302 2N5457 ESM4303 2N5459 ESM43D4 2N5458 ESM4445 2N5432 ESM4446 2N5434	GET5457 GET5458 GET5459 HA7807 HA7809	2N5457 2N5458 2N5459 IT132 IT132	ITC4017 ITC401B ITC4019 ITC4020 ITC4021	T139 T139 T139 T139 T139	J106 J105-18 J107 J107-1B J108	J106 J106 J107 J107 J105
ESM4447 2N5432 ESM4448 2N5434 FE06544 2N4395 FE06548 2N6485 FE100 2N3821	HOIG1030 HEPBD1 HEPB02 HEPB03 HEPF0021	3N163 2N3822 2N5484 2N5019 2N5484	`ITC4022 ITC4023 ITC4024 ITC4025 ITE2453	17139 17137 17137 17137 17120	J108-18 J109 J109-18 J110 J110-18	J105 J106 J106 J107 J107
FE100A 2N3821 FE102 2N4119 FE102A 2N4119 FE104 2N4110 FE104A 2N4118	HEPF1035 HEPF2004 HEPF2005 ID100 ID101	J176 2N5484 2N5459 ID100 ID101	TE2639 TE2640 TE2641 TE2642 TE2643	17120 17122 17122 17122 17120 17122	J111 J111-18 J111A J111A-18 J112	J111 J111 J111 J112
FE1600 2N4092 FE200 2N3821 FE202 2N3821 FE204 2N3821 FE300 2N3822	IMF3954 IMF3954A IMF3955 IMF3955A IMF3956	2N3954 2N3954A 2N3955 2N3955A 2N3956	. ITE2644 ITE2720 ITE2721 ITE2722 ITE2903	17122 17120 17122 17122 17122	J112-18 J112A J112A-18 J113 J113-1B	J112 J112 J113 J113
FE302 2N3821 FE304 2N3821 FE3819 2N5484 FE4302 2N5457 FE4303 2N5459	IMF3957 IMF3958 IMF5911 IMF5912 IMF6485	2N3957 2N3958 IMF5911 IMF5912 IMF6485	ITE2913 ITE2914 ITE2915 ITE2916 ITE2917	17122 17122 17120 17120 17122	J113A J113A-18 J114 J1401 J1402	J113 J113 2N5555 IT501 IT502
FE4304 2N5458 FE5245 2N4416 FE5246 2N5484 FE5247 2N5486 FE5247 2N5487	17100 17101 17108 17109 17120	IT100 IT101 ITE4416 ITE4416 IT120	ITE2918 ITE2919 ITE2920 ITE2936 ITE2937	T122 T120 T120 T120 T120	J1403 J1404 J1405 J1406 J174	17503 17503 17504 17505 J174
FE5458 2N5458 FE5459 2N5459 FE5484 2N5484 FE5485 2N5485 FE5485 2N5486	17120A 17121 17122 17124 17126	T12DA T121 T122 T124 T125	17E2972 17E2973 17E2974 17E2975 17E2975	T122 T122 T120 T120 T120	J174-18 J175 J175-18 J176 J176-18	u174 J175 J176 J176 J176
	<u> </u>		<u></u>	4	<u> </u>	

ALTERNATE	INTERSIL	ALTERNATE	INTERSIL	ALTERNATE	INTERSIL	ALTERNATE	INTERSIL
SOURCE PRODUCT	EQUIVALENT	SOURCE PRODUCT	EQUIVALENT	SOURCE PRODUCT	EQUIVALENT	SOURCE PRODUCT	EQUIVALENT
J177 J177-18 J201 J201-18 J202	J177 J177 J201 J201 J202	K309-18 K310-18 K53684 K53685 K53686	J309 J310 2N3664 2N3665 2N3686	LS5105 LS5245 LS5246 LS5247 LS5248	2N5486 ITE4416 2N5484 2N5486 2N5486	MD70028 MD7003 MD7003A MD7003B MD7004	17122 17132 17132 17132 17132 17129
J202-18 . J203 J203-18 J204 J204-18	J202 J203 J203 J204 J204	KE3687 KE3823 KE3970 KE3971 KE3972	2N3667 2N3623 ITE4391 ITE4392 ITE4393	L95358 L95359 L95360 L95361 L95362	J204 J204 J202 J203 J203	MD7007 MD7007A MD7007B MD708 MD70BA	1T129 (T129 (T129 (T129 (T129 (T129
J210	2N5397	KE4091	ITE4091	L95363	J203	MD7D88	17129
J211	2N5397	KE4092	ITE4082	L95364	J203	MD8001	17120
J212	2N5397	KE4093	ITE4093	L95391	2N4867A	MD8002	17120
J230	2N4867	KE4220	2N5457	L95392	2N4868A	MD8003	17122
J231	2N4868	KE4221	2N5459	L95393	2N4869A	MD918	17122
J232	2N4869	KE4222	2N5459	LS5394	2N4869A	MD916A	IT122
J270	J270	KE4223	J204	LS5395	2N4869A	MD918B	IT122
J270-18	J270	KE4391	ITE4391	LS5396	2N4869A	MD982	IT139
J271	J271	KE4392	ITE4392	LS5457	2N5457	MD984	IT139
J271-18	J271	KE4393	ITE4393	LS5458	2N5458	MEF103	2N5457
J300 J304 J305 J308 J309	2N5397 2N5486 2N5484 J308 J309	KE4416 KE4858 KE4857 KE4858 KE4859	ITE4416 ITE4391 ITE4392 ITE4393 ITE4391	LS5459 LS5484 LS5485 LS5486 LS5556	2N5459 2N5484 2N5485 2N5488 2N5488 2N3685	MEF104 MEF3069 MEF3070 MEF3458 MEF3459	2N5459 2N4341 2N4339 2N4341 2N4339
J310	J310	KE4860	ITE4392	LS5557	2N3684	MEF3460	2N4338
J315	2N5397	KE4861	ITE4393	LS5558	2N3684	MEF3684	2N3684
J316	U309	KE510	ITE4393	LS5638	2N5638	MEF3685	2N3685
J317	U310	KE5103	J2D4	LS5638	2N5639	MEF3686	2N3686
J3970	ITE4391	KE5104	ITE4416	LS5640	2N5640	MEF3687	2N3687
J3971	TE4392	KE5105	ITE4416	M103	3N161	MEF3821	2N3821
J3972	TE4393	KE511	ITE4392	M104	3N161	MEF3822	2N3822
J401	T501	KH5196	2N5196	M106	3N166	MEF3823	2N3823
J402	T502	KH5197	2N5197	M107	3N189	MEF3954	2N3954
J403	T503	KH6198	2N5198	M108	3N191	MEF3955	2N3955
J404	1503	KH5199	2N5199	M119	3N161	MEF3956	2N3956
J405	1504	LDF603	2N4221	M114	3N161	MEF3957	2N3957
J406	1505	LDF604	2N4221	M116	M116	MEF3958	2N3958
J4091	164091	LDF605	2N4221	M117	2N4351	MEF4223	2N4223
J4092	164092	LM114	IT120	M119	3N161	MEF4224	2N4224
J4093	ITE4093	LM114A	17120A	M163	3N163	MEF4391	ITE4391
J410	IT502	LM114AH	17120A	M184	3N164	MEF4392	ITE4392
J411	IT503	LM114H	17120	M511	3N172	MEF4393	ITE4393
J412	IT503	LM115	17120	M511A	3N172	MEF4416	ITE4416
J420	IT5911	LM115A	17120A	M517	3N163	MEF4856	2N4856
J421	175912	LM115AH	IT120A	MA7807	IT132	MEF4857	2N4857
J4220	J2D4	LM115H	IT120	MA7809	IT132	MEF4858	2N4858
J4221	J2O2	LM194	IT120A	MAT-01AH	IT140	MEF4859	2N4859
J4222	J2O3	LM394	IT120A	MAT-01FH	IT140	MEF4860	2N4860
J4223	J2O2	LS3069	2N5458	MAT-01GH	IT140	MEF4861	2N4861
J4224 J430 J4302 J4303 J4304	J202 J309(X2) 2N4302 2N5459 2N5458	LS3070 LS3071 LS3458 LS3459 LS3460	2N5458 2N5458 J204 J204 J204 J204	MAT-01H M01120 M01121 M01122 M01123	IT140 IT122 IT122 IT122 IT139	MEF5103 MEF5104 MEF5105 MEF5245 MEF5246	ITE4416 ITE4416 ITE4416 ITE4416 2N5484
J431	J310(X2)	L\$3684	2N3684	M01129	IT129	MEF5247	2N5486
J433	2N5457	L\$3685	2N3685	M01130	IT139	MEF5248	2N5486
J4338	2N5457	L\$3686	2N3686	M02218	IT129	MEF5284	2N5484
J4339	2N5457	L\$3687	2N3687	M02218A	IT129	MEF5285	2N5485
J4391	ITE4391	L\$3819	2N5484	M02219	IT129	MEF5286	2N5486
J4392 J4393 J4416 J4856 J4857	ITE4392 ITE4393 ITE4416 ITE4856 ITE4857	LS3821 LS3822 LS3823 LS3821 LS3922	2N5457 2N5458 2N5458 2N3921 2N3922	MD2219A MD2369 MD2369A MD23698 MD2904	(T129 T129 T129 T129 T122 T139	MEF5561 MEF5562 MEF5563 MEM511 MEM511A	U401 U402 U403 3N172 3N172
. J4858 J4859 J4860 J4861 J4867	1TE4858 1TE4859 1TE4860 1TE4861 2N4867	L\$3966 L\$3967 L\$3968 L\$3969 L\$4220	ITE4416 ITE4416 ITE4418 ITE4416 J204	MD2904A MD2905 MD2905A MD2974 MD2975	17139 17139 17139 17120 17120	MEM511C MEM517 MEM517A MEM517B MEM517C	3N172 3N172 3N172 3N172 3N172 3N172
J4867A J4867RR J4868 J4868A J4868RR	2N4867A 2N4867 2N4868 2N4868A 2N4868	LS4221 LS4222 LS4223 LS4224 LS4338	J202 J203 J202 J202 J202 2N5457	M02978 M02979 M03008 M03250 M03250A	17120 17120 17120 17132 17131	MEM550 MEM550C MEM550F MEM551 MEM551C	3N189 3N189 3N189 3N190 3N189
J4869	2N4869	L5433B	2N5457	MD3251	IT132	MEM586	3N172
J4869A	2N4869A	L5434D	2N5457	MD3251A	IT131	MEM556C	3N172
J4869RR	2N4869	L54341	2N5458	MD3409	IT129	MEM580	3N181
J5103	2N5484	L54381	ITE4391	MD3410	IT129	MEM56DC	3N161
J5104	2N5485	L54392	ITE4392	MD3467	IT139	MEM561	3N163
J5105	2N5486	LS4393	ITE4393	MD3725	IT129	MEM561C	3N163
J6163	2N5486	LS4416	ITE4416	MD3762	IT139	MEM562	2N4351
K114-18	2N5655	LS4856	ITE4091	MD4957	IT132	MEM562C	2N4351
K210-18	2N5397	LS4857	ITE4092	MD5000	IT132	MEM563	2N4351
K211-18	2N5397	LS4858	ITE4093	MD5000A	IT132	MEM563C	2N4351
K212-18	2N5397	L\$4859	ITE4091	MD5000B	17132	MEM711	M116
K300-18	2N5397	L\$4860	ITE4092	MD7000	17129	MEM712	M115
K304-18	2N5488	L\$4861	ITE4093	MD7001	17139	MEM712A	M116
K305-18	2N5484	L\$5103	2N5484	MD7002	17122	MEM713	3N170
K308-18	J308	L\$5104	2N5485	MD7002A	17122	MEM806	3N153

A Service of the Conference of			-				
ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL PREQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EDUIVALENT
MEM807 MEM807A MEM814	3N163 3N172 3N172 3N161 3N172	MPB40 MPB41 MPB42 MPF102 MPF103	2N5520 2N5521 2N5523 2N5523 2N5486 2N5457	NKTB0111 NKTB0112 NKTB0113 NKTB0211 NKTB0212	2N4220 2N4220 2N3821 2N4339 2N4339	SA2718 SA2719 SA2720 SA2721 SA2722	IT122 IT120 IT121 IT122 IT120
MEM823 1 MEM954 2 MEM954A 3	3N172 MFE823 3N188 3N188 3N188	MPF104 MPF105 MPF106 MPF107 MPF108	2N5458 2N5459 2N5485 2N5486 2N5486	NKT80213 NKT80214 NKT80215 NKT80216 NKT80421	2N4339 2N4339 2N4339 2N4339 2N4220	SA2723 SA2724 SA2726 SA2727 SA2738	IT121 IT122 IT122 IT122 IT120A
MEM955A MEM955B MF510	3N190 3N190 3N190 3N190 2N4092 2N4338	MPF109 MPF111 MPF112 MPF161 MPF208	2N5484 2N5458 2N5458 2N5398 2N3821	NKT80422 NKT80423 NKT80424 NPC108 NPC211N	2N4220 2N4220 2N4220 2N4220 2N5484 2N4338	\$A2739 \$DF1001 \$DF1002 \$DF1003 \$DF500	IT120 2N5432 2N5433 2N5434 2N5520
MFE2000 MFE2001 MFE2004 MFE2005	2N485B 2N4416 2N4416 2N4093 2N4092	MPF209 MPF255 MPF4391 MPF4392 MPF4393	2N3821 ITE4416 ITE4391 ITE4392 ITE4393	NPC212N NPC213N NPC214N NPC215N NPC216N	2N4338 2N4338 2N4339 2N4339 2N4339	SDF501 SDF502 SDF503 SDF504 SDF505	2N5520 2N5520 2N5520 2N5520 2N5520 2N5520
MFE2007 MFE2008 MFE2009 MFE2010	2N4091 2N4860 2N4859 2N4859 2N4859 2N4859	MPF820 MPF970 MPF971 MTF101 MTF102	J310 J175 J175 2N5484 2N5484	NPD5564 NPD5565 NPD5566 NPD8301 NPD8302	17550 17550 17550 2N3954 2N3955	SDF506 SDF507 SDF508 SDF509 SDF510	2N5520 2N5520 2N5520 2N5520 2N5520 2N3954
MFE2012 MFE2012 MFE2093 MFE2094	2N5433 2N5433 2N5434 2N4338 2N4339 2N4339	MTF103 MTF104 NO5700 ND5701 ND5702	2N5457 2N5459 IT120A IT120A IT120	NPD8303 013 P1004 P1005 P1027	2N3956 2N4338 2N5116 2N5115 2N5267	SDF512 SDF513 SDF514 SDF661 SDF662	2N3954 2N3954 2N3954 IT122 IT122
MFE2133 MFE2912 MFE3002	2N4340 2N4860 2N5433 3N170 3N164	NDF9401 NDF9402 NDF9403 NDF9404 NDF9405	17500 17501 17502 17503 17504	P1028 P1029 P1068E P1086E P1087E	2N5270 2N5270 2N2609 2N5115 2N5518	SDF663 SE53819 SF7801 SF7602 SF7603	IT122 2N5484 2N4338 2N4338 2N4338 2N4339
MFE3021 MFE4007 MFE4008	3N166 3N166 2N3686 2N3686 2N3686 2N3685	NDF9406 NDF9407 NDF9408 NDF9408 NDF9410	17500 17501 17502 17503 17504	P1117E P1118E P1118E PF510 PF5101	2N5640 2N5641 2N5640 2N5115 2N4867	SFT604 SL301AT SL301BT SL301CT SL301ET	2N4339 IT129 IT129 IT129 IT129
MFE4D11 2 MFE4D12 2 MFE823 I	2N2608 2N2608 2N2609 11700 2N4416	NF3819 NF4302 NF4303 NF4304 NF4445	2N5484 2N5457 2N5459 2N5458 2N5432	PF5102 PF5103 PF511 PF5301 PF5301-1	2N4867 2N4867 2N5114 2N4118A 2N4117A	\$L360C \$L362C \$U2000 \$U2020 \$U2021	IT129 IT128 2N434D 2N3954 2N3964
MMF3 , 3 MMF4	2N5197 2N3921 2N5198 2N3922 2N3922 2N5199	NF4446 NF4447 NF4448 NF500 NF501	2N5493 2N5499 2N5499 2N4224 2N4224 2N4224	PF5301-2 PF5301-3 PL1091 PL1092 PL1093	2N4118A 2N4118A 2N3823 2N3823 2N3823	SU2022 SU2023 SU2024 SU2025 SU2026	2NG954 2NG954 2NG954 2NG954 2NG954 2NG954
MMT3923 2 MP301 1 MP302 1	2N3955A 2N3823 T124 T124 T124	NF506 NF5101 NF5102 NF5103 NF511	2N4416 2N4867 2N4867 2N4867 2N4860	PL1094 PN3684 PN3685 PN3686 PN3687	2N3823 2N3684 2N3685 2N3686 2N3687	SU2027 SU2028 SU2029 SU2029 SU2030	2N3954 2N3954 2N3954 2N5197 2N3954
MP311 MP312 MP313 MP318	2N4045 2N4045 2N4044 T124 T120A	NF5163 NF520 NF521 NF522 NF523	2N4341 2N3684 2N3685 2N3686' 2N3865	PN4091 PN4092 PN4093 PN4220 PN4221	ITE4091 ITE4092 ITE4093 J204 J202	SU2030 SU2031 SU2031 SU2032 SU2033	2N3955 2N3954 2N519B 2N3954 2N3954
MP351 1 MP352 1 MP358 1	T132 T130 T130 T130A T132	NF530 NF5301-1 NF5301-2 NF5301-3	ZN4341 2N4118A 2N4117A 2N4118A 2N4118A	PN4222 PN4223 PN4224 PN4342 PN4360	J203 J204 J202 2N5461 2N5460	SU2034 SU2034 SU2035 SU2035 SU2074	2N3954 2N3955 2N3954 2N3955 2N3954
MP3954 2 MP3954A 2	T130A T130A 2N3954 2N3954A 2N3955	NF331 NF332 NF533 NF5457 NF5458	2N4335 2N4341 2N4399 2N5457 2N5458	PN4391 PN4392 PN4416 PN4856 PN4857	ITE4391 ITE4392 ITE4416 2N4856 2N4857	SU2075 SU2076 SU2077 SU2077 SU2078	2N3954 2N3954 2N3954 2N3955 2N3955
MP3957 MP3958 MP5905	2N3956 2N3957 2N3958 2N5905 2N5906	NF5459 NF5484 NF5485 NF5486 NF5555	2N5459 2N5484 2N5485 2N5486 2N5484	PN4858 PN4869 PN4860 PN4861 PN5033	2N4858 2N4859 2N4860 2N4861 2N5460	SU2079 SU2080 SU2081 SU2098 SU2098A	2N3955 U4D4 U4D4 2N5197 2N5197
MP5908 MP5909 MP5911	2N5907 2N5908 2N5909 2N5911 2N5912	NF5638 NF5639 NF5640 NF5653 NF5654	2N5638 2N5639 2N5640 2N4860 2N4861	PTC151 PTC152 SA2253 SA2254 SA2255	2N5484 2N5485 IT122 IT122 IT122	\$U20988 \$U2099 \$U2099A \$U2365 \$U2365A	2N5198 2N5197 2N5197 2N3954 2N3954
MP831 2 MP832 2	2N5520 2N5520 2N5521 2N5522 2N5523	NF580 NF581 NF582 NF583 NF584	2N5432 2N5432 2N5433 2N5434 2N5433	SA2644 SA2648 SA2710 SA2711 SA2712	17120 17120 17120 17120 17120 17121	SU2355 SU2366A SU2367 SU2367A SU2388	2N3955 2N3955 2N3955 2N3955 2N3955 2N3956
MP836 2 MP837 2 MP838 2	2N3954 2N3955 2N3955 2N3956 2N3956 2N3957	NF585 NF6451 NF6452 NF6453 NF6454	2N4859 U310 U310 U310 U310 U310	SA2713 SA2714 SA2715 SA2716 SA2717	IT121 IT122 IT120 IT120 IT121	SU2358A SU2369 SU2369A SU241D SU2411	2N3956 2N3957 2N3957 2N5957 2N5908

.,							•
ALTERNATE	INTERSIL	ALTERNATE	INTERSIL	ALTERNATE	INTERSIL	ALTERNATE	INTERSÍL
SOURCE PRODUCT	EQUIVALENT	SOURCE PRODUCT	EQUIVALENT	SOURCE PRODUCT	EQUIVALENT	SOURCE PRODUCT	EQUIVALENT
5U2412	2N5909	TD5909A	2N5909	U183	2N3824	U405	U405
\$U2552	U401	TD5911	175911	U1837E	2N5486	U406	U406
SU2552M	U401	TD5911A	175911	U184	2N5397	U410	2N3955
SU2653	U401	TD5912	175912	U1897E	U1897	U411	2N3956
SU2653M	U401	TD5912A	175912	U1898E	U1898	U412	2N3958
SU2654 SU2654M SU2655 SU2655M SU2656	U401 U401 U402 U402 U404	TD700 TD701 TD708 TD710 TD711	17122 17122 17122 17122 17122	U1899E U197 U198 U198 U1994E	U1899 2N4338 2N4340 2N4341 2N4341 2N4416	U421 U422 U423 U424 U425	2N59DB 2N59OB 2N59OB 2N59OB 2N59OB
\$U2656M	U404	TD713	PT122	U200	2N4861	U428	2N5909
\$X3819	2N5484	TIS14	2N4340	U201	2N4860	U430	J309(X2)
\$X3820	2N2608	TIS25	2N3954	U202	2N4859	U431	J310(X2)
TD100	IT129	TIS25	2N3954	U2047E	2N4416	U440	IT5911
TD101	IT129	TIS27	2N3955	U221	2N4391	U441	IT5912
TD102	ET129	TIS34	2N5486	U222	2N4391	UC100	2N3684
TD200	T129	TIS41	2N4859	U231	U231	UC110	2N3685
TD201	T129	TIS42	2N4353	U232	U232	UC115	2N4340
TD202	T129	TIS58	2N5484	U233	U233	UC120	2N3685
TD2219	T129	TIS59	2N5486	U234	U234	UC130	2N3687
TD224 TD225 TD228 TD227 TD228	17122 17122 17122 17122 17122	TIS69 TIS69 TIS70 TIS73 TIS74	2N3955A 2N3955A 2N3956 ITE4391 ITE4392	U235 U240 U241 U242 U243	U235 2N5432 2N5433 2N5432 2N5432 2N5433	UC155 UC1700 UC1764 UC20 UC200	2N4416 3N163 3N163 2N3686 2N3884
TD229	17122	TIS75	ITE4393	U244	2N5433	UC201	2N3824
TD230	17121	TIS88	2N4416	U248	2N5902	UC21	2N3687
TD231	17121	TIS88A	2N4416	U248A	2N5906	UC210	2N4416
TD232	17122	TIXS33	2N4392	U249	2N5903	UC2130	2N5452
TD233	17122	TIXS35	2N4857	U249A	2N5907	UC2132	2N5453
T0234 T0235 T0236 T0237 T0238	1T122 1T122 1T122 1T122 1T122 1T122	TIXS36 TIXS41 TIXS42 TIXS59 TIXS78	2N4391 2N4859 2N5639 2N5459 2N4341	U250 U250A U251 U251A U252	2N5904 2N5908 2N5905 2N5909 175911	UC2134 UC2136 UC2138 UC2139 UC2147	2N5454 2N5454 2N5454 2N3458 2N3958 2N3958
TD239 TD240 TD241 TD242 TD243	IT122 IT121 IT121 IT120A IT120A	TIXS79 TN41177 TN4117A TN4118 TN4118A	2N4341 2N4117 2N4117A 2N4118 2N4118A	U253 U254 U255 U256 U257	IT5912 2N4659 2N4660 2N4661 U257	UC2148 UC2149 UC220 UC220 UC240 UC241	2N3958 2N3958 2N3822 2N4869 2N4869
TD244	IT129	TN4119	2N4119	U257/TO-71	U257/TQ-71	UC250	2N4D91
TD245	IT129	TN4119A	2N4119A	U266	2N4856	UC251	2N4392
TD246	IT129	TN4339	2N4338	U273	2N4118A	UC2766	3N166
TD247	IT129	TN4339	2N4339	U273A	2N4118A	UC300	2N26DB
TD248	IT129	TN4340	2N4340	U274	2N4118A	UC310	2N26D7
TD250	IT120A	TN4341	2N4341	U274A	2N4115A	UC320	2N2607
TD2905	IT139	TN5277	2N4341	U275	2N4119A	8C330	2N2607
TD400	IT139	TN5278	2N4341	U275A	2N4119A	UC340	2N2607
TD401	IT139	TP5114	2N5114	U280	2N5452	UC40	2N2608
T0402	IT139	TP5115	2N5115	U281	2N5453	UC40	2N6270
T0500 T0501 T0502 T0509 T0510	IT139 IT139 IT139 IT132 IT132	TP5116 U110 U111 U112 U113	2N5116 2N2608 2N2608 2N2608 2N2608	U262 U263 U264 U285 U290	2N5453 2N5453 2N5454 2N5454 2N5454 2N5492	UC401 UC41 UC410 UC420 UC450	2N5116 2N2608 2N5268 2N5267 2N5114
TD511 TD512 TD513 TD514 TD517	IT132 IT132 IT132 IT132 IT132	U114 U1177 U1178 U1179 U1180	2N2608 2N4220 2N3821 2N3821 2N4221	U291 U295 U296 U300 U3000	2N5434 2N5432 2N5434 2N5114 2N4341	UC451 UC588 UC703 UC704 UC705	2N5116 2N4416 2N4220 2N4220 2N4220 2N4224
T0518	IT132	U1181	2N4220	U3001	2N4338	UC707	2N4860
T0519	IT132	U1182	2N3821	U3002	2N4338	UC714	2N3822
T0520	IT139	U1277	2N3684	U301	2N5115	UC714E	2N4341
T0521	IT139	U1278	2N3685	U3010	2N4341	UC734	2N4416
T0522	IT139	U1279	2N3686	U3011	2N4340	UC734E	2N4416
TD525 TD526 TD527	17139 17139 17132 17132 17131	U1280 U1281 U1282 U1283 U1284	2N3684 2N3822 2N4341 2N4340 2N4341	U3012 U304 U305 U306 U308	2N4338 U304 U305 U306 U308	UC751 UC752 UC753 UC754 UC755	2N434D 2N4340 2N4341 2N4340 2N4341
T0528	IT191	U1265	2N4220	U309	USD9	UC756	2N4340
TD5432	2N5432	U1266	2N4341	U310	US10	UC805	2N5270
T05432	2N5433	U1287	2N4092	U311	US10	UC807	2N5115
T05434	2N5434	U1321	2N4860	U312	2N5397	UC814	2N5270
T0550	IT129	U1322	2N3822	U314	2N5555	UC851	2N260B
TD5902	2N5902	U1323	2N3822	U315	2N5397	UC853	2N2608
YD5902A	2N5902	U1324	2N3587	U316	U309	UC854	2N2608
YD5903	2N5903	U1325	2N3586	U317	U310	UC855	2N2609
YD5903A	2N5903	U133	2N2608	U32D	2N5433	UT100	2N5397
YD5904	2N5904	U1420	2N3821	U321	2N5434	UT101	2N5397
T05905 T05905A T05906 T05906A	2N5904 2N5905 2N5905 2N5906 2N5906	U1421 U1422 U146 U147 U148	2N3B22 2N3B22 2N2B0B 2N2B0B 2N2B0B	U322 U328 U329 U330 U331	2N5433	UXC2910 VCR10N VCR11N VCR12N VCR13N	IT128 2N4869 VNR11N 2N3958 2N3958
TD5907A TD5908 TD5908A	2N5907 2N5907 2N5908 2N5908 2N5909	U149 U169 U1714 U1715 U182	2N2609 2N2609 2N4340 2N4340 2N4857	U350 U401 U402 U403 U404	02 U401 U402 U403 U404	VCR20N VCR2N VCR3P VCR4N VCR5P	2N4341 VCR2N VCR2P VCR4N VCR5P

ALTERNATE DURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE ! SOURCE PRODUCT EC	NTERSIL IUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT
VCR6P VCR7N VF2B VF811 VF815	VCR6P VCR7N 2N4392 2N4858 2N4858			· · · · · ·			
VFW40 VFW40A W245A W245B W245C	IT122 IT120 ITE4416 ITE4416 ITE4416						
W300 W300A W300B W300C W300D	2N5398 2N5397 2N5397 2N5397 2N5398						
WK5457 WK5458 WK5459 ZDT40 ZDT41	2N5457 2N5458 2N5459 IT129 IT129						
ZDT42 ZDT44 ZDT45	17129 17129 17129						
					•		
**				: '			
·			· · · · · · · · · · · · · · · · · · ·				·
				·	., ., ., .,		,
		:					
	· ·			·			
*************************************			•				
			;				
			·				
			<i>f</i> .	·			
		-	,				

ANALOG SWITCH CROSS REFERENCE

ALTERNATE	INTERSIL	ALTERNATE	INTERSIL	ALTERNATE	INTERSIL	ALTERNATE	INTERSIL
OURCE PRODUCT	EQUIVALENT	SOURCE PRODUCT	EQUIVALENT	SOURCE PRODUCT	EQUIVALENT	SOURCE PRODUCT	EQUIVALENT
AD7508/COM/CHIPS	IH6116C/D	AH5010CN	IH5010CPD	DG18DAP	DG18DAK	DG2DDAK	DG2DOAK
AD7506/MIL/CHIPS	IH6116M/D	AH5012CN	IH5012CPE	DG18DBA	DG18DBA	DG2DDAL	DG2DOAL
AD7506JD	IH6116CJI	AH5013CN	IH5013CPD	DG18DBP	DG180BK	DG2DDAP	DG2DOAK
AD7506JD/883B	IH6116CJI/8838	AH5014CN	IH5014CPD	DG181AA	DG181AA	DG2008A	DG2DOBA
AD7506JN	IH6116CPI	AH5015CN	IH5015CPE	DG181AA	DGM181AA	DG2008K	DG2OOBK
AD7506KD AD7506KD/883B AD7506KN AD7506SD AD7506SD/8838	H6116CJI H6116CJI/8838 H6116CPI H6116MJI H6116MJI/8838	AH5016CN AM5011CN D123AL D123AP D123BP	IH5015CPE IH5011CPE D123AL D123AK D123BJ	DG181AL DG181AL DG181AP DG181AP DG1818A	DG181AL DGM181AL DG181AK DGM181AK DG1818A	0G2008P DG200CJ DG201AK 0G201AP DG2018K	DG2008K DG200CJ DG201AK DG201AK DG201AK DG2018K
AD7506TD	H6116MJI	D123BP	D1238K	DG181BA	DGM181BA	DG201CJ	DG201CJ
AD7506TD/B838	H6116MJI/8838	D125AL	D125AL	DG181BP	DG181BK	DG21GBP	DG201BK
AD7507/COM/CHIPS	H6216C/D	D125AP	D125AP	DG181BP	DGM181BK	DG261AA	IH182MTW
AD7507/MIL/CHIPS	H6216M/O	D125BP	D125BK	DG181BP	DGM1B1CJ	DG261AP	IH192MJD
AD7507JD	H6216CJI	D129AL	D129AL	DG182AA	DG182AA	DG291BA	IH192CTW
AD7507JD/883B	IH6216CJI/883B	D129AP	D129AK	DG182AA	DGM182AA	DG281BP	IH182CJD
AD7507JN	IH6216CPI	D129BP	D129BK	DG182AL	DG182AL	DG284AP	IH185MJE
AD7507KD	IH6216CJI	DG123AL	DG123AL	DG182AL	DGM182AL	DG2844BP	IH185CJE
AD7507KD/883B	IH6216CJI/883B	DG123AP	DG123AK	DG182AP	DG182AK	DG287AA:	IH188MTW
AD7507KN	IH6216CPI	DG123BP	DG123BK	DG182AP	DGM182AK	DG287AP	IH188MJD
A07507SD	JH6216M/O	DG125AL	DG125AL	DG182BA	DG1828A	DG2978A	IH188CTW
A07507SD/883B	JH6216MJI/883B	DG125AP	DG125AK	DG182BA	DGM1828A	OG2878P	IH188CJO
A07507TD	JH6216MJI	DG125BP	DG125BK	DG182BP	DG1828K	DG290AP	IH181MJE
AD7507T0/883B	JH6216MJI/883B	DG126AK	DG126AK	DG182BP	DGM1828K	DG290AP	IH191CJE
AH0126CD	DG126BK	DG126AL	DG126AL	DG182BP	DGM182CJ	DG281AA	OGM182AA
AH01260 AH01260/883 AH0129CD AH0129D AH0129D/883	DG126AK DG126AK/883B DG129BK DG129AK DG129AK/883B	DG126BP DG129AL DG129AP DG129BP DG133AL	DG126BK DG129AL DG129AK DG129BK DG133AL	06183AL 06183AP 06183BP 06184AL 06184AL	DG183AL DG183AK DG183BK DG184AL DGM184AL	DG361AK DG361AP DG3618A DG3618A DG3818K DG361BP	DGM182AK DGM182AK DGM1818A DGM1818K DGM1816K
AH0133CD	DG1338K	DG133AP	DG133AK	DG184AP	DG184AK	DG381CJ	DGM181CJ
AH0133C	DG133AK	DG133BP	DG1338K	DG184AP	DGM184AK	DG384AK	DGM185AK
AH0133C/883	DG133AK/8838	DG134AL	DG134AL	DG184BP	DG1848K	DG384AP	DGM185AK
AH0134CD	DG1348K	DG134AP	DG134AK	DG184BP	DGM1848K	DG384BK	OGM184BK
AH0134D	DG134AK	DG134BP	DG134BK	DG184BP	DGM184CJ	DG384BF	DGM184BK
AH0134D/883	DG134AK/883B	DG139AL	DG139AK	DG185AL	DG185AL	DG384CJ	DGM184CJ
AH0139CD	DG139BK	DG139AP	DG139AK	DG185AL	DGM185AL	DG387AA	DGM188AA
AH0139D	DG139AK	DG139BP	DG139BK	DG185AP	DG185AK	DG387AK	DGM188AK
AH0139D/883	DG139AK/883B	DG140AL	DG14DAL	DG185AP	DGM185AK	DG387AP	DGM188AK
AH0140CD	DG140BK	DG140AP	DG14DAK	DG185BP	DGM185BK	DG387BA	DGM1878A
AH0140D AH0140D/883 AH0141CD AH0141D AH0141D/883	DG140AK DG140AK/883B DG141BK DG141AK DG141AK/883B	DG14DBP DG141AL DG141AP DG141BP DG142AL	DG140BK DG141AL DG141AK OG141BK DG142AL	DG1858P DG1858P DG186AA DG186AL DG186AP	DGM1858K DGM185CJ DG186AA DG186AL DG186AK	DG387BK DG387BP DG390AK DG390AP DG390BK	DGM1978K DGM1878K DGM191AK DGM191AK DGM191AK DGM190BK
AH0142CD	DG1428K	DG142AP	DG142AK	DG1858A	DG1858A	DG390BP	DGM190BK
AH0142D	DG142AK	DG142BP	DG142BK	DG1868P	DG1858K	DG390CJ	DGM190CJ
AH0142D/883	DG142AK/883B	DG143AL	DG143AL	DG187AA	DG187AA	DG5040AK	IH5040MJE
AH0143CD	DG1438K	DG143AP	DG143AK	DG187AA	DGM187AA	DG5040AL	IH5040MFD
AH0143D	DG143AK	DG143BP	DG143BK	DG187AL	DG187AL	DG5040CJ	JH5040CPE
AH0143D/883	DG143AK/883B	DG144AL	DG144AL	DG187AL	DGM187AL	DGSD40CK	IH5040CJE
AH0144CD	DG144BK	DG144AP	DG144AK	DG187AP	DG187AK	DG5041AA	IH5041MTW
AH0144D	DG144AK	DG144BP	DG144BK	DG187AP	DGM187AK	DG5041AK	IH5041MJE
AH0144D/883	DG144AK/883B	DG145AL	DG145AL	DG187BA	DG187BA	DG5041AL	IH5041MFD
AH0145CD	DG145BK	DG145AP	DG145AK	DG187BA	DGM187BA	DG5041CJ	IH5041CPE
AHO145D/883 AHO146CD AHO146O	DG145AK DG145AK/8838 DG1458K DG146AK DG146AK DG146AK/8838	DG1458P DG145AL DG145AP DG1458P DG151AL	DG1458K DG146AL DG146AK DG1468K DG151AL	DG1878P DG1878P DG188AA DG188AA DG188AL	DG1878K DGM1878K DG188AA DGM188AA DG188AL	DG50410K DG5042AA DG5042AK DG5042AL DG5042CJ	IH5041CJE IH5042MTW IH5042MJE IH5042MAD IH5042CPE
NHU152CD NHU152D	0G151BK 0G151AK/883B 0G152BK 0G152AK 0G152AK 0G152AK/883B	DG151AP DG151BP DG152AL DG152AP DG152BP	DG151AK DG151BK DG152AL DG152AK DG152BK	DG189AL DG188AP DG188AP DG188AP DG188BA	DGM188AL DG188AK DGM188AK DGM188BK DG188BA	DG5042CK DG5043AK DG5043AL DG5043CJ DG5043CJ	IH5042CJE IH5043MJE IH5043MFD IH5043CPE IH5043CJE
HD153D/883 HD154CD	DG1538K DG153AK DG153AK/8838 DG153AK/8838 DG1548K DG154AK	DG153AL DG153AP DG153BP DG154AL DG154AP	DG153AL DG153AK DG153BK DG154AL DG154AK	DG188BA DG188BP DG189AL DG189AP DG189BP	DGM188BA DG1898K DG189AL DG189AK OG189BK	DG5044AA: DG5044AK I DG5044AL OG5044CJ DG5044CK	IH5044MTW IH5044MJE IH5044MFD IH5044CPE IH5044CJE
H0155D H0161CD HD161D	DG143AK/8838 DG151AK DG161BK DG161AK DG161AK/8838	DG1548P DG161AL DG161AP DG161BP DG162AL	DG154EK DG151AL DG161AK DG161BK DG162AL	DG190AL DG190AL DG190AP DG190AP DG190BP	DG190AL DGM190AL DG190AK DG190AK DG190BK	DG5D45AK DG5D45AL DG5D45CJ DE5D45CK DG5DBAR	IH5045MJE IH5045MFD IH5045CPE IH5045CJE IH6116MJI
H0162D/883B H0163CD (DG162BK DG162AK DG162AK/BB3B DG163BK DG163BK	DG162AP DG162BP DG163AL DG163AP	DG162AK DG162BK DG163AL DG163AK DG163BK	DG1908P DG1908P DG191AL DG191AL	DGM190BK DGM190CJ DG191AL DGM191AL DG191AK	DG506BR DG506CJ DG507AR DG507BR	IH6116CJI: IH6116CPI IH6216MJI IH6216CJI
H0164CD H0164D H0164D/P83	DG163AK/883B DG1648K DG164AK DG164AK/883B H\$009CPD	DG154AL DG154AP DG164BP DG180AA	DG154AL DG154AK DG154BK DG180AA DG180AL	DG191AP DG191BP DG191BP	DGM191AK DG191BK DGM191BK DGM191CJ	DG508AP DG508BP DG508CJ	IH6216CPI IH610BMJE IH610BCJE IH610BCPE IH620BMJE

**CONSULT FACTORY

ANALOG SWITCH CROSS REFERENCE (cont.)

ALTERNATE	INTERSIL	ALTERNATE	INTERSIL	ALTERNATE	INTERSIL	ALTERNATE	INTERSIL
DG509CJ	IH6208CPE OG111AL	HI1:5041-5	## ## ## ## ## ## ## ## ## ## ## ## ##	TL182CN TL182IL	DGM182CJ DGM182BA	SOURCE PRODUCT	EQUIVALENT
DGM111AL DGM111AP DGM1118P G115AP	OG111AK OG111BK G115AK	HI1-5041-8 HI1-5042-2 HI1-5042-5 HI1-5042-8	IH5041MJE/863B IH5042MJE IH5042CJE IH5142MJE/883B	TL182IN TL182ML TL185CJ	DGM182DA DGM182DJ DGM182AA IH5045CJE		*
G1158P G1158P G116AL G116AP G1168P	G115BJ G115BK G116AL G116AK G116BJ	HI1-5043-2 HI1-5043-5 HI1-5043-8 HI1-5044-2 HI1-5044+5	IH5143MJE IH5143CJE IH5143MJE/883B IH5144MJE IH5144CJE	TL185CN TL185IJ TL185IN TL185MJ TL188CL	IH5D45CPE IH5D45CJE IH5O45CPE IH5O45MJE IH5O42CTW		
G1168P G117AL G118AL G118AP G118AL	G1168K G117AL G118AL G118AK G119AL	HI1-5044-8 HI1-5045-2 HI1-5045-5 HI1-5045-8 HI1-5046-2	IH5144MJE/8838 IH5145MJE IH5145CJE IH5145MJE/8838 IH5046MJE	TL188CN TL188IL TL188IN TL188ML TL191CJ	H5042CPE H5042CTW H5042CPE H5042MTW H5043CJE		
G123AL G123AP HI0-0201-6 HI0-0381-6 HI0-0384-6	G123AL G123AK DG201C/D DGM1B1C/D DGM184C/D	HI1-5046-5 HI1-5046-8 HI1-5047-2 HI1-5047-5 HI1-5047-8	1H5D46CJE 1H5D46MJE/883B 1H5D47MJE 1H5D47CJE 1H5D47CJE JH5D47MJE/8B3B	TL191CN TL191IJ TL191IN TL191MJ	1H5043CPE 1H5043CJE 1H5043CPE 1H5043MJE		
HIQ-0387-6 HIQ-0390-5 HIQ-0506-6 HIQ-0506A-6 HIQ-0507-6	DGM187C/D DGM190C/D IH6116C/D IH5116C/D IH6216C/D	HI1-5049-2 HI1-5049-5 HI1-5049-8 HI1-5050-2 HI1-5050-5	IH5149MJE IH5149GJE IH5149MJE/889B IH515DMJE IH515DCJE				
HIO-0507A-6 HID-050B-6 HID-050BA-6 HID-0509-6 HID-0509A-6	IH5216C/D IH6108C/D IH5108C/D IH620BC/D IH6208C/D	HI1-5050-8 HI1-5051-2 HI1-5051-5 HI1-5051-8: HI2-0200-2 *	H515DMJE/893B H5151MJE H5151CJE H5151MJE/883B DG2DOAA				
HIO-5040-6 HIO-5041-6 HIO-5042-6 HIO-5043-6 HIO-5044-8	1H514DC/D 1H5141C/D 1H5141C/D 1H5143C/D 1H5144C/D	HI2-0200-4 HI2-0200-5 HI2-0200-8 HI2-0381-2 HI2-0381-5	DG200BA DG200BA DG200AA/883B OGM182AA DGM181BA				
HIO-5045-6 HIO-5046-6 HIO-5047-5 HIO-5049-5 HIO-5050-6	IH5145C/D IH5046C/D IH5047C/D IH5149C/D IH5150C/D	HI2-0381-8 HI2-0387-2 HI2-0387-5 HI2-0387-8 HI3-0200-5	DGM181AA/883B DGM188AA DGM1878A DGM188AA/883B DG200CJ				
HI0-5051-5 HI1-0200-2 HI1-0200-4 HI1-0200-5 HI1-0200-5	IH5051C/D OG200AK OG200AK DG200BK DG200C/D	HI3-0201-5 HI3-0381-5 HI3-0384-5 HI3-0390-5 HI3-0506-5	DG201CJ DGM181CJ DGM194CJ DGM190CJ JH6116CPI				
HI1-0200-8 HI1-0201-2 HI1-0201-4 HI1-0201-8	OG200AK/883B DG201AK OG201BK OG201BK OG201AK/883B	HI3-0506A-5 HI3-0507-5 HI3-0507A-5 HI3-0508-5 HI3-0508A-5	H5116CPI H6216CPI H5216CPI H6108CPE H5108CPE				••
HI1-0381-2 HI1-0381-5 HI1-0381-8 HI1-0384-2 HI1-0384-5	DGM182AK DGM181BK DGM182AK/8B3B DGM185AK DGM184BK	HI3-0509-5 HI3-0509A-5 LF112010 LF112010/BB3 LF112020	IH6208CPE IH5208CPE DG201AK DG201AK/883B IH202MJE				
HI1-0384-8 HI1-0387-2 HI1-0387-5 HI1-0387-8 HI1-0390-2	DGM185AK/883B OGM188AK OGM1878K DGM188AK/883B DGM191AK	LF11202D/883 LF11508D LF11508D/883 LF11509D LF11509D/883	H2D2MJE/8836 H6108MJE H6108MJE/8838 H6208MJE H6208MJE/8838			1	-1
HI1-0390-5 HI1-0390-8 HI1-0506-2 HI1-0506-5 HI1-0506-8	DGM1908K DGM191AK/863B IH6116MJi IH6116CJI IH6116MJI/883B	LF13201D LF13201N LF13202D LF13508D LF13508N	DG2018K DG2B1CJ IH2D2CJE IH6108CJE IH610BCPE		*		
HI1-0506A-2 HI1-0506A-5 HI1-0506A-8 HI1-0507-2 HI1-0507-5	1H5118MJr. 1H5116IJI 1H5116MJr883B 1H5116MJr883B 1H6216MJr	LF135090 LF13509N MM450H MM451H MM452D	IH6208CJE IH620BCPE MM450H MM451H MM452J				
HI1-0507-8 HI1-0507A-2 HI1-0507A-5 HI1-0507A-8 HI1-0508-2	1H6216MJI/8838 1H5216MJI 1H5216IJI 1H5216MJI/8838 1H6108MJE	MM452F MM455H MM550H MM551H MM552D	MM452F MM455H MM550H MM551H MM552J				
HI1-0508-5 H:1-0508-8 H:1-0508A-2 H:1-0508A-5 H:1-0508A-8	H6108CJE H6108MJE/883B H5108MJE H5108MJE H5108MJE/883B	MM552F MM555H SJM181BCC SJM181BIC SJM182BCC	MM552F MM555H JM38510/111018CC JM38510/111018IC JM38510/111028CC				1.
HI1-0509-2 HI1-0509-5 HI1-0509-8 HI1-0509A-2 HI1-0509A-5	IH6208MJE IH6208CJE IH6208MJE/8838 IH5208MJE IH5208IJE	SJM1828IC SJM1848EC SJM185BEC SJM1878CC SJM1878IC	JM38510/11102BIC JM38510/11103BEC JM38510/11104BEC JM38510/11105BCC JM38510/11105BIC				:
HI1-0509A-8 HI1-5040-2 HI1-5040-5 HI1-5040-8 HI1-5041-2	H5208MJE/8838 H5040MJE H5040CJE H5040MJE/8838 H5041MJE	SJM1888CC SJM188BIC SJM190BEC SJM191BEC TL182CL	JM38510/11106BCC JM38510/11106BCC JM38510/11107BEC JM38510/11108BEC JM38510/11108BEC				

DATA ACQUISITION CROSS REFERENCE

ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT
AD7520JD AD7520JN AD7520KD AD7520KN AD7520LD	AD7520JD AD7520JN AD7520KD AD7520KN AD7520LD	MP7521LN MP7521SD MP7521TD MP7521UD MP7523JN	AD7521LN AD7521SD AD7521TD AD7621UD AD7523JN		· · · · · · · · · · · · · · · · · · ·		
AD7520LN AD7520SD AD7520TD AD7520UD AD7521JD	AD7520LN AD7520SD AD7520TD AD7520UD AD7521JD	MP7523KN MP7523LN MP7621AD MP7621BD MP7621JN	AD7523KN AD7523LN AD7541AD AD7541BD AD7541JN		•		
A07521JN A07521KD A07521KN A07521LD A07521LN	AD7521JN AD7521KD AD7521KN AD7521LD AD7521LN	MP7621KN MP76215D MP7621TO	AD7541KN AD7541SD AD7541TD				
AD75218D AD7521TD AD7521UD AD7523AD AD75238D	AD7521SD AD7521TD AD7521UD AD7523AD AD7523BD						
A07523CD A07523JN A07523KN A07523LN A07523SD	AD7523CD AD7523JN AD7523KN AD7523LN AD7523SD						
AD7523TD AD7523UD AD7530JD AD7530JN AD7530JN AD7530KD	AD7523TD AD7523UD AD7530JD AD7530JN AD7530KD						
AD7530KN AD7530LD AD7530LN AD7531JD AD7531JN	AD753DKN AD753OLD AD753OLN AD7531JD AD7531JN		<u></u>			3	
AD7531KD, AD7531KN AD7531LD AD7531LN AD7533AD	AD7531KD AD7531KN AD7591LD AD7531LN AD7533AD						114
AD7533BD AD7533CD AD7533JN AD7533KN AD7533LN	AD7533BD AD7633CD AD7533JN AD7533KN AD7533LN	. 1		,			
AD7533SD AD7533TD AD7533UD AD7541AD AD7541BD	AD7533SD AD7533TD AD7533UD AD7541AD AD7541BD					<u> </u>	•
AD7541JN AD7541KN AD7541SD AD7541TD DAC1020LCD	AD7541JN AD7541KN AD7541SD AD7541TD AD7520LD	,	,, <u> </u>				
	AD7520UD AD7520KD AD7520TO AD7520JD AD7520SD				11.	· · · · · · · · · · · · · · · · · · ·	٠,
DAC1218LCD DAC1218LCN DAC1218LCN DAC1218LCD DAC1219LCD DAC1219LCN	AD75418D AD7541KN AD7541LN AD7541AD AD7541JN		- -			·	
DAG1220LCD DAG1220LD DAG1221LCD DAG1221LD	AD7521LD AD7521LD AD7521KD AD7521TD AD7521JD		<u> </u>				· · · · · · · · · · · · · · · · · · ·
	AD7521SD AD7520JD AD7520JN AD7520KD AD7520KN	· · ·					
MP7520LD MP7520LN	A07520LD A07520LN A07520SD A07520TD A07520UD	· · · · · · · · · · · · · · · · · · ·	·	<u> </u>		· · · · · · · · · · · · · · · · · · ·	
	AD7521JD AD7521JN AD7521KD AD7521KN AD7521LD					· .	

**CONSULT FACTORY

WATCH & CLOCK CROSS REFERENCE

•							•
ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT
CD22001H CD22015E E1115 E1151 E1426	ICM1424C ICM7051A ICM1315A ICM1115B ICM7050U						
HD43871 HD43871 K85183 K85240B01H KS5240B01J	ICM7050G ICM7050H ICM7269 ICM7245B ICM7245A						
K\$5240810H K\$5240812H K\$5240B20H K\$5240U01E M5001	ICM7245D ICM7245E ICM7245F ICM7245U ICM7269						
M58434P M58435P M58435-001P M58437-001P M8101	ICM70380 ICM11158 ICM7050G ICM7070L ICM72458						
MB103 MB105 MB107 MB108 MB143	ICM7245E ICM7245U ICM7245D ICM7245E ICM7245A						
MB144 MB510 MB511 MB512 MB513	ICM7245F ICM1115B ICM7050H ICM7050H ICM7050G						
MB521 MB522 MB531 MB533 MB541	ITS9068 ITS9068 ICM7050H ICM7050H ICM7052				·		
MB542 MB7B MCC14440 MCC14483 MJ41	ICM7052 ICM7245U ICM1424C ICM7210 ICM1424C		· ·				· · · · · · · · · · · · · · · · · · ·
MJ6 MN6091 MN6092A MN6093 MN6252	ICM7220 ICM7038B ICM7038E ICM7051A ICM7050G				·		
MSM5001 MSM5011 MSM5977 S1424 SCL54301	ICM7259 ICM1424C ICM1424C ICM1424C ICM1424C ICM1424C						
SCL5478 SM5011 SM5510 SM5530B TC8031P	ICM7269 ICM7050G ICM11158 ICM7070P ICM7038A				-		
TC8032P TC8051P TC8052P TC8056PA TC8057P	ICM7038F ICM7038B ICM7038E ICM1115B ICM703BD						•
UCN-4111M UCN-4112M UCN-4113M UPD1952P UPD1962C	ICM7038C ICM7051A ICM7038B ICM7220MFA ICM7050G						:
UP01963C UP0815C UP0816C UP0820C UP0833G	ICM7050 ICM703BE ICM703BB ICM11158 ICM7223	,					
	· ·						
· · · · · · · · ·							

LINEAR CROSS REFERENCE

Λ	ı
\mathcal{A}	ı
	ı

ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE SOURCE PRODUCT	INTERSIL EQUIVALENT	ALTERNATE INTERSIL SOURCE PRODUCT EQUIVALENT
723 733 741 748 AD101	UA723 UA733 UA741 UA748 UM101	MC1741 MC1748 MHW590 MPS5010 NE590	UA741 UA748 AD590 ICL8069 AU590			
AD108 AD301 AD308 AD503 AD532	LM108 LM301 LM308 AD503 AD532	NE592 OP-05 OP-07 OP-08 PM308	NE592 0P-05 0P-07 0P-08 LM308		·····	
AD534 AD580 AD741 AM2502 AM2503	AD534 AD590 UA741 AM2502 AM2503	RC723 RC733 RC741 RC748 RM723	UA723 UA733 UA741 UA748 UA723		· · · · · · · · · · · · · · · · · · ·	
AM2504 AM5402 AM5402 CA101 CA107	AM2504 HA2505 HA2525 LM101 LM107	AM741 RM748 SC748 SG101 SG105	UA741 UA748 UA748 UA748 LM101 LM105			
CA111 CA301 CA307 CA308 CA311	LM111 LM301 LM307 LM308 LM311	SG107 SG108 SG110 SG111 SG2502	LM107 LM108 LM110 LM111 AM2502			
CA723 CA741 CA748 DG503 DM2502	UA723 UA741 UA748 AD503 AM2502	SG2503 SG301 SG305 SG307 SG308	AM2503 LM301 LM305 LM307 LM308			
DM2503 DM2504 HA2500 HA2502 HA2505	AM2503 AM2504 HA2500 HA2502 HA2505	SG311 SG4250 SG723 SG733 SG741	LM311 LM4250 UA723 UA733 UA741		· · ·	a.
HA2507 HA2510 HA2512 HA2515 HA2517	HA2507 HA2510 HA2512 HA2515 HA2517	SG748 SSS741 SU536 TL503 TL592	UA748 UA741 SU536 AD503 NE592		-	
HA2520 HA2522 HA2525 HA2527 HA2600	HA2520 HA2522 HA2525 HA2527 HA2600	TT-590 UA1D1 UA1D2 *UA1D5 UA1D7	AD590 LM101 LM102 LM105 LM107			
HA2602 HA2605 HA2607 HA2620 HA2622	HA2602 HA2605 HA2607 HA2620 HA2622	UA108 UA110 UA111 UA301 UA302	LM109 LM110 LM111 LM301 LM302			
HA2625 HA2627 HA2720 LH0042 LH2101	HA2625 HA2627 ICL8021 LH0042 LH2101	UA305 UA307 UA308 UA310 UA311	LM305 LM307 LM308 LM310 LM311	· · · · · · · · · · · · · · · · · · ·		
LH2108 LH2110 LH2111 LH2301 LH2308	LH2108 LH2110 LH2111 LH2301 LH2306	UA723 UA733 UA740 UA741 UA748	UA723 UA733 UA740 UA741 UA748	• .		
LH2310 LH2311 LM100 LM101 LM102	LH2310 LH2311 LM100 LM101 LM102	UA777 UHP-503 VR-8069 WG-8038 XR8038	UA777 AD503 ICL8069 ICL8038 ICL8038		, <u>. ' ,,,.</u>	
LM105 LM107 LM108 LM110 LM111	LM105 LM107 LM108 LM110 LM111	****				
LM300 LM301 LM302 LM305 LM307	LM300 LM3D1 LM302 LM305 LM307				·v-	
LM308 LM310 LM311 LM4250 LM723	LM308 LM310 LM311 LM4250 UA723					
LM733 LM74D LM741 LM748 MC1723	UA733 UA740 UA741 UA748 UA723					

Discretes

JFET Single	Switche
N-Channel 2N3970-72 2N4091-93 2N4391-93 2N4856-61 2N5432-34 2N5638-40 ITE4091-3 ITE4391-3 J105-7 J111-13 U200-2 U1897-99 P-Channel 2N3993/4 2N5018/19 2N5114-16 IT100/1 J174-77	Page 1-18 1-22 1-30 1-32 1-42 1-49 1-22 1-30 1-77 1-78 1-85 1-92 1-19 1-36 1-37 1-64 1-79
JFET Single Amplifiers	
N-Channel 2N3684-87 2N3821/22 2N3823 2N3824 2N4117-19 2N4220-22 2N4223/24 2N4338-41 2N4416 2N4867-69 2N5397/98	1-10 1-13 1-14 1-15 1-25 1-26 1-27 1-28 1-31 1-33 1-41

2N5484-86 1TE4416 J201-4 J308-10 U308-10	1-46 1-31 1-80 1-82 1-89
P-Channel 2N2607-9 2N5460-65 U304-6	1-9 1-45 1-88
JFET Dual Amplifiers	
N-Channel 2N3921/22 2N3954-58 2N5196-99 2N5452-54 2N5515-24 2N5902-9 2N5911/12 2N6483-85 IMF6485 IT500-5 A050 (IT 500) IT550 IT5911/12 U231-35 U257 U401-6	1-16 1-17 1-40 1-43 1-47 1-50 1-51 1-71 1-73 1-74 1-51 1-86 1-87
MOSFET Swite Amplifiers	ches/
N-Channel 2N4351	1-29

	A STATE OF THE STA	111
6	3N170/1 IT1750 M116	1-59 1-76 1-84
1029 958	P-Channel 3N161 3N163/64 3N172/73 IT1700	1-56 1-57 1-60 1-75
8	Dual P-Channel 3N165/66 3N188-91	1-58 1-61
	Bipolar Dual Amplifiers	+t
37037012413	NPN Devices 2N4044/45 2N4100 2N4878-80 IT120-22 IT124 IT126/7 LM114 PNP Devices 2N3810/11	1-20 1-23 1-34 1-65 1-66 1-67 1-83
4 1 6 7	2N5117-19 IT130-32 IT136-39	1-39 1-68 1-69
0	Special Function	n
ſ	High Speed Dual Did ID100/1	odes 1-62

Special Function	on
High Speed Dual D ID100/1	iodes 1-62
Voltage Controlled Resistors	
VCR2-7	1-92

DISCRETE PRODUCT REFERENCE GUIDE

Switches — Junction FET

Preferred Part Number	nformation Package Generally requ	r _{DS(on)} max Ω	V _p min/f V		I _{GSS} max pA	BV _{GSS} min V	I _{D(off)} max pA	I _{DS} min/i m/	max 1	t _{total} max ns	C _{iss} max pF	C _{rss} max pF
2N3970 2N3971 2N3972 2N4091 2N4092	T0-18 T0-18 T0-18 T0-18 T0-18 T0-18	30 60 100 30 50	-4.0 -2.0 -0.5 -5.0 -2.0	-10.0 -5.0 -3.0 -10.0 -7.0	(-250) (-250) (-250) (-250) -200	- 40 - 40 - 40 - 40 - 40 - 40	250 250 250 250 200 200	50 25 5 30 15	150 75 30	50 90 180 65 95	25 25 25 16 16	6.0 6.0 6.0 5.0 5.0
2N4093 2N4391 2N4392 2N4393 2N4856	T0-18 T0-18 T0-18 T0-18 T0-18	80 30 60 100 25	1.0 4.0 2.0 0.5 4.0	-5.0 -10.0 -5:0 -3:0 -10:0	- 200 - 100 - 100 - 100 - 250	40 40 40 40 40	200 100 100 100 250	8 50 25 5 50	150 75 30	140 55 75 100 34	16 ,14 14 14	5.0 3.5 3.5 3.5 8.0
2N4857 2N4858 2N4859 2N4860 2N4861	T0-18 T0-18 T0-18 T0-18 T0-18	40 60 25 40 60	-2.0 -0.8 -4.0 -2.0 -0.8	-6.0 -4.0 -10:0 -6.0 -4.0	250 250 250 250 250	40 40 30 30 30	250 250 250 250 250	20 8 50 20 8	100 80 100 80	60 120 34 60 120	18 18 18 18 18	8.0 8.0 8.0 8.0
2N5432 2N5433 2N5434 2N5638 2N5639	TO-52 TO-52 TO-52 TO-92 TO-92	5 7 10 30 60	-4.0 -3.0 -1.0	-10.0 -9.0 -4.0 -12.0 -8.0	200 200 200 1nA 1nA	-25 -25 -25 -30 -30	200 200 200 1 nA 1 nA	150 100 - 30 50 25	·	41 41 41 24 44	30 30 30 10	15.0 15.0 15.0 4.0 4.0
2N5640 ITE4091 ITE4092 ITE4093 ITE4391	T0-92 T0-92 T0-92 T0-92 T0-92	100 30+ 50 80 30	-5.0 -2.0 -1.0 -4.0	-6.0 -10.0 -7.0 -5.0 -10:0	1nA 200 200 200 100	- 30 - 40 - 40 - 40 - 40	1nA 200 200 200 200 100	5 30 15 8 50	150	63 65 95 140 55	10 16 16 16 14	4.0 5.0 5.0 5.0 3.5
TE4392 TE4393 J105 J106 J107	TO-92 TO-92 TO-92 TO-92 TO-92	60 100 3 6 8	2,0 0.5 4.5 2.0 0.5	-5.0 -3.0 -10.0 -6.0 -4.5	— 100 — 100 — 3nA — 3nA — 3nA	40 40 25 25 25	100 ⁻ 100 ЗпА ЗпА ⁻ ЗпА	25 5 500 200 100	75 30 — —	75 100 60 60 60	14 14 (70) (70) (70)	3.5 3.5 (3.5) (3.5) (3.5)
J111 J112 J113	TO-92 TO-92 TO-92	30 50 100	-3.0 -1.0 • -0.5	-10.0 -5.0° -3.0	1nA 1nA 1nA	- 35 - 35 - 35	1nA 1nA 1nA	20 5 2		48 48 48	(16) (16) (16)	(5.0) (5.0) (5.0)
P-channel:					·		· . :		<u></u>			· · · · · · · · · · · · · · · · · · ·
2N3993 2N3994 2N5114 2N5115 2N5116	T0-72 T0-72 T0-18 T0-18 T0-18	150 300 75 100 150	4.0 1.0 5.0 3.0 1.0	9.5 5.5 10.0 6.0 4.0	1.2nA 1.2nA 500 500 500	25 25 30 30 30	1.2nA 1.2nA 500 500 500	-10.0 -2.0 -30.0 -15.0 -5.0	90 60 25	37 68 102	16 16 25 25 25	4.5 4.5 7.0 7.0 7.0
iT100 IT101 J174 J175 J176	TO-18 TO-18 TO-92 TO-92 TO-92	75 60 85 125 250	2.0 4.0 5.0 3.0 1.0	4.5 10.0 10.0 6.0 4.0	200 200 1nA 1nA 1nA	35 35 30 30 30	100 100 —1nA —1nA —1nA	-10.0 -20.0 -20.0 -7.0 -2.0	- 100 - 60 - 25	22 45 70	35 35 (25) (25) (25)	12.0 12.0 (8.0) (8.0) (8.0)
J177 J270 J271 P1086 P1087	T0-92 T0-92 T0-92 T0-92 T0-92	300 — 75 150	0.8 0.5 1.5 —	2.25 2.0 4.5 10.0 5.0	1nA 200 200 2nA 2nA	30 30 30 30 30	1 nA 10 nA 10 nA	-1.5 -2.0 -6.0 -10.0 -5.0	- 20 - 15 - 50 	90 — 100 215	(25) 32 typ. 32 typ. 45 45	(8.0) 4.0 typ. 4.0 typ. 10.0 10.0

^{.)} Approximate Value

Dadadas	1-4	. 11											<u> </u>
Preferred Part Number	Information Package	¥GSi	(OFF) (OFF) (max	BV _{GSS} min V	I _{DSS} max pA	I _{GSS} max pA	G _{fs} min µ mho	r _{DS(ON)} max Ω		•	ı	I _D I _{Q(ON)} nin/max mA	
P-Channel l	Enhancement: G	en, used wher	e max isola	tion betwee	n signal sol	irce and log	ic drive requ	uired; sw:		stance v	aries wil	th signal ampl	litiude.
3N161 3N163 3N164 3N172 3N173 IT1700	T0-72 T0-72 T0-72 T0-72 T0-72 T0-72	-1.5 -2.0 -2.0 -2.0 -2.0 -2.0	-5.0 -5.0 -5.0 -5.0 -5.0 -5.0	- 25 - 40 - 30 - 40 - 30 - 40	10nA 200 400 400 10nA 200	-100.0 -10.0 -10.0 -200.0 -500.0 -10.0	3500.0 2000.0 2000.0 (2000.0) (1000.0) 2000.0	(125) 250 300 250 350 400	-40 - 5 - 3 - 5 - 5 - 2		- 30 - 30 - 30 - 30	Diode Protecte Diode Protecte Diode Protecte	ed .
1-Channel	Enhancement: C	an switch pos	Itive signals	directly fro	m TTL logic	; gen. requ	ires driver o	or translate	r circuit to	switch	bipolar s	ignals.	583
2N4351 3N170 3N171 IT1750 M116	T0-72 T0-72 T0-72 T0-72 T0-72	1.0 1.0 1.5 0.5 1.0	5.0 2.0 3.0 3.0 5.0	25 25 25 25 26 30	10nA 10nA 10nA 10nA (10nA)	10.0 10.0 10.0 10.0 10.0	1000.0 1000.0 1000.0 3000.0 (1000.0)	300 200 200 50 100	3 10 10 10		100	oiode Protecte	el .

Amplif	iers — I	N-Chann	iel Jun	ction F	ET			18.4			
Ordering (Preferred Part Number	nformation Package	9fs min µmho	min	OSS /max nA	min	V _P /max V	I _{GSS} max pA	BV _{GSS}	C _{iss} max pF	C _{rss} max pF	e _n max nv/√Hz
2N3684 2N3685 2N3686 2N3687 2N3821	T0-72 T0-72 T0-72 T0-72 T0-72	2000 1500 1000 500 1500	2.5 1.0 0.4 0.1 0.5	7.5 3.0 1.2 0.5 2.5	-2.0 -1.0 -0.6 -0.3	-5.0 -3.5 -2.0 -1.2 -4.0	- 100 - 100 - 100 - 100 - 100	- 50 - 50 - 50 - 50 - 50	4 4 4 4 6	1.2 1.2 1.2 1.2 1.2 3.0	140 @ 100Hz 140 @ 100Hz 140 @ 100Hz 140 @ 100Hz 200 @ 10Hz
2N3822 2N3823 2N3824 2N4117 2N4117A	T0-72 T0-72 T0-72 T0-72 T0-72	3000 3500 — 70 70	2.0 4.0 — 0.03 0.03	10.0 20.0 — 0.09 0.09	-0.6 -0.6	-6.0 -8.0 (-8.0) -1.8 -1.8	- 100 - 500 - 100 - 10 - 1	- 50 - 30 50 40 40	6 6 3 3	3.0 2.0 3.0 1.5 1.5	200 @ 10Hz — — — —
2N4118 2N4118A 2N4119 2N4119A 2N4220	T0-72 T0-72 T0-72 T0-72 T0-72	80 80 100 100 1000	0.08 0.08 0.2 0.2 0.5	0.24 0.24 0.6 0.6 0.3	-1.0 -1.0 -2.0 -2.0	-3.0 -3.0 -6.0 -6.0 -4.0	-10 -1 -10 -1 -100	40 40 40 40 30	3 3 3 6	1.5 1.5 1.5 1.5 2.0	
2N4221 2N4222 2N4223 2N4224 2N4338	T0-72 T0-72 T0-72 T0-72 T0-18	2000 2500 3000 2000 600	2.0 5.0 3.0 2.0 0.2	6.0 15.0 18.0 20.0 0.6	-0.1 -0.1 -0.3	-6.0 -8.0 -8.0 -8.0 -1.0	100 100 250 500 100	-30 -30 -30 -30 -50	6 6 6 7	2.0 2.0 2.0 2.0 3.0	— — — — 65 @ 1kHz
2N4339 2N4340 2N4341 2N4416 2N4867	T0-18 T0-18 T0-18 T0-72 T0-72	800 1300 2000 4500 700	0.5 1.2 3.0 5.0 0.4	1.5 3.6 9.0 15.0 1.2	-0.6 -1.0 -2.0	-1.8 -3.0 -6.0 -6.0 -2.0	- 100 - 100 - 100 - 100 - 250	- 50 - 50 - 50 - 30 - 40	7 7 7 4 25	3.0 3.0 3.0 2.0 5.0	65 @ 1kHz 65 @ 1kHz 65 @ 1kHz — 10 @ 1kHz
2N4867A 2N4868 2N4868A 2N4869 2N4869A	T0-72 T0-72 T0-72 T0-72 T0-72	700 1000 - 1000 1300 1300	0.4 1.0 1.0 2.5 2.5	1.2 3.0 3.0 7.5 7.5	-0.7 -1.0 -1.0 -1.8 -1.8	-2.0 -3.0 -3.0 -5.0 -5.0	- 250 - 250 - 250 - 250 - 250	- 40 - 40 - 40 - 40 - 40	25 25 25 25 25	5.0 5.0 5.0 5.0 5.0	5 @ 1kHz 10 @ 1kHz 5 @ 1kHz 5 @ 1kHz 10 @ 1kHz 5 @ 1kHz
2N5397 2N5398 2N5457 2N5458 2N5459	T0-72 T0-72 T0-92 T0-92 T0-92	6000 , 5500 1000 1500 2000	10.0 5.0 -1.0 2.0 4.0	30.0 40.0 5.0 9.0 16.0	1.0 1.0 0.1 1.0 2.0	-6.0 -6.0 -6.0 -7.0 -8.0	100 100 1nA 1nA	- 25 - 25 - 25 - 25 - 25	5 5.5 7 7 7	1.2 1.3 3.0 3.0	3.5dB @ 450MHz — — —

Amplifiers — N-Channel Junction FET (continued)

Ordering i Preferred Part Number	nformation Package		9fs min µmho	los min/ m/	max		/ _P /max V	IGSS max pA	BV _{GSS} min V	C _{iss} max pF	C _{rss} max pF	e _n max nv/√Hz	. *
2N5484 2N5485 2N5486 ITE4416 J201	T0-92 T0-92 T0-92 T0-92 T0-92	i a	3000 3500 4000 4500 500	1.0 4.0 8.0 5.0 0.2	5.0 10.0 20.0 15.0 1.0	-0.3 -0.5 -2.0 -0.3	-3.0 -4.0 -6.0 -6.0 -1.5	- 1nA - 1nA - 1nA - 100 - 100	- 25 - 25 - 26 - 30 - 40	5 5 4 4	1.0 1.0 1.0 2.0 1.0	120 @ 1kHz 120 @ 1kHz 120 @ 1kHz 120 @ 1kHz 5 @ 1kHz	
J202 J203 J204 J308 J309	TO-92 TO-92 TO-92 TO-92 TO-92		1000 1500 1500 8000 10,000	0.9 4.0 1.2 12,0 12.0	4.5 20.0 typ_ 60.0 30.0	-0.8 -2.0 -0.5 -1.0 -1.0	-4.0 -10.0 -2.0 -6.5 -4.0	100 100 100 1nA 1nA	- 40 - 40 - 25 - 25 - 25	4 4 4 (8) (8)	1.0 1.0 1.0 (5.0) (5.0)	5 @ 1kHz 5 @ 1kHz 10 @ 1kHz — —	
J310 U308 U309 U310	T0-92 T0-52 T0-52 T0-52	-	8000 10,000 10,000 10,000	24.0 12.0 12.0 24.0	60.0 60.0 80.0 60.0	-2.0 -1.0 -1.0 -2.5	-6.5 -6.0 -4.0 -6.0	1 nA 150 150 150	- 25 - 25 - 25 - 25	7 typ. 7 typ. 7 typ. 7 typ.	(5.0) 4.0 typ. 4.0 typ. 4.0 typ.	— 10 @ 100Hz typ. 10 @ 100Hz typ. 10 @ 100Hz typ.	

Amplifiers				طرح نصني منظ
A	D / ' M /	tmmal II	IBA*1AB	
		arithei		
MILLORG		41111V: V:		

Ordering I	nformation		:								
Preferred Part Number	Package	9fs min µmho	l _{DS} min/ m.	max	V min/ \		IGSS max пА	BV _{GSS} min V	C _{iss} max pF	C _{rss} max pF	e _n max nv/√Hz
2N2607	T0-18	330	-0.3	-1.5	1.0	4.0	'3	30	10	_	400 @ 1kHz
2N2608: - 2N2609	₹0-18 Т0-18	1000 12500	0.9 2.0	- 4.5 10.0	1.0 1.0	4.0 4.0	10 30	30 30	17 30	. : -	140 @ 1kHz 140 @ 1kHz
2N5460	10-92	1000	-1.0	-5.0	0.75	6.0	. 5	40	7	2	115 @ 100Hz
2N5461	TO-92	1500	-2.0	-9.0	1.0	7.5	5	40	. 7	2,	115 @ 100Hz
2N5462	TO-92	2000	- 4.0	 16.0	1.8	9.0	5	40	7	. 2	115 @ 100Hz
2N5463	TO-92	1000	-1.0	-5.0	0.75	6.0	5	60	7	2	115 @ 100Hz
2N5464	TO-92	1500	2.0	-9.0	1.0	7.5	5	60	7	2	115 @ 100Hz
2N5465	TO-92	2000	-4.0	-16.0	1.8	9.0	5	60	7	2	115 @ 100Hz
U304	T0-18	_	-30.0	-90.0	5.0	10.0	.5	30	. 27	7	· —
J305	T0-18	_	– 15.0	-60.0	3.0	6.0	.5	30	27	7	
U306	TO-18	_	-5.0	-25.0	1.0	4.0	5	-30	27	7	

Differ	ential A	mplifie	rs —	Dual M	onolit	hic N-C	hanne	l Junction l	=ET	· · · · · · · · · · · · · · · · · · ·
Preferred Part Number	Package	V _{GSI-2} max mV	ΔV _{GS} max _μ V/°C	I _G max pA	BV _{GSS} min V	V _i min/ V	max	g _{fs} min/max µmho	I _{DSS} min/max mA	e _n max nV/√Hz
2N3921 2N3922 2N3954 2N3954A 2N3955	T0-71 T0-71 T0-71 T0-71 T0-71	5 5 5 10	10 25 10 5 25	- 250 - 250 - 50 - 50 - 50	- 50 - 50 - 50 - 50 - 50	- - -1.0 -1.0 -1.0	-3.0 -3.0 -4.5 -4.5 -4.5	1500 7500 1500 7500 1000 3000 1000 3000 1000 3000	1.0 10.0 1.0 10.0 0.5 5.0 0.5 5.0 0.5 5.0	— 160 @ 100Hz 160 @ 100Hz 160 @ 100Hz
2N3955A 2N3956 2N3957 2N3958 2N5196	T0-71 T0-71 T0-71 T0-71 T0-71	15 15 20 25 5	15 50 75 100 5	- 50 - 50 - 50 - 50 - 15	50 50 50 50 50	-1.0 -1.0 -1.0 -1.0 -0.7	-4.5 -4.5 -4.5 -4.5 -4.0	1000 3000 1000 3000 1000 3000 1000 3000 700 @ 200#A	0.5 5.0 0.5 5.0 0.5 5.0 0.5 5.0 0.7 7.0	160 @ 100Hz 160 @ 100Hz 160 @ 100Hz 160 @ 100Hz 20 @ 1kHz
2N5197 2N5198 2N5199 2N5452 2N5453	T0-71° T0-71 T0-71 T0-71 T0-71	5 10 15 5 10	10 20 40 5 10	-15 -15 -15 GSS-100 GSS-100	- 50 - 50 - 50 - 50 - 50	-0.7 -0.7 -0.7 -1.0 -1.0	-4.0 -4.0 -4.0 -4.5 -4.5	700 @ 200µA 700 @ 200µA 700 @ 200µA 1000 4000 1000 4000	0.7 7.0 0.7 7.0 0.7 7.0 0.5 5.0 0.5 5.0	20 @ 1kHz 20 @ 1kHz 20 @ 1kHz 20 @ 1kHz 20 @ 1kHz
2N5454 2N5515 2N5516 2N5517 2N5518	TO-71 TO-71 TO-71 TO-71 TO-71	15 5 5 10 15	25 5 10 20 40	. IGSS 100 100 100 100 100	~ 50 - 40 40 40 40	-1.0 -0.7 -0.7 -0.7 -0.7	-4.5 -4.0 -4.0 -4.0 -4.0	1000 4000 1000 4000 1000 4000 1000 4000 1000 4000	0.5 5.0 0.5 7.5 0.5 7.5 0.5 7.5 0.5 7.5	20 @ 1kHz 30 @ 10Hz 30 @ 10Hz 30 @ 10Hz 30 @ 10Hz
2N5519 2N5520 2N5521 2N5522 2N5523	TO-71 TO-71 TO-71 TO-71 TO-71	15 5 5 10 15	80 5 10 20 40	-100 -100 -100 -100 -100	40 40 40 40 40	-0.7 -0.7 -0.7 -0.7 -0.7	-4.0 -4.0 -4.0 -4.0 -4.0	1000 4000 1000 4000 1000 4000 1000 4000 1000 4000	0.5 7.5 0.5 7.5 0.5 7.5 0.5 7.5 0.5 7.5 0.5 7.5	30 @ 10Hz 15 @ 10Hz 15 @ 10Hz 15 @ 10Hz 15 @ 10Hz
2N5524 2N5902 2N5903 2N5904 2N5905	T0-71 T0-99 T0-99 T0-99 T0-99	15 5 5 10 15	80 5 10 20 40	-100 -3 -3 -3 -3	40 40 40 40 40	-0.7 -0.6 -0.6 -0.6 -0.6	-4.0 -4.5 -4.5 -4.5 -4.5	1000 4000 70 250 70 250 70 250 70 250 70 250	0.5 7.5 0.3 0.5 0.03 .05 0.03 .05 0.03 .05	15 @ 10Hz 200 @ 1kHz 200 @ 1kHz 200 @ 1kHz 200 @ 1kHz
2N5906 2N5907 2N5908 2N5909 2N5911	T0-99 T0-99 T0-99 T0-99 T0-99	5 5 10 15 10	5 10 20 40 20	-1 -1 -1 -1 -100	40 40 40 40 25	-0.6 -0.6 -0.6 -0.6 -1.0	-4.5 -4.5 -4.5 -4.5 -5.0	70 250 70 250 70 250 70 250 70 250 5/10 @ 5 mA	0.03 .05 0.03 .05 0.03 .05 0.03 .05 7.0 40.0	100 @ 1kHz 100 @ 1kHz 100 @ 1kHz 100 @ 1kHz 20 @ 10kHz
2N5912 2N6483 2N6484 2N6485 IMF6485	T0-99 T0-71 T0-71 T0-71 T0-71	15 5 10 15 25	40 5 10 25 40	-100 -100 -100 -100 -100	25 50 50 50 50	-1.0 -0.7 -0.7 -0.7 -0.7	-5.0 -4.0 -4.0 -4.0 -4.0	5/10 @ 5 mA 1000 4000 1000 4000 1000 4000 1000 4000	7.0 40.0 0.5 7.5 0.5 7.5 0.5 7.5 0.5 7.5	20 @ 10kHz 10 @ 10Hz 10 @ 10Hz 10 @ 10Hz 15 @ 10Hz
IT500 IT501 IT502 IT503 IT504	TO-52 TO-52 TO-52 TO-52 TO-52	5 5 10 15 ` 25	. 5 10 20 40 100	-5 -5 -5 -5	- 50 - 50 - 50 - 50 - 50	-0.7 -0.7 -0.7 -0.7 -0.7	-4.0 -4.0 -4.0 -4.0 -4.0	700 1600 700 1600 700 1600 700 1600 700 1600	0.7 7.0 0.7 7.0 0.7 7.0 0.7 7.0 0.7 7.0 0.7 7.0	35 @ 10Hz 35 @ 10Hz 35 @ 10Hz 35 @ 10Hz 35 @ 10Hz
1T505 1T5911 1T5912 U257 U401	TO-52 TO-71 TO-71 TO-99 TO-71	50 10 15 100 5	200 20 40 —	-5 -100 -100 -100 IGSS-100 -15	- 50 - 25 - 25 - 25 - 50	-0.7 -1.0 -1.0 -1.0 -0.5	-4.0 -5.0 -5.0 -5.0 -2.5	700 1600 5/10 @ 5 mA 5/10 @ 5 mA 5000 10000 2000 7000	0.7 7.0 7.0 40.0 7.0 40.0 5.0 40.0 0.5 10.0	35 @ 10Hz 20 @ 10kHz 20 @ 10kHz 20 @ 10kHz 30 @ 10Hz
U402 U403 U404 U405 U406	T0-71 T0-71 T0-71 T0-71 T0-71	10 10 15 20 40	10 25 25 40 80	-15 -15 -15 -15 -15	- 50 - 50 - 50 - 50 - 50	-0.5 -0.5 -0.5 -0.5 -0.5	-2.5 -2.5 -2.5 -2.5 -2.5	2000 7000 2000 7000 2000 7000 2000 7000 2000 7000	0.5 10.0 - 0.5 10.0 0.5 10.0 0.5 10.0 0.5 10.0 0.5 10.0	20 @ 10Hz 20 @ 10Hz 20 @ 10Hz 20 @ 10Hz 20 @ 10Hz 20 @ 10Hz
U421 U422 U423 U424 U425	TO-99 TO-99 TO-99 TO-99 TO-99	10 15 25 10 15	10 25 40 10 25	0.1 0.1 0.1 0.5 0.5	-60 -60 -60 -60	-0.4 -0.4 -0.4 -0.4 -0.4	-2.0 -2.0 -2.0 -3.0 -3.0	300 800 300 800 300 800 300 1000 300 1000	60-1000µA 60-1000µA 60-1000µA 60-1000µA 60-1000µA	20 @ 10Hz 20 @ 10Hz 20 @ 10Hz 20 @ 10Hz 20 @ 10Hz 20 @ 10Hz
U426	TO-99	25	40	0.5	-60	-0.4	-3.0	300 1000	60-1000μA	· 20 @ 10Hz

Differential Amplifiers — Dual Monolithic P-Channel MOSFETS (Enhancement)

Ordering Information											in the second		
	Preferred Part Number	Package	V _{GS} min/ V		BV _{OSS} min/max V	I _{DSS} max pA	l _{GSS} max pA	G _{fS} min µmho	l _{DS(}) min/ m/	máx	r _{DS(ON)} max Ω	V _{QS 1-2} max mV	
	3N165	TO-99	-2	-5	-40	-200	- 10	1500	-5.0	-30	300 -	100	
	3N166	TO-99	– 2	5	– 40	- 200	-10	1500	- 5.0	-30	300		
	3N188	. TO-99	− ·2	5	-40	-200	-200	1500	-5.0°	-30	300	100 Zener Protected	
	3N189	TO-99	-2	-5	- 40	-200	— 200	1500	- 5.0	-30	300	Zener Protected	
	3N190	TO-99	-2	-5	- 40	-200	— 200 ·	1500	- 5.0	- 30	300	100 Zener Protected	
	3N191	TO-99	2	-5	- 40	- 200	-200	1500	- 5.0	- 30	300	•	

1

Differential Amplifiers — Dual NPN Bipolar Transistors

Ordering	Information		z = z'	h _{FE} o	I _{B 1-2} @ I _C =10μA						
Preferred Part Number	Package	V _{BE 1-2} mV max	ΔV _{BE} μV/°C max	l _C = 10μA V _{CE} = 5V min	V _{CE} = 5V nA max	BV _{CEO} V min	I _{CBO} nA max	Noise dB max	f _t MHz@l _C min	C _{obo} pF max	Structure
2N4044	T0-78	. 3	3	200	5	60	.1	2	200 @ 1mA	9.8	Dielec. Isol.
2N4045	TO-78	5	10	80	25	45	.1	3	150 @ 1mA	0.8	Dielec. Isol.
2N4100	TO-78	5	5	150	10 5	55	.1	3	150 @ 1mA	0.8	Dielec. Isol.
2N4878	TO-71	3	3	200	5	60	.1	2	200 @ 1mA	0.8	Dielec. Isol.
2N4879	TO-71	5	5	. 150	10	55	.1	3	150 @ 1mA	0.8	Dielec. (sol.
2N4880	T0-71	5	10	80	25	45	.1	3 4	150 @ 1mA	0.8	Dielec. Isol.
IT120	T0-78 T0-71	2	5	200	5	45	1	2 typ.	220 @ 1mA	2	Junc. Isol.
IT120A	TO-78 TO-71	1.1	3	200	2.5	45	1 .	2 typ.	220 @ 1mA	2	June, Isol.
iT121	TO-78 TO-71	3	10	80	-25	45	1	2 typ.	180 @ 1mA	2	Junc. Isol.
IT122	T0-78 T0-71	5	20	80	25	45	1	2 typ.	180 @ 1mA	2	Junc. Isol.
IT124	Ţ0-78	5	15	1500	0.6 @	2	,1	3	100 @ 100μΑ	8.0	Junc. Isol.
					$V_{CE} = 1V$						
IT126	TO-78 TO-71	1	3	200	2,5	60	.1	1 typ.	250 @ 10mA	4	Dielec, Isol.
IT127	TO-78 TO-71	2	5	200	5	60	.1	1 typ.	250 @ 10mA	4	Dielec. Isol.
IT128	70-78 TO-71	3	10	150	10	45	.1	1 typ.	200 @ 10mA	4	Dielec, Isol.
IT129	T0-78 T0-71	5	20	100	20	45	.1	1 typ.	150 @ 10mA	. 4	Dielec. Isol.

Differential Amplifiers — Dual PNP Bipolar Transistors

Ordering (information			h _{FE} @	$I_C = 10 \mu A$,		
Preferred Part Number	Package	V _{BE 1-2} mV max	ΔV _{BE} μV/°C max	I _C = 10µA V _{CE} = 5V min	V _{CE} =5V nA max	BV _{CEO} V min	I _{CBO} nA max	Noise dB max	f _t MHz@I _C min	C _{obo} pF max	Structure
2N5117 2N5118 2N5119 IT130 IT130A	T0-78 T0-78 T0-78 T0-78 T0-71 T0-78 T0-71	3 5 5 2 1	3 5 10 5 3	100 100 50 200 200	10 15 40 5 2,5	45 45 45 45 60	.1 .1 .1 1	4 4 4 2 typ. 2 typ.	100 @ 0.5mA 100 @ 0.5mA 100 @ 0.5mA 110 @ 1mA 110 @ 1mA	.8 .8 .8 2	Dielec. Isol. Dielec. Isol. Dielec. Isol. Junc. Isol. Junc. Isol.
IT131 IT132 IT136 IT137 IT138	T0-78 T0-71 T0-78 T0-71 T0-78 T0-71 T0-78 T0-71 T0-78 T0-71	5 10 1 2 3	10 20 3 5	80 80 150 150 120	10 25 2.5 5	45 45 60 55	† 1 .1 .1	2 typ. 2 typ. 2 typ. 2 typ. 2 typ.	90 @1mA 90 @1mA 150 @10mA 150 @10mA 180 @10mA	2 2 4 4	Junc. Isol. Junc. Isol. Dielec. Isol. Dielec. Isol. Dielec. Isol.
IT139	T0-78 T0-71	5	20	70	20	– 45	.1	2 typ.	100 @ 10mA	4	Dielec. Isol.

Specialty Items

This product is a diode combination used to protect those P-channel MOSFET duals which are not diode protected. Their chief characteristic is <1 pA leakage when voltage across them is less than 5 mV. If voltage across diodes is adjusted to 0V \pm 0.1mV, leakage is less than ID-100 ID-101 0.01

VCR2N VCR3P VÇR4N

VCR5P

The VCR family consists of three terminal variable resistors where the resistance value between two of the terminals is controlled by the voltage potential applied to the third.

VCR7N VCR11N (Dual)

Note: Intersil offers the following military qualified devices:*

N-channel switches	N-channel amplifiers	P-channel switches	P-channel amplifiers	
2N4091 JAN, JANTX, JANTXV 2N4092 JAN, JANTX, JANTXV 2N4093 JAN, JANTX, JANTXV 2N4856 JAN, JANTX, JANTXV	2N3821 JAN, JANTX, JANTXV 2N3823 JAN, JANTX, JANTXV	2N5114 JAN, JANTX, JANTXV 2N5115 JAN, JANTX, JANTXV 2N5116 JAN, JANTX, JANTXV	2N2609 JAN	
2N4857 JAN, JANTX, JANTXV 2N4858 JAN, JANTX, JANTXV				

^{*}JAN processing consists of a sample Group B pulled from the production run.

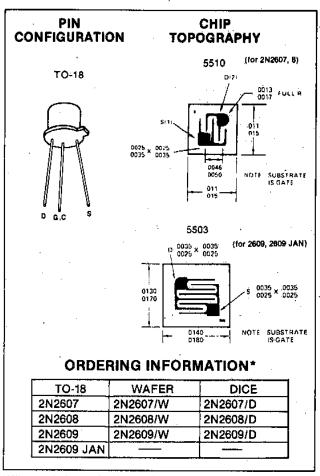
JANTX processing consists of JAN processing plus 100% electrical read and record, and 100% burn-in. JANTVX processing consists of JANTX processing plus 100% pre-cap visual and on-shore assembly.

1

DISCRETE SELECTOR GUIDE

			Recommended Part Numbers									
	Detailed Application	Important Parameters	Single N-Channel JFET	Single P-Channel JFET	Dual N-Channel JFET	Single N-Channel MOSFET	Single P-Channel MOSFET	Dual P-Channel MOSFET	Dual NPN Bipolar	Duai PNP Bipolar		
	Audio	low noise	2N4220,	2N2607	2N3958	2N4351	3N163		2N4044	IT130		
			2N3821	2N5460	1T505	3N170-1	3N164			l .		
	Buffer	low leakage, high	2N4221	2N2609	2N5905	M116	3N172		JT120	IT136		
	Differential	gain	-	2N5462	IT505	IT1750	IT1700					
	Differential	good matching & drift	–	_	2N3954	_	_ ′	3N165	IT126	2N3810		
	Fet Input Op Amp	I ann			U401							
	High Impedance	low leakage	2N4117A	TT100	2N5515 2N5905	<u> </u>				<u> </u>		
•	riigis inipedance	low leakage	2N4!I/A	J176	2N59U5 IT505							
			٠.	2N5116	U426	IT1750	UT1700]			
Amplifiers	High Frequency	high gain, low	U308	2N5118 2N5114	2N5912	2N4351	TT1700 3N163	081400	0514044	17400		
,	i ildii i reditellek	I udti daiii' ioss	0306	211,5114	Z149912	214331	311103	3N 188		IT130		
		capacitance	2N5397	J176	IT5912		3N164			IT136		
	Low Supply Voltage	low pinch-off	2N4338	2N5265	U406	3N170-1	314104	•		2N3810		
		voitage	2N3687	J177	2N3958	Q14110: 1				2140010		
	Low Noise	low noise	2N4867A	2N5116	2N5519	M116	3N172		11140	·		
	•			J176	2N5199	,,,	0,11,2		2NAOAA	IT130		
	Preamplifier	high gain	2N5397	2N5116	17550	•				TT130		
			U310	J176	U406					IT136		
•				•			. j	·	17120			
	Video	hìgh gain, low	2N4393	17100	iT5912				IT126	2N3810		
		capacitance	ITE4393		2N5912					ĺ		
	VHF	RF parameters,	U310	IT100	2N6485				· —			
Mixers			2N5397	J174		j	+					
IIIIX010	UHF	high gfs/Cfss	J310	2N5114	IT5912		. !					
	<u></u>		2N5484		2N5912							
	Commutators	Iow Crss	2N4391	2N3993-4	ľ	IT1750	IT1700					
			ITE4391	IT100-1	IT550			į	NPN Bipolar 2N4044 2N4878 1T120 1T126 2N4044 2N4878 1T120 1T126 2N4044 2N4878 1T120 1T126 2N4044 2N4878 1T120 1T126 2N4044 2N4878 1T120 1T126 2N4044 2N4878 1T120 1T126 2N4044 2N4878 1T120 1T126 2N4044 2N4878 1T120 1T126 2			
	Sample and Hold			2N5114-6			3N163	Dual P-Channel NPN Bipolar NPN Bipolar NPN Bipolar NPN				
Switches	Analog Gates	fast switching,	2N4091-3	2N5114-6	2N5912							
Switches	Ph. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2N4391-3						_			
	Digital	low ros(on)	ITE4391-3	J174-7	IT5912	3N170-1	3N164	3N188				
	Chopper	1. v	2N5432-4	IT100-1	•	ļ	3N172					
	Integrator Reset	low rps(on), high	J111-3									
	Gain Control	IDSS	J105-7	VODOD						<u> </u>		
Voltage	*·-···	high Voor-m	VCR2N	VCR3P	VODIAN							
Control Resistors	Amplitude Stability Attenuators	high VGS(off)	VCR4N VCR7N		VCR11N	-	-	-	_	_		
	Signal Clipping	low leakage	VUR/IN	 -					I FOR A A	1972.00		
	and Clamping	current	_	-		-	-	_	10100-1	IT139		
Diodes	and Clamping	Gulfelit			.							

2N2607-2N2609 2N2609 JAN P-Channel JFET


APPLICATIONS

- Low-level Choppers
- Data Switches
- Commutators

ABSOLUTE MAXIMUM RATINGS

(Ta·= 25°C unless otherwise noted)

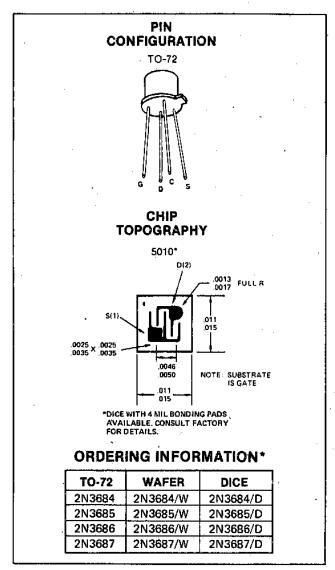
Gate-Source Voltage	V
Gate-Drain Voltage	٧
Gate Current 50 m	Α
Storage Temperature Range65°C to +200°	С
Operating Temperature Range55°C to +150°	С
Lead Temperature Soldering, 10-sec +300°	С
Power Dissipation	
Derate above 25°C 2 mW/°	С

^{*}When ordering wafer/dice refer to Appendix B-23.

	DADARICTED	2N.	2607	2N	2608	2N:	2609		Test Conditions	
	PARAMETER	Min	Max	Min	Max	Min	Max	Unit		
			3		10		30	nA	V _{GS} = 30 V, V _{DS} = 0	
IGSSR	Gate Reverse Current		3		10		30	μΑ	V _{GS} = 5 V, V _{DS} = 0, T _A = 150°	
BVGSS	Gate-Drain Breakdown Voltage	30		30		30		V	$1_{G} = 1 \mu\text{A}, \text{V}_{DS} = 0$	
V _P	Gate-Source Pinch-Off Voltage	1	4	.1	4	1	4	>	$V_{DS} = -5 V, I_{D} = -1 \mu A$	
I DSS	Drain Current at Zero Gate Voltage	-0.30	- 1.50	-0.90	-4.50	-2	-10	mA	V _{DS} =-5 V, V _{GS} =0	
g _{fs}	Small-Signal Common-Source Forward Transconductance	330		1000		2500		µmho	V _{DS} = -5 V, V _{GS} = 0, f = 1 kHz	
Ciss	Common-Source Input Capacitance		10		17		30	рF	V _{DS} = -5 V, V _{GS} = 1 V, f = 140 kHz	
			3						$V_{DS} = -5 \text{ V}, \qquad R_{G} = 10 \text{ M}\Omega$	
NF	Noise Figure				3		3	dВ	$V_{GS} = 0$, $f = 1 \text{ kHz}$ $R_G = 1 \text{ M}\Omega$	

2N3684-2N3687 N-Channel JFET

FEATURES


- Low Noise
- High Input Impedance
- Low Capacitance

APPLICATIONS

- Low Level Choppers
- Data Switches
- Multiplexers
- Low Noise Amplifiers

ABSOLUTE MAXIMUM RATINGS

(T _A = 25°C unless otherwise noted)
Gate-Source or Gate-Drain Voltage50V
Gate Current 50 mA
Storage Temperature Range65° C to +200° C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300° C
Power Dissipation
Derate above 25°C 1.7 mW/°C

^{*}When ordering wafer/dice refer to Appendix B-23.

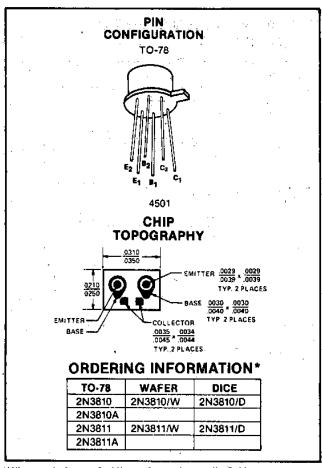
2ABAMETED		2N3684		2N3	2N3685		686	2N3	3687			
	PARAMETER		MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS	
BVGSS	Gate to Source Breakdown Voltage	-50		-50		-50		-50		1,	V _{DS} = 0, I _G = 1.0 μA	
	Pinch-Off Voltage	2.0	5,0	1,0	3.5	0.6	2.0	0.3	1.2	1	V _{DS} = 20 V, (_D = 0.001 μA	
IGSS	Total Gate Leakage Current		-0.1		-0.1	<u> </u>	-0.1		-0.1	nΑ	VGS = -30 V, VDS = 0	
	T _A = 150°C		-0.5		-0.5		-0.5		-0.5	μА		
DSS	Saturation Current, Drain-to-Source	2.5	7.5	1.0	3,0	0.4	1,2	0.1	0.5	· mA	VGS = 0, VDS = 20 V	
Y _{fs}	Forward Transadmittance	2000	3000	1500	2500	1000	2000	500	1500	μmhas		
Gos	Common Source Out- put Conductance		50		25		10		5	μmhos	V _{DS} = 20 V, V _{GS} = 0,	
Ciss	Common Source Input Capacitance		4.0		4,0		4.0		4.0	pF	f = 1 kHz	
C _{rss}	Common Source Short Circuit Reverse Transfer Capacitance		1.2		1.2		1.2		1.2	pF		
r _{DS(on)}	On Resistance		600		800	· · · · ·	1200		2400	Ohms	VDS = 0, VGS = 0	
NF	Noise Figure		0,5		0,5		0.5		0.5	dB	f = 100 Hz, R _G = 10 M Ω NBW = 6 Hz, V _{DS} = 10V V _{GS} = 0V	

2N3810/A, 2N3811/A Monolithic Dual Matched PNP Transistor

ABSOLUTE MAXIMUM RATINGS

(T_A = 25° C unless otherwise noted)

 Emitter-Base Voltage (Note 1)
 -5V


 Collector-Base or Collector-Emitter Voltage (Note 1)
 -60V

 Collector Current (Note 1)
 50 mA

 Storage Temperature Range
 -65°C to +200°C

 Operating Temperature Range
 -55°C to +150°C

 Lead Temperature (Soldering, 10 sec.)
 +300°C

ELECTRICAL CHARACTERISTICS

*When ordering wafer/dice refer to Appendix B-23.

TEST CONDITIONS: 25°C Ambient Temperature unless otherwise noted

	, ""	2N3	810/A	2N3	811/A	,	
SYMBOL	PARAMETER	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS
BVCBO	Collector-Base Breakdown Voltage	-60		-60			IC = -10 µA, IE = 0
BVCEO	Collector-Emitter Breakdown Voltage (Note 2	-60		-60) _v	Ic = -10 mA, I _B = 0
BVEBO	Emitter-Base Breakdown Voltage	-5		-5		1	I _E = -10 μA, I _C = 0
(C(off)	Collector Cutoff Current	T -	-10		-10	nA	
	T _A =+150° C		-10		-10	μА	VcB = -50V, IE = 0
te(off)	Emitter Cutoff Current	Ţ	-20	, ,	-20	nΑ	VBE = 4V,IC = 0
	,	100		225			I _C = -10μA
hre	Static Forward Current	150	450	300	900		Vcs = -5V Ic = -100µA to -1 mA
	Transfer Ratio Note 2	125		250]	I _C = 10 mA
	T _A = -55°C	75		150		1	Ic = 100 μA
VBE(sat)	Base-Emitter Saturation Voltage (Note 2)		-0.7		-0.7		VcE = -5V, IB = -10μA
ARE(sat)	Base-Emitter Saturation Voltage (Note 2)		-0.8	L	-0.8		Ic = -100 μA B = -100 μA
VCE(sat)	Collector-Emitter Saturation Voltage		-0.2		-0.2	} v	lg = -10 μA, lc = -100 μA
	Note 2		-0'.25		-0.25		la = -100 µA, lc = -1 mA
h _{ie}	Input Impedance	3	30	10	40	kΩ	VCE # -10V
hie	Forward Current Transfer Ratio	150	600	300	900		Ic = -1 mA
hre	Reverse Voltage Transfer Ratio		0,25		0.25	1	f = 1 KHz
hoe	Output Admittance	5	60	5	60	μmho	'
hte	Magnitude of small signal	1	5	1	5		Vcs = -5V Ic = -1mA, f = 100 MHz
•	current gain	1		1			$I_C = -500 \mu A$, $f = 30 MHz$

NOTES:

- 1. Per transistor.
- Pulse witdth ≤ 300 µs, duty cycle ≤ 2.0%.

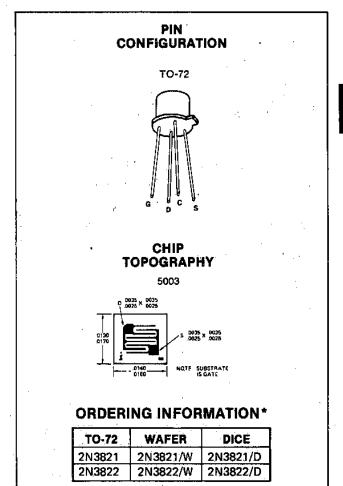
ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: 25°C Ambient Temperature unless otherwise noted

SYMBOL	PARAMETER		2N3810/A		2N3	811/A	UNITS	TEST COMPLETIONS		
			MIN	MAX	MIN.	MAX	בוואט ך	TEST CONDITIONS		
Cobo	Output Capacitance		•	4		4		Vcs = -5V,	IE = 0, f = 100 MHz	
Cibo	Input Capacitance			8		- 8	p₽	Vcs = -0.51	V. Ic = 0, f = 100 KHz	
hFE ₁	DC Current Gain Ratio		0.9	1,0	0.9	1.0			The second secon	
/ hFE2	BG Carrent Cam riatio	A devices	0.95	1.0	0.95	1.0	1	VCE = -5V.	IC = 100 μA	
VBE,-VBE2	Base-Emitter Voltage			-5		-5		1	$I_{C} = 10 \mu A \text{ to } 10 \text{mA}$	
·	Differential	A devices		-2.5		-2.5	m.V	VcE = -5V		
				-3		-3	1		Ic = 100 μA	
		A devices		-1.5		-1.5				
7. ABE1 ABE ⁵	Base-Emitter Voitage			10		10			***	
	Differential				٠ .		μV/°C Vc∈ =	VCE # -5, le	Ic = 100 μA	
	Gradient	A devices		5		5				
				7		4		Vce = -10V	, I _C = -100 μ A, R _G = 3k Ω ,	
						!		f = 100 Hz.	Noise Bandwidth = 20Hz	
				3		1.5	١.		$I_{c} = -100 \mu A, R_{G} = 3kΩ$	
						!	dB	f,= 1kHz, N	loise Bandwidth = 200 kHz	
NF .	Spot Noise Figure			2.5		1.5	aB	VCE = -10V	. Ic = -100µA, Rg = 3 k()	
							<u> </u>	f = 10 kHz,	Noise Bandwidth = 2 kHz	
				3.5		2.5			$I_{C} = -100 \mu A, R_{G} = 3k\Omega,$	
							' '	Noise Band	lwidth = 15.7 kHz (Note 3)	

NOTES

^{3 3} dB down at 10 Hz and 10 kHz.


2N3821, 2N3822 N-Channel JFET

FEATURES

- Low Capacitance
- Up to 6500 μmho Transconductance

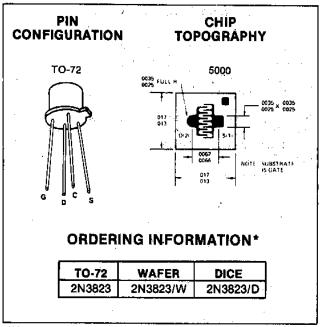
ABSOLUTE MAXIMUM RATINGS

(TA = 25°C unless otherwise noted)
Gate-Source Voltage50V
Gate-Drain Voltage50V
Gate Current 10 mA
Storage Temperature Range65°C to +200°C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300°C
Power Dissipation 300 mW
Derate above 25°C 1.7 mW/°C

^{*}When ordering wafer/dice refer to Appendix B-23.

	Darma METER		3821	2N:	3822		TEST CONDITIONS		
PARAMETER		MIN	MAX	MIN	MAX	TINU			
	Care Bases Course		-0.1		-0.1	nΑ	VGS = -30 V, VDS = 0		
!GSS	Gate Reverse Current TA = 150°C		-0.1		-0.1	μΑ	VGS30 V, VDS - 0		
BVGSS	Gate-Source Breakdown Voltage	-50		-50			IG = -1 μA, VDS = 0 -		
VGS(off)	Gate-Source Cutoff Voltage		-4		<u>-</u> -6] , [$V_{DS} = 15 V$, $I_{D} = 0.5 nA$		
-	Cara Causas Valtage	-0.5	-2			7 ° 1	VDS = 15 V, ID = 50 μA		
VGS	Gate-Source Voltage			-1	4	Ī	VDS = 15 V, ID = 200 μA	•	
IDSS	Saturation Drain Current	0.5	2.5	2	10	mΑ	V _{DS} = 15 V, V _{GS} = 0		
9fs .	Common-Source Forward Transconductance (Note 1)	1500	4500	3000	6500		<u> </u>	f = 1 kHz	
ly _{fs}	Common-Source Forward Transadmittance	1500		3000		μmho	f = 1	f = 100 MHz	
9 _{OS}	Common-Source Output Conductance (Note 1)		10		20		V _{DS} = 15 V, V _{GS} = 0	f=1kHz	
C _{iss}	Common-Source Input Capacitance		6		6	pF		f = 1 MHz	
Crss	Common-Source Reverse Transfer Capacitance		3		3	μr		1 - 1 1 1 1 2	
NF	Noise Figure		5		5	dB	V _{DS} = 15 V, V _{GS} = 0; R _{gen} = 1 meg, BW = 5 Hz	f = 10 Hz	
₹ _n	Equivalent Input Noise Voltage		200		200	_nV √Hz	V _{DS} = 15 V, V _{GS} = 0, BW = 5 Hz	1	

Note 1: These parameters are measured during a 2 msec interval 100 msec after DC power is applied.


2N3823 N-Channel JFET

FEATURES

- 1
- Low Noise
- Low Capacitance
- Transductance up to 6500 μmho

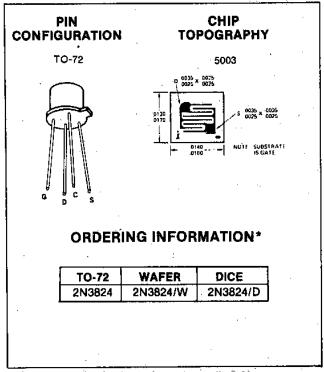
ABSOLUTE MAXIMUM RATINGS

(I A = 25° C unless otherwise noted)
Gate-Source or Gate-Drain Voltage30V
Gate Current 10 mA
Storage Temperature Range65°C to +200°C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300°C
Power Dissipation
Derate above 25°C 1.7 mW/°C

^{*}When ordering wafer/dice refer to Appendix B-23.

	PARAMETER	MIN	MAX	UNIT	TEST CONDITI	ONS
-			-0.5	пA	$V_{GS} = -20V, V_{DS} = 0$	
loss	Gate Reverse Current TA = 150°C		-0.5	μΑ	VGS20V, VDS = 0	•
BVGSS	Gate-Source Breakdown Voltage	-30			$I_{G} = 1 \mu A, V_{DS} = 0$	
VGS(off)	Gate-Source Cutoff Voltage		-8	1 v	V _{DS} = 15V, I _D = 0.5 nA	MII 491_1
Vgs	Gate-Source Voltage	-1.0	-7.5	1	V _{DS} = 15V, I _D = 400 μA	
loss	Saturation Drain Current	4	20	mA	V _{DS} = 15V, V _{GS} = 0	
gfs	Common-Source Forward Transconductance	3,500	6,500			f = 1 kHz (Note 1)
[Y _{fs}]	Common-Source Forward Transadmittance	3,200				f = 100 MHz
gos	Common-Source Output Transconductance		35	μmho		f = 1 kHz (Note 1)
giss	Common-Source Input Conductance		800		V _{DS} = 15V, V _{GS} = 0	
goss	Cornmon-Source Output Conductance		200			f = 200 MHz
Ciss	Common-Source Input Capacitance		6			
Crss	Common-Source Reverse Transfer Capacitance		2	pF	-	f = 1 MHz
NF	Noise Figure		2.5	dB	$V_{DS} = 15V, V_{GS} = 0$ RG = 1 k Ω	f = 100 MHz

NOTE 1: These parameters are measured during a 2 msec interval 100 msec after DC power is applied.



2N3824 N-Channel JFET

FEATURES

- r_{ds} < 250 ohms
- 1_{D(off)} < 0.1 nA

ABSOLUTE MAXIMUM RATINGS

*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: 25°C unless otherwise noted

	PARAMETER		MIN	MAX	UNIT	TEST CONDITIONS		
-				<i>-</i> 0.1	nΑ			
lgss.	Gate Reverse Current	T _A = 150° C		-0.1	μA	V _{GS} = -30V, V _{DS} = 0		
BVgss	Gate-Source Breakdown Voltage		-50		V	$I_{G} = 1 \ \mu A, \ V_{DS} = 0$		
				0.1	nΑ	V _{DS} = 15V, V _{GS} = -8V		
ID(off)	Drain Cutoff Current	T _A = 150° C		0.1	μА	7 VDS == 15V, VGS = -8V		
Tds(on)	Drain-Source ON Resistance			250	Ω	$V_{GS} = 0V, I_D = 0$ $f = 1 \text{ kHz}$		
Ciss	Common-Source Input Capacitano	се		6	pF	$V_{DS} = 15V, V_{GS} = 0$ $f = 1 MHz$		
Crss] "	V _{GS} = -8V, V _{DS} = 0		

2N3921, 2N3922 Monolithic Dual N-Channel JFET

1

FEATURES

- Low Drain Current
- High Output Impedance
- Matched V_{GS} , ΔV_{GS} , and g_{fS}

ABSOLUTE MAXIMUM RATINGS

(T _A = 25°C unless otherwise noted)
Gate-Source or Gate-Drain Voltage (Note 1)50V
Gate Current (Note 1) 50 mA
Storage Temperature Range65° C to +200° C
Operating Temperature Range55°C to +150°C
Load Temperature (Soldering, 10 sec.) +300°C
Power Dissipation 300 mW
Derate above 25°C 1.7 mW/°C

PIN CHIP CONFIGURATION TOPOGRAPHY TQ-71 6037 ALL SOND PADS ARE 4 x 4 MIL. ORDERING INFORMATION* TO-71 WAFER DICE 2N3921 2N3921/W 2N3921/D 2N3922 2N3922/W 2N3922/D

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: (25°C unless otherwise noted)

*When ordering wafer/dice refer to App	endix B-23.
--	-------------

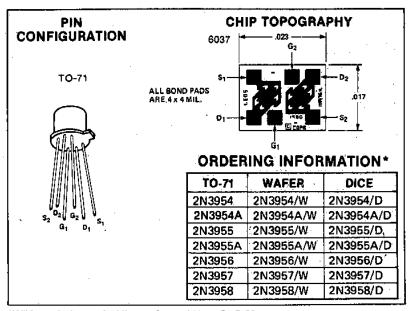
	PARAMETER	MIN	MAX	UNIT	TEST CONDITIONS			
			-1	nA				
IGSSR	Gate Reverse Current T _A = 100°C		-1	μА	$V_{GS} = -30V$, $V_{DS} = 0$			
BVpgo	Drain-Gate Breakdown Voltage	50			$I_D = 1 \mu A$, $I_S = 0$			
VGS(off)	Gate-Source Cutoff Voltage		-3	l v l	V _{DS} = 10V, I _D = 1 nA			
Vgs	Gate-Source Voltage	-0.2	-2.7	1	$V_{DS} = 10V, I_{D} = 100\mu A$			
			-250	рА	$V_{DG} = 10V, I_D = 700\mu A$			
Gate Operating Curre	Gate Operating Current T _A = 100°C		-25	пА				
IDSS	Saturation Drain Current (Note 1)	1	10	mΑ	V _{DS} = 10V, V _{GS} = 0			
Qfs	Common-Source Forward Transconductance (Note 2)	1500	7500					
Gos	Common-Source Output Conductance		35	μmho				
Ciss	Common-Source Input Capacitance		18		$V_{DS} = 10V$, $V_{GS} = 0$ $f = 1 \text{ kHz}$			
Crss	Common-Source Reverse Transfer Capacitance		6	pF				
gfs .	Common-Source Forward Transconductance	1500		<u> </u>				
goss Common-Source Output Conductance			20	- μmho	$V_{DG} = 10V, I_D = 700 \mu\text{A} f = 1 \text{kHz}$			
NF	Spot Noise Figure		2	dB	V _{DS} = 10V, V _{GS} = 0			

		2N:	3921	2N3	922	•		
MATCH	NG CHARACTERISTICS	MIN	MAX	MIN	MAX	TINU	TEST CON	IDITIONS .
VGS1-VGS2	Differential Gate-Source Voltage		5	· ·	5	mV		-
Δ VGS1-VGS2 ΔΤ	Gate-Source Differential Voltage Change with Temperature		10		25	μV/°C		T _A = 0°C T _B = 100°C
gfs2	Transconductance Ratio	0.95	1.0	0.95	1.0		בו – יטו μΑ	f = 1 kHz

NOTES: 1. Per transistor.

2. Pulse test duration = 2 ms.

2N3954-2N3958 Monolithic Dual N-Channel JFET


FEATURES

- Low Offset and Drift
- Low Capacitance
- Low Noise
- Superior Tracking Ability
- Low Output Conductance

ABSOLUTE MAXIMUM RATINGS

(T_A = 25° C unless otherwise noted) Gate-Source or Gate-Drain Breakdown Voltage (Note 1) 50V Any Pin to Case Voltage 100V Gate Current (Note 1) 50 mA Storage Temperature .. -65°C to +200°C Operating Temperature -55°C to +150°C Lead Temperature (Soldering, 10 sec.) #300° © BOTH ONE SIDE SIDES Power Dissipation 250 mW 500 mW

Derate above 25°C 2.8 mW/°C 4.3 mW/°C

*When ordering water/dice refer to Appendix B-23.

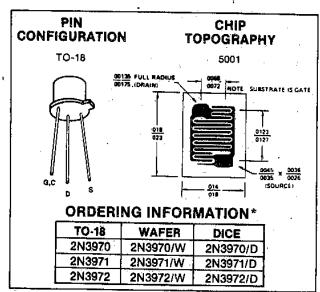
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

PA	RAMETER		3954	2N39			955	-	955A		3956		957		3958	UNIT	TEST CON	IDITIONS
		MIN-	MAX	MIN	MAX	MIN	MAX	MIN	MAX-	MIN	MAX -100	MIN,	MAX -100	MIN	-100	pΑ	VGS = -30 V.	<u> </u>
I GSSR	Gate Reverse Current T _A = 125°C		-100 -500		-100 -500		-100 -500		~100°		-500	-	-500		-500	nA	V _{DS} = 0	•
B∀GSS	Gate/Source Breakdown Voltage	-50	~500	-50	-500	-50		-50	-300	-50	-500	-50	-300	-50		.,,,	V _{DS} = 0 I _G = −1 μA	
VGS(off)	Gate-Source Cutoff Voltage	-1.0	-4.5	-1.0	-4.5	-1.0	-4.5	-1.0	4.5	-1.0	-4.5	~1.0°	-4.5	-1.0	-4.5	į	V _{DS} = 20 V, (p = 1 nA	
VGS(f)	Gate-Source Forward Voltage		2.0		2.0	. :	2.0		2.0		2.0		2.0		2.0	,	VDS = 0 IG = 1 mA	
VGS	Gate-Source Voltage	-0.5	-4.2 -4.0	-0.5	-4.2 -4.0	<i>-</i> 0.5	-4.2 -4.0	0.4	-4.2 -4.0	-0.5	-4.2 -4.0	-0.5	-4.2 4.0	-D.5	-4.2 -4.0	·	V _{DS} = 20 V	ID = 50 μA ID = 200 μA
	Gate Operating Current	-0.5	-50	-0.5	-50	-0.5	-50		-50	-0.0	-50	-0.5	-50		-50	рA	V _{DS} = 20 V,	1.0
lG	T _△ = 125°C		-250		-250		-250		-250		-250		-250		-250	nA	In = 200.µA	
DSS	Saturation Drain Current	0.5	5.0	0.5	5.0	0,5	5.0.	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	mA	V _{DS} = 20 V, V _{GS} = b :::	
	Common Source Forward	1000	3000	1000	3000	1000	3000	1000	3000,	1000	3000	1000	3000	1000	3000			f≖1kHz
Bfs	Transconductance	1000		1000		1000		1000		1000		1000		1000		:μmho	·	f = 200 MHz
908	Common-Source Output Conductance		35		35		35		36.		35	,	35	. :	35		V _{DS} = 20 V,	f = 1 kH2
Ciss	Common-Source-Input Capacitance		4.0		4,0		4.0		4.0		4,0		4.0		4.0		VGS = 0	,
C _{TSS}	Common Source Reverse Transfer Capacitance		1,2		1.2		1.2		1,2		1.2	·	1.2		1.2	p₽		f = 1 MHz
C _{dgo}	Drain-Gate Capacitance		1.5		1.5		1.5		1.5		1.5		1.5		1.5		VDG = 10 V, IS = 0	
NF	Common-Source Spot Noise Figure		0,5		0.5		0.5		0,5		0.5		0,5		0.5	d₿	V _{DS} ≈ 20 V V _{GS} = 0 RG = 10 MΩ	f = 100 Hz
IG1=IG2	Differential Gate Current		10		10		10		10		10		10		10	пА	V _{DS} = 20 V, I _D = 200 μA	T = 125°C
IDSS1/IDSS2	Drain Saturation Current Ratio	0.95	1.0	0:95	1.0	0.95	1.0	0.95	1.0	0.95	1:0	:0.90	1.0	0.85	1.0		V _{DS} = 20 V V _{GS} = 0	
VGS1-VGS2	Differential Gate-Source Voltage		5.0		5.0		10.0		5,0		-15		20		25			
AVGS1-VGS2	Gate-Source Differential		0.8		0.4		2.0		1.2		4.0		6.0		8,0	m۷	V _{DS} = 20 V,	T = 25°C to -55°C
ΔΤ	Voltage Change with Temperature		1.0		0.5		2.5		1.5		5.0		7.5		10.0	1	ID = 200 μA	T = 25°C to 125°C
9fs1/9fs2	Transconductance Ratio	0.97	1,0	0,97	1.0	0.97	1.0	0.95	1,0	0,95	1.0	0.90	1.0	0.85	1.0]'	f = 1 kHz

NOTE 1: Per transistor.

2N3970-2N3972 N-Channel JFET

FEATURES


- 1
- Low rDS(on)
- I_{D(off)} < 250 pA
- Fast Switching

ABSOLUTE MAXIMUM RATINGS

(TA = 25°C unless otherwise noted)	
Gate-Source or Gate-Drain Voltage	40V
Gate Current	50 mA
Storage Temperature Range65°C to	o +200° C
Operating Temperature Range55° C to	o +150° C.
Lead Temperature (Soldering, 10 sec.)	±300° C
Power Dissipaton	1.8W
Derate above 25°C 1	0 mW/°C

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: 25°C unless otherwise noted

*When ordering wafer/dice refer to Appendix B-23.

. -		2N	3970	2N:	3971	2N:	3972		
	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
BVGSS	Gate Reverse Breakdown Voltage	-40		-40		-40		V	$I_{G} = -1\mu A$, $V_{DS} = 0$
logo	Drain Reverse Current		250		250	· · · · ·	250	pΑ	
	T _A = 150°C		500		500		500	nA	V _{DG} = 20V, I _S = 0
ID(off)	Drain Cutoff Current		250		250	1	250	pΑ	
	T _A = 150°C		500		500		500	nA	Vpg = 20V, Vgs = -12V
VGS(off)	Gate-Source Cutoff Voltage	-4	-10	~2	-5	-0.5	-3	V	V _{DS} = 20V, I _D = 1 nA
ldss	Saturation Drain Current (Pulse width 300µs, duty cycle ≤ 3%)	50	150	25	75	5.	30	mA	V _{DS} = 20V, V _{GS} = 0
					-		2		I _D = 5 mA
VDS(on).	Drain-Source ON Voltage				1,5			v	V _{GS} = 0 I _D = 10 mA
			1		,				I _D = 20 mA
DS(on)	Static Drain-Source ON Resistance		30		60		100		Vgs = 0, Ip = 1 mA
ds(on)	Drain-Source ON Resistance		30		60		100	Ω	$V_{GS} = 0$, $I_D = 0$ $f = 1 \text{ kH}$
Ciss	Common-Source Input Capacitance	-	25		25		25		$V_{DS} = 20V, V_{GS} = 0$
Crss	Common-Source Reverse Transfer Capacitance		6		6		6	рF	$V_{DS} = 0$, $V_{GS} = -12V$ $f = 1 MHz$
d	Turn-On Delay Time		10		15		40		$V_{DD} = 10V, V_{GS(on)} = 0$
	Rise Time		10	-	15		40	ns	I _{D(on)} V _{GS(off)} R _L 2N3970 20 mA -10V 450Ω
off	Turn-Off Time		30		60		100	.]	2N3970 20 mA

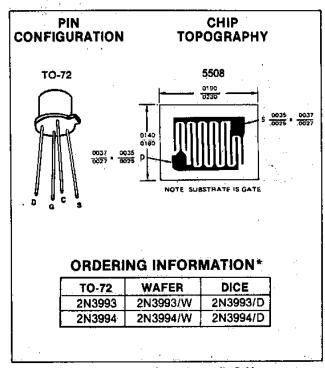
INPUT PULSE
RISE TIME 0.25 ns
FALL TIME 0.75 ns
PULSE WIDTH 200 ns
PULSE RATE 550 pps

SAMPLING SCOPE RISE TIME 0.4 ns INPUT RESISTANCE 10 M INPUT CAPACITANCE 1.5 pF

FEATURES

Low r_{DS(on)}

 High Y_{fs}/C_{iss} Ratio (High-Frequency Figureof-Merit)


APPLICATIONS

Used in high-speed commutator and chopper applications. Also ideal for "Virtual Gnd" switching; needs no ext. translator circuit to switch ± 10 VAC. Can be driven direct from T^2L or CMOS logic.

ABSOLUTE MAXIMUM RATINGS

(T _A = 25°C unless otherwise noted)	
Drain-Gate Voltage25V	1
Drain-Source Voltage25V	
Continuous Forward Gate Current10 mA	
Storage Temperature Range65°C to +200°C	,
Operating Temperature Range55°C to +150°C	
Lead Temperature (Soldering, 10 sec.) +300°C	
Power Dissipation 300 mW	,
Derate above 25° C	;

2N3993, 2N3994 P-Channel JFET

^{*}When ordering water/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS @ 25°C free-air temperature (unless otherwise noted)

0)/14001	DADAMETED	2N3	993	2N3	3994	UNIT	TEST CONDITIONS (Note:	
SYMBOL	PARAMETER	MIN	MAX	MIN	MAX	UNIT	TEST CONDIT	TONS (Hota o)
BVGSS	Gate-Source Breakdown Voltage	25		25		ν.	$I_G = 1 \mu A$,	V _{DS} = 0
		_	-1.2		-1.2	nA	$V_{DG} = -15 V$	I _s = 0
IDGO	Drain Reverse Current		-1.2		-1.2	μА	V _{DG} = -15 V,	T _A = 1 <u>50°C</u>
IDSS	Zero-Gate-Voltage Drain Current	-10		-2		mA	V _{DS} = -10 V,	VGS = 0, (See Note 1)
					-1,2	nA	$V_{DS} = -10 V$,	V _{GS} = 6 V
		· .			-1	μА	$V_{DS} = -10 V$,	VGS = 6 V, T _A = 150°C
ID(off)	Drain Cutoff Current		-1.2			nΑ	$V_{DS} = -10 V$,	VGS = 10 V
			-1			μА	$V_{DS} = -10 V$,	V _{GS} = 10 V, T _A = 150°C
V _{GS(off)}	Gate-Source Voltage	4	9.5	1	5.5	V	V _{DS} = -10 V,	I _D = -1 μA
rds(on)	Small-Signal Drain-Source On-State Resistance		150		300	Ω	VGS = 0, f = 1 kHz	ID = 0,
lyfsl	Small-Signal Common-Source Forward Transfer Admittance	6	12	4	10	mmho	V _{DS} = -10 V, f = 1 kHz,	V _{GS} = 0, (See Note 1)
Ciss	Common-Source Short-Circuit Input Capacitance		16		16	рF	V _{DS} = ~10 V, f = 1 MHz,	(See Note 2)
	Common-Source Short-Circuit				5	рF	V _{DS} = 0, f = 1 MHz	V _{GS} = 6 V,
C _{rss}	Reverse Transfer Capacitance		4.5			pF	V _{DS} = 0, f = 1 MHz	V _{GS} = 10 V,

NOTES: 1. These parameters must be measured using pulse techniques. t_p = 100 ms, duty cycle ≤ 10%.

- 2. This parameter must be measured with bias voltage applied for less than 5 seconds to avoid overheating.
- 3. The case should be connected to the source for all measurements.

2N4044, 2N4045, 2N4100, 2N4878, 2N4879, 2N4880 Dielectrically Isolated Dual NPN Transistor

1

FEATURES

- High Gain at Low Current
- Low Output Capacitance
- Good h_{FE} Match
- Tight V_{BE} Tracking
- Dielectrically Isolated Matched Pairs for Differential Amplifiers.

ABSOLUTE MAXIMUM RATINGS

(TA = 25° C unless otherwise noted)

Collector-Base or Collector-Emitter Voltage (Note 1)

2N4044, 2N4878 60V

2N4100, 2N4879 55V

2N4045, 2N4880 45V

Collector-Collector Voltage 100V

Emitter-Base Voltage (Note 2) 7V

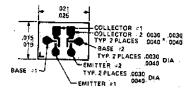
Collector Current (Note 1) 10 mA

Storage Temperature Range -65° C to +200° C

Operating Temperature Range -55° C to +150° C

Lead Temperature (Soldering, 10 sec.) +300° C

Lead Temperat	ure (Solde	ring, 10 sec	55 C .)`	+300°C
)-71		-78
Power	ONE	BOTH SIDES	ONE SIDE	BOTH SIDES
Dissipation Derate	•	500 mW	400 mW	750 mW
above 25° (mW/°C)		2.9	2.3	4.3


PIN CONFIGURATION

TO-71 TO-78

CHIP TOPOGRAPHY

4000

ORDERING INFORMATION*

TO-78	TO-71	WAFER	DICE
2N4044	2N4878	2N4044/W	2N4044/D
2N4045	2N4879	2N4045/W	2N4045/D
2N4100	2N4880	2N4100/W	2N4100/D

^{*}When ordering wafer/dice refer to Appendix B-23.

. *	PARAMETER		4044 4878	2N4100 2N4879		2N4045 2N4880		UNIT	TEST CONDITIONS	
		MIN	MAX	MIN	MAX	MIN	MAX		120. 00/12/1/10/18	
hFE 1	DC Current Gain	200	600	150	600	80	800		I _C = 10 μA, V _{CE} = 5V	
	·	225		175		100			IC = 1.0 mA, VCE = 5 V	
	T _A = -55°C	75		50		30		v	IC = 10 μA, V _{CE} = 5 V	
VBE(on)	Emitter-Base On Voltage		0.7		0.7	,	0.7	, ,	I IC - 10 tox' ACE = 8 A	
VCE(sat)	Collector Saturation Voltage		0.35		0.35		0.35		lc = 1.0 mA, l _B = 0.1 mA	
ТСВО	Collector Cutoff Current		0.1	-	0.1		0.1*	nA	IE = 0, V _{CB} = 45 V, 30 V	
	T _A = 150°C	7.	0.1		0.1		0.1*	μΑ	IE STACE HAD A 20 A	
IEBO	Emitter Cutoff Current	· ·	0.1		0.1		0.1	nA	I _C = 0, V _{EB} = 5 V	
Cobo	Output Capacitance		8.0		8.0		0.8	ρF	IE = 0, V _{CB} = 5 V	

2N4044, 2N4045, 2N4100, 2N4878, 2N4879, 2N4880 **BINTERSIL**

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

	PARAMETER	2N4 2N4	044 878	2N4 2N4	100 879		4045 4880	UNIT	, TEST CONDITIONS	
· · · ·	· · · · · · · · · · · · · · · · · · ·	MIN	MAX	MIN	MAX	MIN	MAX			
C _{te}	Emitter Transition Capacitance		1		1		1	pF	I _C = 0, V _{EB} = 0.5V	
C _{C1} , C ₂	Collector to Collector Capacitance		0.8		0.8		0.8	pF.	V _{CC} = 0	
I _{C1} , _{C2}	Collector to Collector Leakage Current		5	, .	5		5	pА	V _{CC} = ±100V	
V _{CEO(sust)}	Collector to Emitter Sustaining Voltage	60		55		45		٧	I _C = 1mA, I _B = 0	
ft.	Current Gain Bandwidth Product	200		150		150		MHz	IC = 1mA, V _{CE} = 10V	
ft	Current Gain Bandwidth Product	20		15		15		MHz	I _C = 10μA, V _{CE} = 10V	
NF	Narrow Band Noise Figure		2		3		3	dB	$I_C = 10\mu A, V_{CE} = 5V$ $f = 1kHz$ $R_G = 10 \text{ kohms}$ $BW = 200 \text{ Hz}$	
BV _{CBO}	Collector Base Breakdown Voltage	60		55		45		٧	$I_{C} = 10\mu A_{i} I_{E} = 0$	
BV _{EBO}	Emitter Base Breakdown Voltage	7		7		7		٧	$I_{E} = 10\mu A, I_{C} = 0$	

MATCHING CHARACTERISTICS (25°C unless otherwise noted)

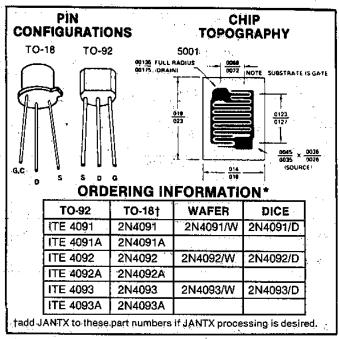
h _{FE1} /h _{FE2}	DC Current Gain Ratio (Note 3)	0.9	1	0.85	1	0.8	1		I _C = 10µA to 1mA, V _{CE} = 5V
VBE1-VBE2	Base Emitter Voltage Differential		3		5	.:	5	m۷	I _C = 10μA, V _{CE} = 5V
I _{B1} -I _{B2}	Base Current Differential		5		10		25	пА	$I_{C}=10\mu\text{A},V_{CE}=5\text{V}$
∆(V _{BE1} -V _{BE2}) /∆T	Base Emitter Voltage Differential Change with Temperature		3		5		. 10	μV/°C	$I_{C} = 10\mu A$, $V_{CE} = 5V$ $T_{A} = -55^{\circ}C$ to $+125^{\circ}C$
∆(i _{Β1} -i _{Β2}) /ΔΤ	Base Current Differential Change with Temperature		0.3		0.5		1	nA/°C	

SMALL SIGNAL CHARACTERISTICS

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PARAMETER	TYPICAL UNIT TEST CONDITION	TEST CONDITIONS		
h_{fb} Voltage Feedback Ratio 43 x 10 ⁻³ h_{fe} Small Signal Current Gain 250 h_{ob} Output Conductance 60 μmhos h_{fe} Input Resistance 9.6 k ohms Ic = 1mA, Vce =	input Resistance	28 ohms to the sy	1 4-4 4 64		
h _{ob} Output Conductance 60 μmhos h _{ie} Input Resistance 9.6 k ohms Ic = 1mA, Vce =	Voltage Feedback Ratio	43 x 10-3 IC = 1MA, VCB = 5V	20		
hie Input Resistance 9.6 k ohms Ic = 1mA, Vce =	Small Signal Current Gain	250			
	Output Conductance	60 μmhos			
h _{re} Voltage Feedback Ratio 42 x 10 ⁻³	Input Resistance	9.6 k ohms Ic = 1mA, Vce = 5V			
	Voltage Feedback Ratio	42 x 10 −3			
h _{Oe} Output Conductance 12 μmhos	Output Conductance	12 μmhos			

NOTES:

- 1. Per transistor.
- 2. The reverse base-emitter voltage must never exceed 7.0 volts and the reverse base-emitter current must never exceed 10 µamps.
- 3. The lowest of two $h_{\rm FE}$ readings is taken as $h_{\rm FE_4}$ for purposes of this ratio.



ITE4091-ITE4093 2N4091-2N4093, JANTX* **N-Channel JFET**

- Low rDS(on)
 ID(OFF) < 100 pA (JAN TX Types)
 Fast Switching

ABSOLUTE MAXIMUM RATINGS

COOLO : E MINISTER HALL HAGO
(T _A = 25°C unless otherwise noted)
Gate-Source or Gate-Drain Voltage40V
Gate Current
Storage Temperature Range65°C to +200°C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300°C
TO-18 TO-92
Power Dissipation
Derate above 25°C 17 mW/°C 3.0 mW/°C

*When ordering wafer/dice refer to Appendix B-23.

4		2N/IT	E 4091	2N/IT	E 4092	2N/ITI	E 4093			
	PARAMETER	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Test Conditions	
BVGSS	Gate-Source Breakdown Voltage	-40		-40		-40		٧	$I_{G} = -1 \mu A, V_{DS} = 0$	
	Drain Reverse Current		200		200		200	рA		
Ipgo	(Not JANTX Specified) TA = 150°C		400		400		400	nΑ	V _{GO} = -20V, I _S = 0	
Ţ.	Gate Reverse Current		-100	: :	-100		-100	pΑ		
lass	(JANTX, ITE devices only); T _A = 150° C		-200		-200	33	-200	nΑ	V _{GS} = -20V, V _{DS} = 0	
		'	100		100		100		V _{DS} = 20V V _{GS} = -12V(4091)	
Jo(OFF),	JANTX; TA = 25° C		200		200		200	рA	VGS = -8V(4092)	
	•		,			·		·	$V_{GS} = -6V(4093)$	
	Drain Cutoff Current		200		200		200		1	
•	JANTX, TA = 150°C		400		400		400	nΑ		
VP	Gate-Source Pinch-Off Voltage	5	-10	-2	-7	-1	-5	V	V _{DS} = 20V, I _D = 1 nA V _{DS} = 20V, V _{GS} = 0, Pulse Test Duraton = 2 ms	
Ioss	Drain Current at Zero Gate Voltge	30		15		8		mA		
' Î							0.2	7	Ip = 2.5 mA	
VDS(ON)	Drain-Source ON Voltage			700	0.2			V	Vgs = 0 ID = 4 mA	
			0.2						I _D = 6.6 mA	
fDS(on)	Static Drain-Source ON Resistance.		. 30	·	50		80		Vgs = 0, Ip = 1, mA	
řds(on)	Static Drain Source ON Resistance		30		. 50		80	Ω	Vgs = 0, 10 = 0, f = 1 kHz	
Ciss	Common-Source input Capacitance		16	٠	16		16			
	JANTX Only	Ì	. 5		5.		5	рF	V _{DS} = 20V, V _{GS} = 0, f = 1 MHz	
Crss	Common-Source Reverse Transfer Capacitance		.5		5 -		5		Vps = 0, Vgs = -20V, f = 1 MHz	
td(ON)	Turn-ON Delay Time		15	400 (200	15		50		V _{DD} ≈ 3V, V _{GS(ON)} = 0	
, t _r	Rise Time		10		20		40	กร	lo(en) VGS(etf) R) 4091 5.6 mA -12V 4251)	
toff	Turn-OFF Time		40		60		80		4092 4 mA -8V 700Ω 4093 2.5 mA -6V 1120Ω	

@||Niters||L 2N4044, 2N4045, 2N4100, 2N4878, 2N4879, 2N4880 **Dielectrically Isolated Dual NPN Transistor**

FEATURES

- High Gain at Low Current
- Low Output Capacitance
- Good h_{FE} Match
- Tight V_{BE} Tracking
- Dielectrically Isolated Matched Pairs for Differential Amplifiers.

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

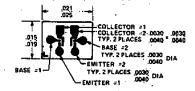
Collector-Base or Collector-Emitter Voltage (Note 1) 2N4044, 2N4878 2N4100, 2N4879

Collector-Collector Voltage 100V Emitter-Base Voltage (Note 2) 7V Collector Current (Note 1) 10 mA Storage Temperature Range -65°C to +200°C

Operating Temperature Range -55°C to +150°C Lead Temperature (Soldering, 10 sec.) +300°C

TO-78 ONE BOTH ONE **BOTH** SIDE SIDES SIDE SIDES Power Dissipation .. 300 mW 500 mW 400 mW 750 mW

Derate above 25°C


(mW/°C) 1.7 2.3 4.3

PIN CONFIGURATION

TO-71

CHIP

ORDERING INFORMATION

TO-78	TO-71	WAFER	DICE
2N4044	2N4878	2N4044/W	2N4044/D
2N4045	2N4879	2N4045/W	2N4045/D
2N4100	2N4880	2N4100/W	2N4100/D

^{*}When ordering wafer/dice refer to Appendix B-23.

PARAMETER			2N4044 2N4878		2N4100 2N4879		2N4045 2N4880		TEST CONDITIONS	
		MIN	MAX	MIN	MAX	MIN	MAX	1.5		
hFE	DC Current Gain	200	600	150	600	80	800		I _C = 10 μA, V _{CE} = 5V	
		225		175		100			IC = 1.0 mA, VCE = 5 V	
	T _A = -55°C	75		50		30		v	IC = 10 μA, VCE = 5 V	
VBE(on)	Emitter-Base On Voltage		0.7		0.7		0.7			
V _{CE(sat)}	Collector Saturation Volt	age	0.35		0.35		0.35		IC = 1.0 mA, IB = 0.1 mA	
Ісво	Collector Cutoff Current		0.1		0.1		0.1*	пА	IE = 0, VCB = 45 V, 30 V*	
	T _A = 150°C		0.1		0.1		0.1*	μΑ		
EBO	Emitter Cutoff Current		0.1		0.1		0.1	nA	IC = 0, VEB = 5 V	
Cobo	Output Capacitance		0.8		8.0	-	0.8	pF	IE = 0, VCB = 5 V	

ELECTRICAL CHARACTERISTICS (25 °C unless otherwise noted)

	PARAMETER		1044 1878	2N4 2N4	100 1879		1045 1880	UNIT	TEST CONDITIONS
	The state of the s	MIN	MAX	MIN	MAX	MIN	MAX	1	
Cie	Emitter Transition Capacitance	. A	1		1		1	pF	I _C = 0, V _{EB} = 0.5V
C _{C1, C2}	Collector to Collector Capacitance		0.8		0.8		8.0	pF	V _{CC} = 0
I _{C1} , C ₂ .	Collector to Collector Leakage Current		5		5		5	pА	V _{CC} = ±100V
V _{CEO(sust)}	Collector to Emitter Sustaining Voltage	60		55		45		ν.	I _C = 1mA, I _B = 0 /
ft	Current Gain Bandwidth Product	200		150	,	150	:	MHz	I _C = 1mA, V _{CE} = 10V
ft	Current Gain Bandwidth Product	20		15		15			· · · · · · · · · · · · · · · · · · ·
NF	Narrow Band Noise Figure		2	;	3		3	dB	$I_C = 10\mu A$, $V_{CE} = 5V$ $f = 1kHz$ $R_G = 10$ kohms $BW = 200$ Hz
BV _{CBO}	Collector Base Breakdown Voltage	60		55	,	45		v	$I_{C} = 10\mu A, I_{E} = 0$
BV _{EBO}	Emitter Base Breakdown Voltage	7		7		. 7		٧	I _{E.} = 10μA, I _{C.} = 0

MATCHING CHARACTERISTICS (25°C unless otherwise noted)

	, , , , , , , , , , , , , , , , , , , ,									
n _{FE1} /h _{FE2}	DC Current Gain Ratio (Note 3)	0.9	1	0.85	1 /	0.8	1		I _C = 10μA to 1mA, V _{CE} = 5V	
V _{BE1} -V _{BE2}	Base Emitter Voltage Differential		3		5ŗ		5	mV	$I_C = 10\mu A$, $V_{CE} = 5V$	
_{B1} - _{B2}	Base Current Differential	ν"	5		10		25	пА	I _C = 10μA, V _{CE} = 5V	
Δ(V _{BE1} -V _{BE2}) /ΔΤ	Base Emitter Voltage Differential Change with Temperature		3	· .	5	-	10	μV/°C	$I_C = 10\mu A$, $V_{CE} = 5V$ $T_A = -55$ °C to +125°C	
Δ(l _{B1} -l _{B2}) /ΔΤ	Base Current Differential Change with Temperature		0.3		0.5		1	nA/°C	,	

SMALL SIGNAL CHARACTERISTICS

	PARAMETER	TYPICAL VALUE	UNIT	TEST CONDITIONS		
h _{lb}	Input Resistance	28	ohms			
- h _{rb}	Voltage Feedback Ratio	43	x 10 -3	I _C = 1mA, V _{CB} = 5V		
h _{fe}	Small Signal Current Gain	250	•			
h _{ob}	Output Conductance	60	μmhos	-		
h _{le}	Input Resistance	9.6	k ohms	Ic = 1mA, VcE = 5V		
h _{re}	Voltage Feedback Ratio	42	x 10 −3	•		
h _{oe}	Output Conductance	12	μmhos			

NOTES:

^{1.} Per transistor.

^{2.} The reverse base-emitter voltage must never exceed 7.0 volts and the reverse base-emitter current must never exceed 10 µamps.

^{3.} The lowest of two h_{FE} readings is taken as h_{FE_1} for purposes of this ratio.

2N4117-19, 2N4117A-19A N-Channel JFET

FEATURES

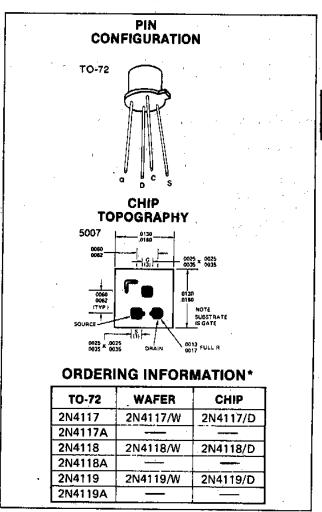
- Low Leakage
- Low Capacitance

ABSOLUTE MAXIMUM RATINGS

 (TA = 25°C unless otherwise noted)

 Gate-Source or Gate-Drain Voltage
 -40V

 Gate Current
 50 mA


 Storage Temperature Range
 -65°C to +200°C

 Operating Temperature Range
 -55°C to +150°C

 Lead Temperature (Soldering, 10 sec.)
 +300°C

 Power Dissipation
 300 mW

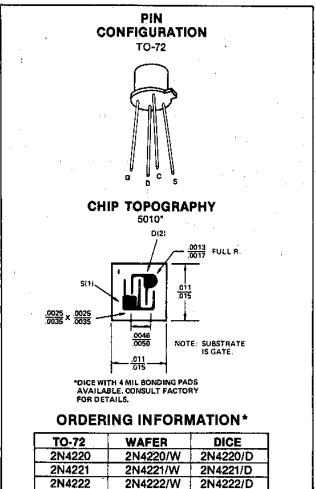
 Derate above 25°C
 1.7 mW/°c

*When ordering water/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

	PARAM	ETER		1	4117 117A		4118 118A		4119 119A	דומט	TEST CONDITIONS
	<u> </u>			MIN	MAX	MIN	MAX	MIN	MAX	7	
BVGSS	Gate-So	urce Breakdow	n Voltagë	-40		-40		-40		V	$I_G = -1 \mu A$, $V_{DS} = 0$
	Gate Be	verse Current			10		-10		-10	- 4	
IGSSR	- Gaio III	voise Guilleill	A devices		-1		1		-1	pA .	VGS = -20 V, VDS = (
-dash		TA = +100°C			-25		-25		-25	nA	VGS20 V, VDS 0
			A devices	•	-2.5		-2.5	-	-2.5	- · □ A	
Vgs (off)		-Source Pinch-Off Voltage Tourrent at Zero Gate age (Note 1)		-0.6	-1.8	-1	– 3	-2	-6	V	, VDS = 10 V, ID = 1 nA
(DSS				0.02	0.09	80.0	0.24	0.20	0.60	mA	V _{DS} = 10 V V _{GS} = 0
g _{fs}		nmon-Source Forward nsconductance (Note 1)		70	210	80	250	100	330		V _{DS} = 10 V f = 1 kHz
g _{fs}	Ī	n-Source Forwa nductance	ird	60		70		90		μmhe:	V _{GS} = 0, f = 30 MHz
gos	i	Common-Source Output Conductance			3		5		10	-	VDS = 10 V, VGS = 0, f = 1 kHz
Ciss		Common-Source Input Capacitance			3	<u> </u>	. 3		3		VDS = 10 V, VGS = 0, f = 1 kHz
C _{rss}		n-Source Rever Capacitance	se		1.5		1,5		1.5	pF	VDS = 10 V, VGS, = 0,

NOTE: 1. Pulse test: Pulse duration of 2 ms used during test.


2N4220-2N4222 **N-Channel JFET**

FEATURES

- C_{rss} < 2 pF
- Moderately High Forward Transconductance

ABSOLUTE MAXIMUM RATINGS

$(T_A = 25^{\circ}C \text{ unless otherwise noted})$
Gate-Source or Gate-Drain Voltage30\
Gate Current 10 mA
Storage Temperature Range65°C to +200°C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300°C
Power Dissipation 300 mW
Derate above 25°C 1.7 mW/°C

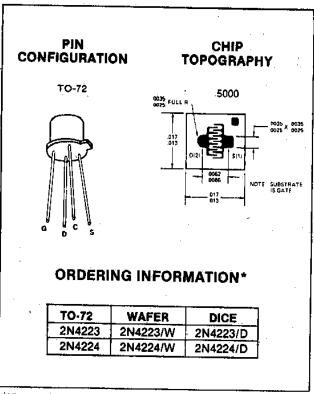
TO-72	WAFER	DICE
2N4220	2N4220/W	2N4220/D
2N4221	2N4221/W	2N4221/D
2N4222	2N4222/W	2N4222/D

^{*}When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

PARAMETER		2N4220		2N4221		2N4222					
	FARAMETER		MAX	MIN	MAX	MIN	MAX.	UNIT	TEST CONDITIONS		
IGSSR	Gate Reverse Current		-0.1		-0.1	ļ	-0.1	nΑ	Vgs = -15 V, Vps = 0		
	1A - 190 C		-0.1		-0,1		-0.1	μА			
BVGSS	Gate-Source Breakdown Voltage	_30		-30		-30		V	IG = -10 μA, VDS = 0		
VGS(off)	Gate-Source Cutoff Voltage		-4	Ţ	-6		-8	l * :	.VDS = 15 V, ID = 0.1 nA		
VGS	Gate-Source Voltage	-0.5	-2.5	-1	-5	-2	-6	, v	V _{DS} = 15V I _D = 50 μA (I _D = 200 μA I _D = 500 μA	(2N4221)	
oss	Saturation Drain Current (Note 3)	0.5	.3	2	6	5	15	mA	VDS = 16 V, VGS = 0		
9fs	Common-Source Forward Transconductance (Note 1)	1000	4000	2000	5000	2500	6000			f = 1 kHz	
Yfs	Common-Source Forward Transadmittance	750		750		750		μmho	f = 10	f = 100 MHz	
gos	Common-Source Output Conductance (Note 1)		- 10		20		40		V _{DS} = 15 V, V _{GS} = 0	f = 1 kHz	
Ciss	Common Source Input Capacitance		6	ĺ	. 6	-	6		,		
Crss	Common-Source Reverse Transfer Capacitance	•	2		2		2	pF.		f = 1 MHz	

NOTE 1: Pulse test duration 2 ms.


2N4223, 2N4224 N-Channel JFET

FEATURES

- NF = 3 dB Typical at 200 MHz
- C_{rss}< 2 pF

ABSOLUTE MAXIMUM RATINGS

(A = 25° C unless otherwise noted)
Gate-Source or Gate-Drain Voltage30V
Gate Current 10 mA
Storage Temperature Range65°C to +200°C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300° C
Power Dissipation 300 mW
Derate above 25°C

^{*}When ordering wafer/dice refer to Appendix B-23.

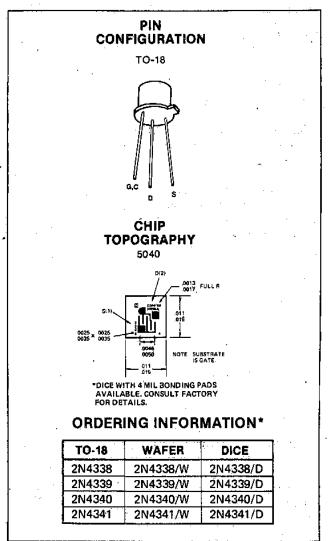
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

PARAMETER		2N4	4223	2N4	224	T	TEST CONDITIONS			
		MIN	MAX	MIN	MAX	UNIT				
IGSSR	Gate Reverse Current TA = +150°C		-0.25		-0.5	nA	V _{GS} = -20 V, V _{DS} = 0			
BVGSS	Gate-Source Breakdown Voltage	-30	-0.25	-30	-0.5	μΑ	$I_{G} = -10 \mu\text{A}, \text{V}_{DS} = 0$			
VGS(off)	Gate-Source Cutoff Voltage	-0.1	-8	-0.1	8		f _D = 0.25 r		nA (2N4223) A (2N4224)	
V _{GS}	Gate-Source Voltage	-1.0	-7.0	-1:0	-7.5		VDS = 15V	I _D = 0.3 mA (2N4223) I _D = 0.2 mA (2N4224)		
IDSS	Saturation Drain Current (Note 1)	3	18	2	20	mΑ	V _{DS} = 15 V	Vcc = 0	71 71	
9fs	Common-Source Forward Transconductance (Note 1)	3000	7000	2000	7500	μπιπο		, ds v.	f = 1 kHz	
C _{iss}	Common-Source Input Capacitance (Output Shorted)		6		6		V _{DS} = 15 V, V _{GS} = 0			
Crss	Common-Source Reverse Transfer Capacitance		2		2	pF			f = 1 MHz	
Vfs	Common-Source Forward Transadmittance	2700		1700						
giss	Common-Source Input Conductance (Output Shorted)	,	800		800	μmho				
9 _{oss}	Common-Source Output Conductance (Input Shorted)	<u> </u>	200		200	•	VDS = 15 V	, VGS = 0	f = 200 MH ₂	
Gps	Small Signal Power Gain	10	· · · · · ·							
NF	Noise Figure		5			dB	V _{DS} = 15 V R _{gen} = 1kΩ	V _{DS} = 15 V, V _{GS} = 0, R _{gen} = 1kΩ		

Note 1: Pulse test, duration 2 msec.

2N4338-2N4341 N-Channel JFET

FEATURES


- Exceptionally High Figure of Merit
- Radiation Immunity
- Extremely Low Noise and Capacitance
- · High Input Impedance

APPLICATIONS

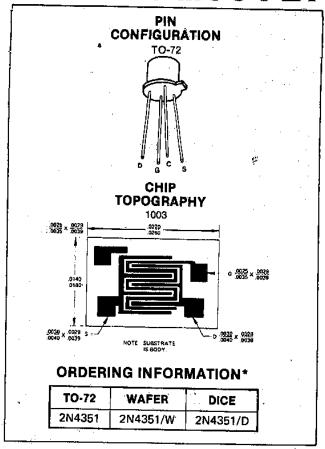
- · Low-level Choppers
- Data Switches
- · Multiplexers and Low Noise Amplifiers

ABSOLUTE MAXIMUM RATINGS

(T _A = 25°C unless otherwise noted)
Gate-Source or Gate-Drain Voltage50
Gate Current 50 m.
Storage Temperature Range65° C to +200° C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300°
Power Dissipation
Derate above 25° C

*When ordering wafer/dice refer to Appendix B-23.

DA DANGTED		2N4338		2N4	339	2N4	340	2N4	341	UNITS	TEST CONDITIONS		
	PARAMETER		MAX	MIN	MAX	MIN	MAX	MIN	MAX	Ointra	TEST CONDITIONS		
Logo	Gata Payersa Current		-0.1		-0.1		-0.1		-0.1	nΑ	V 20 V V0		
IGSS	Gate Reverse Current TA=150°C		-0.1		-0.1		-0.1		-0.1	μΑ	VGS = -30 V, VDS = 0		
BVGSS	Gate-Source Breakdown Voltage	-50		~50		-50		-50		V	IG = -1 μA, V _{DS} = 0		
VGS(off)	Gate-Source Cutoff Voltage	-0.3	-1	-0.6	-jî.8	-1	-3	-2	-6	1 ' [VDS = 15 V, ID = 0.1 μA		
ID(off)	Drain Cutoff Current	· · · · ·	0.05	1	0.05		0.05		0.07	nΑ	VDS = 15V,		
.0(011)	Didni Octori Correin		(-5)	1	(-5)	·	(-5)		(-10)	(V)	VGS=()		
IDSS	. Saturation Drain Current	0.2	0.6	0.5	1.5	1.2	3.6	.3	9	mA	VDS = 15 V, VGS = 0		
9fs	Common-Source Forward Transconductance	600	1800	800	2400	1300	3000	2000	4000		V _{DS} = 15 V, V _{GS} = 0	f = 1 kHz	
gos	Common-Source Output Conductance		5		15		30		60	į μmho			
rDS(on)	Drain-Source ON Resistance		2500		1700		1500		800	ohm	V _{DS} = 0, I _{DS} = 0		
Ciss	Common-Source Input Capacitance		7		7		7		7			4 - 4 1011	
C _{rss}	Common-Source Reverse Transfer Capacitance		3		3	ľ	3	:	3	pF		f=1 MHz	
NF	Noise Figure		1		1		1	,	1	dB	Vps = 15 V, Vgs = 0 Rgen = 1 meg, BW = 200 Hz	f = 1 kHz	



2N4351 N-Channel Enhancement Mode MOS FET

FEATURES

- Low ON Resistance
- Low Capacitance
- High Gain
- High Gate Breakdown Voltage
- Low Threshold Voltage

ABSOLUTE MAXIMUM RATINGS

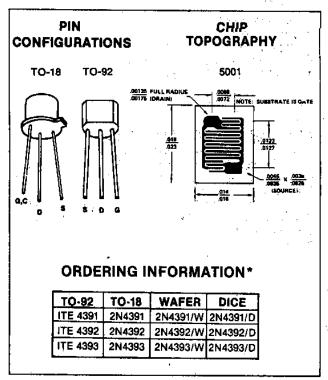
*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

Substrate connected to source.

	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
BV _{DSS}	Drain-Source Breakdown Voltage	25		V	l _D = 10 μA, V _{GS} = 0
IGSS	Gate Leakage Current		10	рА	V _{GS} = ±30 V, V _{DS} = 0
^I DSS	Zero-Gate-Voltage Drain Current		10	nΑ	V _{DS} = 10 V, V _{GS} = 0
V _{GS(th)}	Gate-Source Threshold Voltage	1	.5	V	V _{DS} = 10 V, I _D = 10 μA
ID(on)	"ON" Drain Current	3		mA	VGS = 10 V, VDS = 10 V
VDS(on)_	Drain-Source "ON" Voltage		1	V	ID = 2 mA, VGS = 10 V
rDS(on)	Drain-Source Resistance		300	ohms	VGS = 10 V, ID = 0, f = 1 kHz
yfs	Forward Transfer Admittance	1000		μmho	VDS = 10 V, ID = 2 mA, f = 1 kHz
Crss	Reverse Transfer Capacitance		1.3		VDS = 0, VGS = 0, f = 140 kHz
Ciss	Input Capacitance		5.0		V _{DS} = 10 V, V _{GS} = 0, f = 140 kHz
Cd(sub)	Orain-Substrate Capacitance		5.0	7	VD(SUB) = 10 V, f = 140 kHz
t _{d(on)}	Turn-On Delay	1	45	· 10v	FIGURE 1 - SWITCHING EIRCUIT - MIT WAVEFORMS
t _r	Rise Time		65	<u> </u>	1, -1, -305 DUTY CVCL(- 2-
[†] d(off)	Turn-Off Delaγ		60	ns over	SET VOS 10V B 21A 10K
tf	Fall Time		100	V _{D5}	THE SAMPLING

Note 1. Device must not be tested at ±125V more than once or longer than 300 ms.

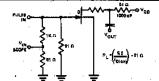

FEATURES

- r_{ds(on)} < 30 ohms (2N4391)
- I_{D(off)} < 100 pA
- Switches ±10 VAC with ±15V Supplies (2N4392, 2N4393)

ABSOLUTE MAXIMUM RATINGS

(T _A = 25°C unless otherwise noted)
Gate-Source or Gate-Drain Voltage40V
Gate Current 50 mA
Storage Temperature Range65°C to +200°C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300°C
TO-18 TO-92
Power Dissipation 1.8W 360 mW
Derate above 25°C 1.7 mW/°C 3.0 mW/°C

1TE4391-ITE4393 2N4391-2N4393 N-Channel JFET


*When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

	PARAMETER	43	91	439	92	43	4393		TEST CONDITIONS		
	FARAMEIEN	MIN	MAX	MIN	MAX	MIN	MAX	UNIT		1 CONDITION	12
IGSS ·	Gate Reverse Current		-100		-100		-100	pΑ	VGS = -20 V, Vps = 0		
	TA = 350°C		-200		-200		-200	nΑ	VGS20 V	, VDS = 0	
BVGSS	Gate-Source Breakdown Voltage	-40		-40		-4 0.	<u> </u>	V	- lg = 1 μA, V _[os = 0	
JD(off)	Drain Cutoff Current		100		100		100	pΑ	Vne = 20 V	V _{GS} = -5 V (V _{GS} = -7 V ((4393) (4392)
	T _A = 150°C		200	[200		200	nΑ		V _{GS} = -12 V	
∨ _{GS(f)}	Gate-Source Forward Voltage		1-		1		1	V	IG = 1 mA, VDS = 0		
VGS(off)	Gate-Source Cutoff Voltage	-4	_10	-2	-5	- 0.5	3	. v	V _{DS} = 20 V.	lp = 1 nA	* *
IDSS	Saturation Drain Current (Note 1)	50	150	25	75	5	30	πА	V _{DS} = 20 V,	V _{GS} = 0	
VDS(on)	Drain Source ON Voltage		0.4		0.4		0.4	v .	V _{GS} = 0	ID = 3 mA (4 ID = 6 mA (4 ID = 12 mA	1392)
rDS(on)	Static Drain-Source ON Resistance		30		60	· ·	100	_	VGS = 0, 1D	= 1 mA	
^r ds(on)	Drain-Source ON Resistance		30		60		100	Ω	V _{GS} = 0, 1 _D	= 0 -	f = 1 kHz
Ciss	Common-Source Input Capacitance		14		14		14		V _{DS} = 20 V,		
	Common-Source Reverse Transfer					· · ·	3.5			VGS = -5 V	1
C _{rss}	Capacitance	i.			3.5			pF	V _{DS} = 0	VGS =7 V	f≍1MḤa
,			3,5							VGS = -12 V	
t _d	Turn-ON Delay Time		15		15	1	15		V _{DD} = 10 V,	VGS(on) = 0	6
tr	Rise Time		5		. 5		5	ns.		ID(on)	VGS(off)
toff	Turn-OFF Delay Time		20		. 35		50	112.	4391	12 mA	-12 V
tf	Fall Time		15	}	20		_ 30		4392 4393	6 3	-7 -5

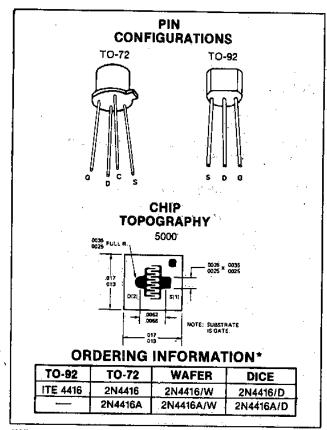
NOTE:

1. Pulse test required, pulse width = 300 µs, duty cycle ≤ 3%

INPUT PULSE

SAMPLING SCOPE

RISE TIME < 0.5 ns FALL TIME < 0.5 ns PULSE DUTY CYCLE 1% RISE TIME 0.4 ns
INPUT RESISTANCE 50 11


ITE4416, 2N4416/A N-Channel JFET

FEATURES

- Low Noise
- Low Feedback Capacitance
- Low Output Capacitance
- High Transconductance
- High Power Gain

ABSOLUTE MAXIMUM RATINGS

(T _A = 25°C unless otherwise noted)
Gate-Source or Gate-Drain Voltage
2N4416, ITE441630V
2N4416A35V
Gate Current
Storage Temperature Range
2N4416/2N4416A65°C to +200°C
ITE441655°C to +125°C
Operating Temperature Range
2N4416/2N4416A65°C to +200°C
ITE441655°C to +125°C
Lead Temperature (Soldering, 10 sec.) +300°C
Power Dissipation
Derate above 25°C
2N4416/2N4416A , 1.7 mW/°C

^{*}When ordering wafer/dice refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

ITE4416 3.0 mW/°C

PARAMETER					MAX	UNIT	TEST CONDITIO	NS.	
V _{GS(f)}	Gate- Source Forward Voltage				 	 			
IGSS	Gate Reverse Current	· [-]	Γ _A = 150°C		-0,1 -0.1	n'A μA	$l_{G} = 1 \text{ mA}, V_{DS} = 0$ $V_{GS} = -20 \text{ V}, V_{DS} = 0$	-	
BVGSS	Gate-Source Breakdown Voltage	2N4416/ITE4416 2N4416A		-30 -35			$I_{G} = -1 \mu\text{A}, \text{V}_{DS} = 0$	· ·	
V _{GS(off)}	Gate-Source Cutoff Voltage	2N4416/ITE4416- 2N4416A		-2.5	6 6	, v	V _{DS} = 15 V, I _D = 1 nA.		
IDSS	Drain Current at Zero Gate Voltage			- <u>2.5</u>	15	mA		T	
9fs	Common-Source Forward Transcond	luctance		4500	7500	umhö	VDS = 15 V, VGS = 0		
9os	Common-Source Output Conductano		· .	- 1000	50	umho		f=1kHz	
Crss	Common-Source Reverse Transfer Ca	pacitano	ce -		0.8	ρF			
Ciss	Common-Source Input Capacitance			 ;	4	, N	· ·		
Coss	Common-Source Output Capacitance	;			2	pF		f = 1 MHz	
	PARAMETER	100 MHz		400	MHz		<u> </u>		
	TANAMETEN	MIN MAX		MIN	MAX	UNIT	TEST CONDITIONS		
Giss	Common-Source Input Conductance		100		1000				
b _{iss}	Common Source Input Susceptance		2500		10,000	1			
9oss	Common-Source Output Conductance	-	75	<u> </u>	100	μmho .			
boss	Common-Source Output Susceptance	<u> </u>	1000		4000	μιιιίο .	VDS = 15 V, VGS = 0		
9fs	Common-Source Forward Transconductance		:	4000			,	ĺ	
Gps	Common-Source Power Gain	18		10	· -		V _{DS} = 15 V, I _D = 5 mA		
NF	Noise Figure	1	2		4	dB	VDS = 15 V, ID = 5 mA, I	Pa = 1 VO I	

2N4856-2N4861 2N4856-2N4858 JAN, JTX, JTXV* N-Channel JFET

1

FEATURES

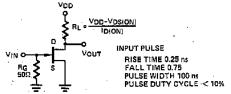
- Low r_{DS(on)}
- I_{D(off)}<250 pA
- Switches ±10V Signals with ±15V Supplies (2N4858, 2N4861)

ABSOLUTE MAXIMUM RATINGS

40V
30V
'50 mA
to +200° C
to +150°C
+300°C
1.8W
10 mW/°C

CHIP CONFIGURATION TOPOGRAPHY TO-18 5001 019 ORDERING INFORMATION* WAFER TO-18 2N48561 2N4856/W 2N4856/D 2N4857 † 2N4857/W 2N4857/D 2N4858 1 2N4858/W 2N4858/D 2N4859/W 2N4859/D 2N4859 2N4860 2N4860/W 2N4860/D 2N4861/D 2N4861 2N4861/W

tedd JAN, JTX, JTXV, to basic part number to specify these devices. *When ordering wafer/dice refer to Appendix B-23.


ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

	DADAMETED		2N41	856,59	2N4	857,60	294	858,61	UNIT	TEST CONDITIONS	
	PARAMETER		MIN	MAX	MIN	MAX	MIN	MAX	ONT	1EST CONDITIO	7143
211	Gate-Source	2N4856-58	~40		-40		-40		V		
BVGSS	Breakdown Voltage	2N4859-61	-30		-30		-30	1]	IG"= -1 μΑ, VDS = 0	
1.	0.0			-250	1	-250		-250	pΑ	VGS = -20 V, VDS = 0	
GSSR	Gate Reverse Current	T _A = 150°C		-500		-500		-500	nΑ	$V_{GS} = -15 \text{ V, } V_{DS} = 0$	
1	Duals Consess Comment		٠.	250		250		250	pΆ	VDS = 16 V, VGS = -10 V	
D(off)	Drain Cutoff Current	TA = 150°C		500		500		500	nA .		
VGS(off)	Gate-Source Cutoff Vo	oltage	-4	-10	-2	6	-0.8	-4	V .	$V_{DS} = 15 \text{ V., I}_{D} = 0.5 \text{ nA}$	
IDSS	Saturation Drain Curre (Note 1)	ent	50		20	1,00	8.	80	mA	VDS = 15 V, VGS = 0	
			1	0.75	T	0.50	-	0.50	٧.	VGS = 0, ID = ()	
VDS(on)	Drain-Source ON Volt	age		. (20)		(10)		(5)	(mA)		
^r ds(on)	Drain-Source ON Resi	stance		25		40		60.	ohm	$V_{GS} = 0, I_D = 0$	f = 1 kHz
Ciss	Common-Source Inpu	t Capacitance		18		18		18	př	Voc = 0 Vcc = -10 V	f = 1 MHz
C _{rss}	Common-Source Reve Capacitance	rse Transfer		8		8		8	pr	VDS = 0, VGS = -10 V f = 1 M	
[‡] d	Turn-ON Delay Time			6		6		10		464 £ V _{DD} = 10 V, R _L = 953 £	ว (2N4856,59) ว (2N4857,60)
tr	Rise Time	······································		3		4		10	ns:	VGS(on) = 0 1910 (_
 			ļ	25		50	ļ	100	-	VGS(off)=-10V, ID = 20 m VGS(off)=-6V, ID = 10 mA	A (2N4856, 9) (2N4857, 60)

NOTE:

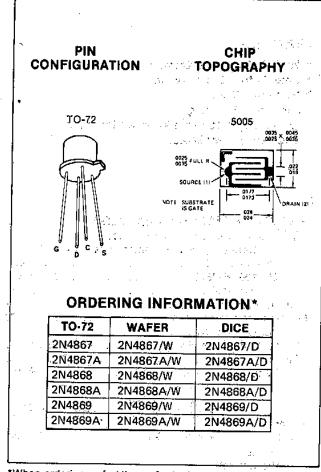
toff

Turn-OFF Time

SAMPLING SCOPE
RISE TIME 0.75 ns
INPUT RESISTANCE 1 M
INPUT CAPACITANCE 2.5 pf

VGS(off) = -4V, 1D = 5 mA (2N4858, 61)

Pulse test required, pulsewidth = 100 μs, duty cycle ≤ 10%.


2N4867/A-2N4869/A N-Channel JFET

FEATURES

- Low Noise Voltage
- Low Leakage
- High Gain

ABSOLUTE MAXIMUM RATINGS

(TA = 25°C unless otherwise noted)
Gate-Source or Gate-Drain Voltage40V
Gate Current 50 mA
Storage Temperature Range65°C to +200°C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300°C
Power Dissipation 300 mW
Derate above 25°C

*When ordering wafer/dice_refer to Appendix B-23.

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

	PARAMETER		2N4867 2N4867A			2N4868 2N4868A		2N4869 2N4869A		- TEST CONDITIONS	
			MIN MAX		MIN MAX		MIN MAX		1		
IGSSR	Gate Reverse Current			-0.25		-0.25		-0,25	nΑ	V _{GS} = -30 V, V _{DS} = 0	
DV	I TA	= 150°C		-0.25		-0.25		~0,25	μΑ		
BVGSS	Gate-Source Breakdown		-40	4_ :	-40		-40		v	$ _{G} = -1 \mu A, V_{DS} = 0$	
VGS(off)	Gate-Source Cutoff Volta	4	-0.7	-2	-1	-3	-1.8	-5	, v	V _{DS} = 20 V, i _D = 1 μA	
IDSS	Saturation Drain Current (Note 1)		0.4	1,2	İ	. 3	2:5	7,5	mA	V _{DS} = 20 V, V _{GS} = 0	
9fs	Common-Source Forward Transconductance (Note		700	2000	1000	3000	1300	4000		VDS = 20 V, VGS = 0	1
9 _{OS}	Common-Source Output Conductance			1.5		4		10	μmho		f = 1 kHz
Crss	Common-Source Reverse Transfer Capacitance			5		5		. 5			
Ciss	Common-Source Input Capacitance			25		25		25	pF		f = 1 MH:
				20		20		. 20	- 	<u> </u>	40.12
	Short Circuit Equivalent	Input		10 .	<u> </u>	10		10	n V	VDS = 10 V	f = 10 Hz
ē _n	Noise Voltage.			10		10	-	10	√Hz		f = 1KHz
	• •	devices		5		5		5	V.П2	VGS-= 0-	f = 10 Hz
NF .	Spot Noise Figure		· · ·	1		1 :		1	dВ	VDS = 10 V, VGS = 0 R _{gen} = 20K, (2N4867 Series) R _{gen} = 5K, (2N4867A Series)	f = 1 kHz f = 1 kHz

NOTE: 1. Pulse test duration = 2 ms.

2N4044, 2N4045, 2N4100, 2N4878, 2N4879, 2N4880 Dielectrically Isolated Dual NPN Transistor

FEATURES

- High Gain at Low Current
- Low Output Capacitance
- Good h_{FF} Match
- Tight V_{BE} Tracking
- Dielectrically Isolated Matched Pairs for Differential Amplifiers.

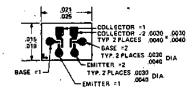
ABSOLUTE MAXIMUM RATINGS

(TA = 25° C unless otherwise noted)

Collector-Base or Collector-Emitter Voltage (Note 1)
2N4044, 2N4878 60V
2N4100, 2N4879 55V
2N4045, 2N4880 45V

Collector-Collector Voltage 100V
Emitter-Base Voltage (Note 2) 7V
Collector Current (Note 1) 10 mA
Storage Temperature Range -65° C to +200° C
Operating Temperature Range -55° C to +150° C
Lead Temperature (Soldering, 10 sec.) +300° C

	TC)-71	то)-78	
	ONE	BOTH SIDES	ONE SIDE	BOTH	
Power					
Dissipation	300 mW	500 mW	400 mW	750 mV	
Derate above 25°	·e ·				
(mW/°C),		2.9	2.3	4.3	


PIN CONFIGURATION

TO-71 TO-78

CHIP TOPOGRAPHY

4000

ORDERING INFORMATION*

TO-78	TO-71	WAFER	DICE
2N4044	2N4878	2N4044/W	2N4044/D
2N4045	2N4879	2N4045/W	2N4045/D
2N4100	2N4880	2N4100/W	2N4100/D

^{*}When ordering wafer/dice refer to Appendix B-23.

	PARAMETER			2N4044 2N4878		2N4100 2N4879		2N4045 2N4880		TEST CONDITIONS	
*	<u> </u>		MIN	MAX	MIN	MAX	MIN	MAX			
hFΕ	hFE DC Current Gain		200	600	150	600	80	800		I _C = 10 μA, V _{CE} = 5V	
			225		175		100]	Ic = 1.0 mA, VcE = 5 V	
	·	T _A = -55°C	75	1	50		30		l v	I _C = 10 μA, V _{CE} = 5 V	
VBE(on)	Emitter-Base On Voltage			0.7		0.7		0.7	1		
VCE(sat)	Collector	Saturation Voltage	· · · · · · ·	0.35		0.35		0.35	1	IC = 1.0 mA, IB = 0.1 mA	
Ісво	Collector	Cutoff Current		0.1	,	0.1		0.1*	nΑ	IE = 0, V _{CB} = 45 V, 30 V*	
	,	T _A = 150°C		0.1		0.1		0.1*	μΑ		
^I EBO	EBO Emitter Cutoff Current			0.1		0.1	:	0.1	nΑ	IC = 0, VEB = 5 V	
Cobo	Output C	apacitance		8.0		0.8.		8,0	ρF	IE = 0, VCB = 5 V	

2N4044, 2N4045, 2N4100, 2N4878, 2N4879, 2N4880 @INTERSIL

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

PARAMETER		2N4044 2N4878		2N4100 2N4879		2N4045 2N4880		UNIT	TEST CONDITIONS	
	t vet und bei der eine eine eine eine eine eine eine ei	MIN	MAX	MIN	MAX	MIN	MIN	MIN MAX		
Cte Emitter Transition Capacitance			1	a1.11	1		. 1	рF	I _C = 0, V _{EB} = 0.5V	
C _{C1} , C ₂	Gollector to Collector Capacitance		0.8		0.8		0.8	pF	V _{CC} = 0	
I _{C1, C2}	Collector to Collector Leakage Current	÷	5		- 5		5	pА	V _{CC} = ±100V	
V _{CEO(sust)}	Collector to Emitter Sustaining Voltage	60		. 55		45		V	$I_C = 1 \text{mA}, I_B = 0$	
ft	Current Gain Bandwidth Product	200		150		150		MHz	I _C = 1mA, V _{CE} = 10V	
ft .	Current Gain Bandwidth Product	20		15		15		MHz	I _C = 10µA, V _{CE} = 10V	
NF	Narrow Band Noise Figure		1.2		3		3	dB	I _C = 10 _µ A, V _{CE} = 5V ,f = 1kHz R _G = 10 kohms BW=200 Hz	
BV _{CBO}	Collector Base Breakdown Voltage	60		55		45		ν	$I_{C} = 10\mu A, I_{E} = 0$	
BV _{EBO}	Emitter Base Breakdown Voltage	7		7		7		V	I _E = 10μA, I _C = 0	

MATCHING CHARACTERISTICS (25°C unless otherwise noted)

h _{FE1} /h _{FE2}	DC Current Gain Ratio (Note 3)	0.9	1;	0.85	1	0.8	. 1		I _C = 10µA to 1mA, V _{CE} = 5V
V _{BE1} -V _{BE2}	Base Emitter Voltage Differential		3		5		5	m∨	$I_{C} = 10\mu A$, $V_{CE} = 5V$
I _{B1} -I _{B2}	Base Current Differential		5		10		25	nA	I _C = 10μA, V _{CE} = 5V
Δ(V _{BE1} ·V _{BE2}) /ΔΤ Base Emitter Voltage Differential Change with Temperature		3 :			5		10	μV/°C	I _C = 10μA, V _{CE} = 5V T _A = -55°C to +125°C
△(I _{B1} -I _{B2}) /△⊤	Base Current Differential Change with Temperature		0.3	. :	0.5		1	nA/°C	

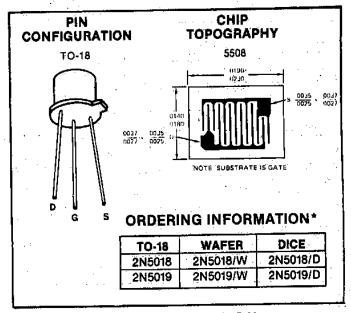
SMALL SIGNAL CHARACTERISTICS

PARAMETER		PARAMETER TYPICAL UNIT VALUE				
հլ <u>ե</u>	Input Resistance 28		ohms	A STATE OF S		
h _{rb}	Voltage Feedback Ratio	43	x 10-3	- I _C = 1mA, V _{CB} = 5V		
h _{fe}	Small Signal Current Gain	250				
h _{ob}	Output Conductance	60	μmhos	7		
h _{le}	Input Resistance	9.6	k ohms	Ic = 1mA, VcE = 5V		
h _{re}	Voltage Feedback Ratio	42	x 10−3	7		
hoe	Output Conductance	12	μmhos	7		

NOTES:

- I. Per transistor
- 2. The reverse base-emitter voltage must never exceed 7:0 volts and the reverse base-emitter current must never exceed 10 μamps.
- 3. The lowest of two h_{FE} readings is taken as h_{FE_1} for purposes of this ratio.

2N5018, 2N5019 P-Channel JFET

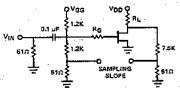

FEATURES

- Low Insertion Loss
- No Offset or Error Voltages Generated by Closed Switch
- Purely Resistive

APPLICATIONS

- Analog Switches
- Commutators
- Choppers

ABSOLUTE MAXIMUM RATINGS



^{*}When ordering water/dice refer to Appendix B-23.

ELÉCTRICAL CHARACTERISTICS (@ 25°C uniess otherwise noted)

•			2N5	018	2N	019	Unit	Test Conditions	
	PARAMETER	Ī	Min	Max	Min	Max	Ullit		
BVGSS	Gate-Source Breakdown Volt	age	30		30		V	$I_{G} = 1 \mu\text{A}, V_{DS} = 0$	
IGSSR	Gate Reverse Current			2		2	пА	$V_{GS} = 15 \text{ V, } V_{DS} = 0$	
. 1	D 1 0 1-15 0	· ·		- 10		- 10		$V_{DS} = -15 \text{ V}, \frac{V_{GS} = 12 \text{ V } (2N5018)}{V_{GS} = 7 \text{ V } (2N5019)}$	
D(off)	Drain Cutoff Current	T _A = 150°C		- 10		- 10	μΑ	V _{GS} = 7 V (2N5019)	
 				-2		-2	nA	V 15V lo = 0	
IDGO	Drain Reverse Current	T _A = 150°C	- :	-3		-3	μА	$V_{DG} = -15 \text{ V}, I_S = 0$	
VGS(off)	Gate-Source Cutoff Voltage	 	~·	10		5	V	V _{DS} = -15 V, ½ _D = -1 μA	
IDSS	Saturation Drain Current		- 10	 	-5	·	mA	$V_{DS} = -20.V, V_{GS} = 0.$	
V _{DS(on)}	Drain-Source ON Voltage			-0.5		- 0.5	v	$V_{GS} = 0$, $I_D = -6$ mA (2N5018), $I_D = -3$ mA (2N5019)	
^r DS(on)	Static Drain-Source ON Resistance			75		150	Ω	I _D = -1 mA, V _{GS} = 0	
rds(on)	Drain-Source ON Resistance	9	-	75		150	1 [$I_D = 0, V_{GS} = 0$ $f = 1 \text{ kHz}$	
C _{ISS}	Common Source Input Capacitance			45		45	pF	V _{DS} = -15 V, V _{GS} = 0 f = 1 MHz	
C _{rss}	Common-Source Reverse Transfer Capacitance		-	10		10	P'	V _{DS} = 0, V _{QS} = 12 V (2N5018), V _{GS} = 7 V (2N5019)	
td(on)	Turn-ON Delay Time			15		15		V _{DD} = -6 V ₂ V _{GS(on)} = 0	
t _r	Rise Time			20		75]]		
td(off)	Turn-Off Delay Time			15		25	пѕ	2N5018	
t _f	Fall Time			50		100]	2N5019 7V -3 mA 1.8K Ω	

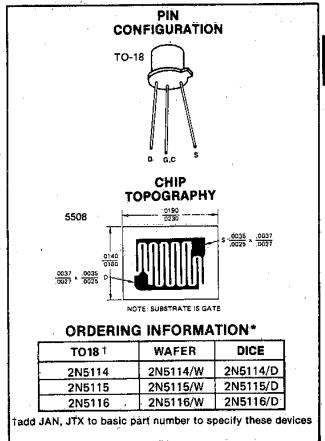
NOTE 1: Due to symmetrical geometry these units may be operated with source and drain leads interchanged.

INPUT PULSE
RISE TIME < 1 ns
FALL TIME < 1 ns
PULSE WIDTH 100 ns
REPLETION RATE 1 MHz

SAMPLING SCOPE
RISE TIME 0.4 ns
INPUT RESISTANCE 10 M
INPUT CAPACITANCE 1.5 pF

2N5114-2N5116 JAN, JTX P-Channel JFET

FEATURES


- Low ON Resistance
- I_{D(off)} < 500 pA
- Switches directly from T²L Logic

GENERAL DESCRIPTION

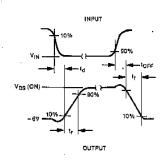
Ideal for inverting switching or "Virtual Gnd" switching into inverting input of Op. Amp. No driver is required and ± 10 VAC signals can be handled using only ± 5 V logic (T²L or CMOS).

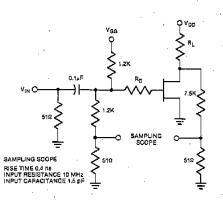
ABSOLUTE MAXIMUM RATINGS

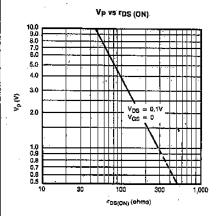
() A = 25°C unless otherwise noted)
Gate-Drain or Gate-Source Voltage 30V
Gate Current
Storage Temperature Range65°C to +200°C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300°C
Power Dissipation 500 mW
Derate above 25°C 3 mW/°C

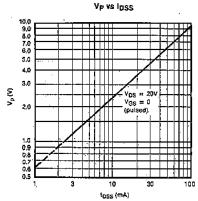
*When ordering wafer/dice refer to Appendix 8-23.

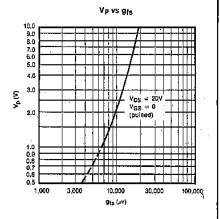
ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)


		·	2N	5114	2N	51 1 5	2N	5116	TINU	TEST CONDITIONS	
	PARAMETER		MIN	MAX	MIN	MAX	MIN	MAX	וואט		
BVGSS	Gate-Source Breakdown	Voltage	30		30		30		V	I _G = 1 μA, V _{DS} = 0	
	Gate Reverse Current			500		500		500	pΑ	V _{GS} = 20 V, V _{DS} = 0	
GSSR	Gate Reverse Corrent	T _A = 150°C		1.0	<u> </u>	1.0	<u></u>	1.0	μΑ		
				-500		-500	ľ	-500	рÁ	2N5114 = 12 V	
D(off)	Drain Cutoff Current	T _A = 150°C		-1.0		-1,0		-1.0	μА	$V_{DS} = -15 \text{ V}, V_{GS} = 2N5115 = 7 \text{ V}$ 2N5116 = 5 V	
VP	Gate-Source Pinch-Off	√oltage	5	10	3	6	1	4	V	V _{DS} ≈ -15 V, I _D ≈ -1 пA	
IDSS	Drain Current at Zero G (Note 1)	ata Voltage	-30	-90	~15	-60	-5	-25	mA	2N5114 = -18 V VGS = 0, VDS = 2N5115 = -15 V 2N5116 = -15 V	
V _{GSSF}	Forward Gate-Source V	oltage (-1		1		-1	-	IG = -1 mA, VDS = 0	
VDS(on)	Drain-Source ON Volta	ge		-1.3		-0.8		-0.6	· ·	2N5114 = -15 mA VGS = 0, ID = 2N5115 = - 7 mA 2N5116 = - 3 mA	
「DS(on)	Static Drain-Source ON	Resistance		75	Ţ	100		150		VGS = 0, ID = -1 mA	
	Small-Signal Drain-Sour	ce ON		75		100		150	Ω	VGS = 0, ID = 0, f = 1 kHz	
r _{ds(on)}	Resistance	Jan TX only		75		100		175	<u> </u>	103 1770 177	
Ciss	Common-Source input Capacitance	Jan TX only		25 25		25 25		25	-	VDS = -15 V, VGS = 0, f = 1 MHz	
Crss	Common-Source Revers Transfer Capacitance			7		7		7	p₽	2N5114 = 12 V VDS = 0, VGS = 2N5115 = 7 V 2N5116 = 5 V	


Note 1, Pulse test; duration = 2 ms.


SWITCHING CHARACTERISTICS (25°C unless otherwise noted)


PARAMETER	2N5114	2N5115	2N5116	JAN TX 2N5114	JAN TX 2N55115	JAN TX 2N5116	UNIT
	MAX	MAX	MAX	MAX	MAX	MAX	
t _d Turn-ON Delay Time	6	10	12	6	10	25	
t _r Rise Time	10	20	30	10	20	35	ns
toff Turn-OFF Delay Time	6	8	19	6	8	29	
t _f Fall Time	15	30	50	(not J	AN TX specif	ied)	1


TEST CONDITIONS										
	2N5114	2N5115	2N5116							
_V _{DD}	10V	-6V	-6V							
VGG	207	12V	· 8V							
RL	430Ω	910Ω ⋅	2 KΩ							
R_{G}	100Ω	220Ω	390Ω							
I _D (ON)	- 15mA	-7mA	-3mA							
V _{IN}	12V	- -7V	-5V							

2N5117-2N5119 Dielectrically Isolated Dual PNP Transistor

FEATURES

- High Gain at Low Current
- Low Output Capacitance
- Good h_{FE} Match
- Tight V_{BE} Tracking
- Dielectrically Isolated Matched Pairs for Differential Ampliflers.

ABSOLUTE MAXIMUM RATINGS

(Ta = 25°C unless otherwise noted)

Collector-Base or Collector-Emitter Voltage (Note 1) 45V

Emitter-Base Voltage (Notes 1 and 2) 7V

Collector-Collector Voltage 100V

Collector Current (Note 1) 10 mA

Storage Temperature Range -65°C to +200°C

Operating Temperature Range -55°C to +150°C

Lead Temperature (Soldering, 10 sec.) +300°C

PIN CONFIGURATION TO-78 CHIP TOPOGRAPHY 4501 TYP. 2 PLACES COLLECTOR TYP. 2 PLACES ORDERING INFORMATION* TO-78 WAFER DICE 2N5117 2N5117/W 2N5117/D 2N5118 2N5118/W 2N5118/D 2N5119 2N5119/W 2N5119/D

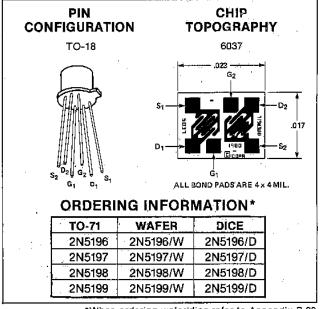
*When ordering wafer/dice refer to Appendix B-23

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

	PARAMETÉR	2N5117 2N5118		2N5119		UNIT	TEST CONDITIONS		
				MAX	MIN	MAX			
			100	300	50			I _C = 10 μA, V _{CE} = 5.0 V	
hFE	DC Current Gain		100 <		50] [I _C = 500 μA, V _{CE} = 5.0 V	
· · · · · · · · · · · · · · · · · · ·		TA = -55°C	30		20		1 [I _C = 10 μA, V _{CE} = 5.0 V	
ІСВО	ICBO Collector Cutoff Current			0.1	;	0.1	nA	IE = 0, VCB = 30 V	
	```	T _A = 150°C		0.1		0.1	μΑ		
¹ E80	Emitter Cutoff Current			0.1		0.1	nA	1 _C = 0, V _{EB} = 5.0 V	
¹ C1-C2	Collector Collector Leak	age		5.0		5.0	рA	V _{CC} = 100 V	
GBW	Current Gain Bandwith	Product	100		100		MHz	1 _C = 500 μA, V _{CE} = 10 V	
Cob	Output Capacitance			0.8		0.8		IE = 0, VCB = 5.0 V	
Cte	· Emitter Transition Capa	citance		1.0		1.0	p <b>f</b>	IC = 0, VEB = 0.5 V	
C _{C1-C2}	Collector-Collector Capa	citance		0.8		8.0	7 . [	V _{CC} = 0	
VCEO(sust)	Collector-Emitter Sustai	ning Voltage	45		45	·	V	I _C = 1.0 mA, I _B = 0	
NF	Narrow Band Noise Figu	ire		4.0		4.0	dB	I _C = 10 μA, V _{CE} = 6.0 V	
вусво	Collector Base Breakdov	vn Voltage	45		45		V	IC = 10 μA, IE = 0	
BVEBO	Emitter Base Breakdown	1 Voltage	7.0		, 7.0		V	I _E = 10 μA, I _C = 0	

#### MATCHING CHARACTERISTICS (25° C unless otherwise noted) .

PARAMETER		2N5117		2N5118		2N5119		LINIA			
		MIN MAX MIN I		MAX	MIN	MAX	ן דנאט	TEST CONDITIONS			
hre1/hre2	DC Current Gain Ratio	0.9	1.0						T _C = 10 μA to 500 μA, V _{CE} =	5 V	
"PE1/"FE2	(Note 3) .			0.85	1.0	0.8	1:0	1	I _C = 10 μA, V _{CE} = 5.0 V		
Voc -Vo-	Base-Emitter Voltage		3,0					m۷	IC = 10 μA to 500 μA, VCE =	5 V	
VBE1-VBE2	Differential				5,0		5.0	1			
1 _{B1} -1 _{B2}	Base Current Differential		10.0		15		40	'nΑ			
Δ(VBE1-VBE2)/ΔT	Base Voltage Differential Change with Temperature		3.0		5.0		10	μV/°C	1C = 10 μA, VCE = 5.0 V	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	
Δ(181-182)/ΔT	Base-Current Differential Change with Temperature		0.3		0.5		1.0	nA/°C		TA = -55°C to +125°C	


- 1. Per transistor.
- 2. The raverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed 10 µA.
- : 3. Lower of two heg readings is defined as heg.



# 2N5196-2N5199 Dual Monolithic N-Channel JFET

#### **ABSOLUTE MAXIMUM RATINGS**

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$ 



#### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

*When ordering water/dice refer to Appendix B-23.

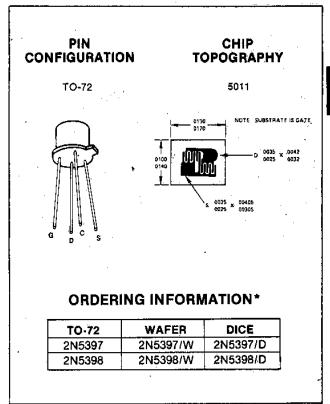
	PARAMETER				MIN	· MA	ΥX	TINU		TES	ST CONDITION	S	
1	Gate Reverse Current					-:	25	pΑ	V _{GS} = -30 V, V _{DS} = 0				
¹ GSSR	Gate Reverse Current		TA =	= 150°C		-!	50	nΑ	VGS = -50 V, VDS = 0				
BVGSS	Gate-Source Breakdown Voltage				-50				IG = -1 μA, V _{DS} = 0				
VGS(off)	Gate-Source Cutoff Voltage				-0.7	T	-4	V	VDS	= 20 V., I	D = 1 nA		
VGS	Gate-Source Voltage				-0.2	-3	.8						
7-	Sata Operation Surrent						15	pΑ	VDG	V _{DG} = 20 V, I _D = 200 μA			
.lG	Gate Operating Current		T _A : =	125°C	<u> </u>		15	nΑ					
DSS	Saturation Drain Current (Note		0.7		7	mΑ	⇒∨ _{DS}	= 20 V, V	/GS = 0				
9fs .	Common-Source Forward Transconductance					400	00		V _{DS} = 20 V, V _{GS} = 0				
9fs	Common-Source Forward Transco		700	160		μmho	V _{DG} = 20 V, I _D = 200 μA			f = 1 kHz			
gos	Common-Source Output Conductance						50	дино	V _{DS} = 20 V, V _{GS} = 0			1 - 1 Kile	
gos	Common-Source Output Conducta	on-Source Output Conductance					4		V _{DG} = 20 V, I _D = 200 μA				
Ciss	Common-Source Input Capacitance						6	рF	f = 1 MHz			f = 1 MNJ2	
C _{rss}	Common-Source Reverse Transfer Capacitance						2	P1				1 - 7 10// 12	
NF ·	Spot Noise Figure					0	.5			= 20 V. Y	f = 100 Hz, Rc = 10 MΩ		
<del>e</del> ⊓	Equivalent Input Noise Voltage					20		μnV √Hz			f = 1 kHz		
		2N5196 2N5		2N5	197	2N5198		2N5	199			CONDITIONS	
	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	* TEST CONDITIONS		
lig1-lg2l	Differential Gate Current	r	- 5		5		5		5	nA	V _{DG} = 20 V, I _D = 200 μA	125°C	
IDSS1/ IDSS2	Saturation Drain Current Ratio (Note 2)	0.95	1	0.95	1	0.95	1	0.95	1		VDS = 20 V,	VGS = 0 V	
9fs1/ 9fs2	Transconductance Ratio (Note 2)	0.97	1	0.97	1	0.95	1	0.95	1			f = 1 kHz	
VGS1-VGS2	Differential Gate-Source Voltage		5		5		10		15	mΫ			
	Code Course Didferranial Walters		5		10		20		40		V _{DG} = 20 V, ID = 200 μA	T _A = 25°C T _B = 125°C	
ΔIVGS1-VGS2I ΔΤ	Change with Temperature (Note 3)		5	<del>  · ·</del>	10		20		40	μV/°C	}	TA = -55°C TB = 25°C	
9os1-9os2	Differential Output Conductance		1	1	1	T	1		1	цтhó	1	f = 1 kHz	

NOTES: 1, Per transistor.

- 2. Pulse test required, pulsewidth = 300 µs, duty cycle < 3%.
- 3. Measured at endpoints  $T_{\mbox{\scriptsize A}}$  and  $T_{\mbox{\scriptsize B}}$  .



## 2N5397, 2N5398 **N-Channel JFET**


#### **FEATURES**

- G_{ps} = 15 dB Minimum (Common Gate) at 450 MHz
   Low Noise
- Low Capacitance

#### ABSOLUTE MAXIMUM RATINGS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$ 

Drain-Gate Voitage	25V
Drain-Source Voltage	
Continuous Forward Gate Current	10 mA
Storage Temperature Range65°	C to +200° C
Operating Temperature Range55°	C to +150°C
Lead Temperature (Soldering, 10 sec.)	+300°C
Power Dissipation	300 mW
Derate above 25°C	1.7 mW/°C

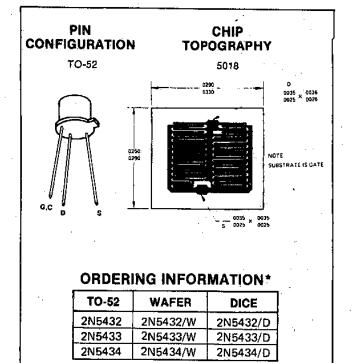


^{*}When ordering wafer/dice refer to Appendix B-23.

	DADAMETED	2N5397		2N	5398	LIBLET	TEST COMPLITIONS		
. '	PARAMÉTER	MIN	MAX	MÍN	MAX	UNIT	TEST CONDITION	<b>&gt;</b>	
10	Cata Binder Course		-0.1		-0,1	nΑ	V 15 V V=0		
GSSR	Gate Reverse Current TA = +150°C	· .	0',1		- 0.1	μΑ	V _{GS} = -15 V, V _{DS} = 0	150°C	
BVGSS	Gate-Source Breakdown Voltage	25		- 25		V	$V_{DS} = 0$ , $I_{G} = -1 \mu A$		
VGS(off)	Gate-Source Cutoff Voltage	-1.0	-6.0	-1.0	-6.0	ŀ	V _{DS} = 10 V, I _D = 1 nA	,	
DSS	Saturation Drain Current (Note 1)	10	30	5	40	mΑ	V _{DS} = 10 V, V _{DS} = 0		
VGS(f)	Gate-Source Forward Voltage		1		1	. V	$V_{DS} = 0$ , $I_{G} = 1 \text{ mA}$	٠,	
	Common-Source Forward	6000	1.0,000				V _{DS} = 10V, I _D = 10 mA	•	
9fs	Transconductance (Note 1)		1	5500	10,000	μmho	V _{DS} = 10 V, V _{GS} = 0	f = 1 kHz	
	Common-Source Output		200			Ι μιπιο ,	V _{DS} = 10 V, I _D = 10 mA	1 - 1 8/1/2	
g _{OSS}	Conductance				400		V _{DS} = 10 V, V _{GS} = 0	· · · · · · · · · · · · · · · · · · ·	
<u> </u>	Common-Source Reverse Transfer		1.2				V _{DS} = 10 V, I _D = 10 mA		
Crss	Capacitance				1.3	pF	V _{DS} = 10 V, V _{GS} = 0	f = 1 MHz	
C. ·	Common Source Input Canadanas		5.0			"	$V_{DG} = 10 \text{ V, I}_{D} = 10 \text{ mA}$	1 - 1 101112	
Ciss	Common-Source Input Capacitance				5.5	]	V _{DS} = 10 V, V _{GS} = 0		
	Common-Source Input		2000			l .	$V_{DG} = 10 \text{ V, I}_{D} = 10 \text{ mA}$		
giss	Conductance				3000	1.	V _{DG} = 10 V, V _{GS} = 0	]	
_	Common-Source Output		400			umho	$V_{DG} = 10 \text{ V, I}_{D} = 10 \text{ mA}$		
9oss	Conductance		i i		500	] Millio	V _{DS} = 10 V, V _{GS} = 0		
· or	Common-Source Forward	5500	9000 .			· .	VDG = 10 V, ID = 10 mA	f = 450 MHz	
9fs	Transconductance (Note 1)			5000	10,000		V _{DS} = 10 V, V _{GS} = 0		
Gps	Common-Source Power Gain	. 15							
∽ps	(neutralized)					dB	V _{DG} = 10 V, I _D = 10 mA		
NF	Common-Source, Spot Noise		3.5		•	l ub	VDG = 10 V, ID = 10 IIIA		
131	Figure (neutralized)		3.5					l .	

Note 1: Pulse test duration = 2ms



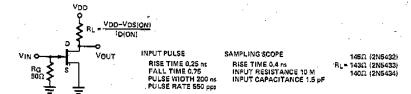

## 2N5432-2N5434 N-Channel JFET

#### **FEATURES**

- Low r_{ds(on)}
- Excellent Switching
- Low Cutoff Current

#### **ABSOLUTE MAXIMUM RATINGS**

(TA = 25°C unless otherwise noted)
Gate-Source Voltage25V
Gate-Drain Voltage25V
Gate Current 100mA
Drain Current 400 mA
Storage Temperature Range65°C to +200°C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300°C
Power Dissipation 300 mW
Derate above 25°C 2.3 mM/°C




*When ordering wafer/dice refer to Appendix B-23.

#### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

	PARAMETER		2N	5432	2N	5433	2N	5434			
	FARIABLETER		MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
IGSSR	Gate Reverse Current			200		-200		-200	pΑ		
		T _A = 150°C		-200		-200		-200	nΑ	VGS = -15 V, VDS = 0	
BVGSS	Gate Source Breakdown	Voltage	-25		-25		-25		V	$l_G = -1 \mu A$ , $V_{DS} = 0$	
· ID(off)	Drain Cutoff Current			200		200		200	pA .		
		T _A = 150°C	, '	200		200	1	200	пА	V _{DS} = 5 V, V _{GS} = -10 V	
VGS(off)	Gate-Source Cutoff Volt		-4	~10	-3	-9	-1	-4	V	V _{DS} = 5 V, I _D = 3 nA	
IDSS	Saturation Drain Current (Note 1)	:	150		100		30		mΑ	V _{DS} = 15 V, V _{GS} = 0	
rDS(on)	Static Drain-Source ON I	Resistance	2	5		7		10	ohm		
VDS(on)	Drain-Source ON Voltage			50.		70	· · · · · ·	100	mV	VGS = 0, ID = 10 mA	
^r ds(on)	Drain-Source ON Resista			5		7		10	ohm	Vgs = 0, ID = 0   f = 1 kF	
Ciss	Common-Source Input C	apacitance		30		30		30		- da - 41-10 - 11-11-11-11-11-11-11-11-11-11-11-11-1	
C _{rss}	Common-Source Reverse Capacitance	Transfer	•	15		15		15	pF	VDS = 0, VGS = -10 V	
td	Turn-ON Delay Time			4		4		4		V _{DD} = 1.5 V,	
tr	Rise Time			1		1	<del>                                     </del>	1		VGS(on) = 0.	
toff	Turn OFF Delay Time			6		- 6	<u> </u>	6	ns	VGS(off) = -12 V,	
tf	Fall Time			30		30		30		ID(on) = 10 mA	

NOTE: 1. Pulse test required, pulsewidth 300  $\mu$ s, duty cycle  $\leq$  3%.

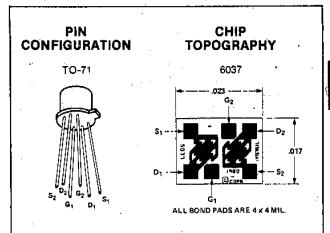




## 2N5452-2N5454 Dual Monolithic N-Channel JFET

#### **FEATURES**

- Low Offset Voltage
- Low Drift
- Low Capacitance
- Low Output Conductance


#### GENERAL DESCRIPTION

Matched FET pairs for differential amplifiers. This family of general purpose FETs is characterized for low and medium frequency differential amplifier applications requiring low drift and low offset voltage.

#### **ABSOLUTE MAXIMUM RATINGS**

(T_A = 25° C unless otherwise noted)

Gate-Source or Gate Drain
Voltage (Note 1)50V
Gate Current (Note 1) 50 mA
Storage Temperature Range65°C to +200°C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300°C
ONE SIDE BOTH SIDES
Power Dissipation 250 mW . 500 mW
Derate above 25° C 2.9 mW/° C 4.3 mW/° C



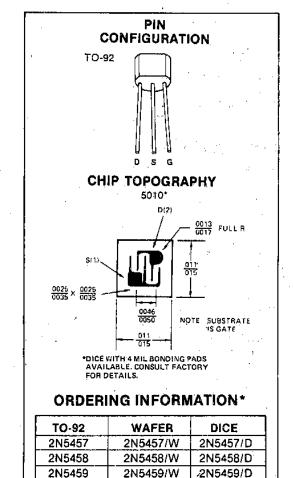
#### ORDERING INFORMATION*

·TO-71	WAFER	DICE
2N5452	2N5452/W	2N5452/D
2N5453	2N5453/W	2N5453/D
2N5454	2N5454/W	2N5454/D

*When ordering wafer/dice refer to Appendix B-23.

#### **ELECTRICAL CHARACTERISTICS** (TA = 25°C unless otherwise noted)

	DADAMETED "	2N5452		2N5453		2N5454		UNITS	TEST CONDITIONS	
	PARAMETER	MIN	MAX.	MIN	MAX	MIN	MAX	ONITS	TEST CONDITIONS	
IGSSR	Gate Reverse Current TA = 150°C		-100 -200		-100 -200		-100 -200	pA nA	VGS = -30 V, VDS = 0	
BVGSS	Gate-Source Breakdown Voltage	-50	-200	~50		-50	-200	117	V _{DS} = 0, 1 _G = -1 μA	
VGS(off)	Gate-Source Cutoff Voltage	-1	-4.5	-1	-4.5	~1.	-4.5	1 v 1	V _{DS} = 20 V, I _D = 1 nA	
VGS	Gate-Source Voltage	-0.2	-4.2	-0.2	-4.2	-0.2	-4,2	1 1	V _{DS} = 20 V, I _D = 50 μA	
VGS(f)	Gate-Source Forward Voltage		2		. 2		2	1 1	VDS = 0, IG = 1 mA	
IDSS	Saturation Drain Current	0.5	5.0	0.5	5,0	0,5	5.0	mA	VDS = 20 V, VGS = 0	
nt.	Common-Source Forward	1000	3000	1000	3000 -	1000	3000			f = 1 kHz
9fs	Transconductance	1000		1000		1000		umho	$V_{DS} = 20 \text{ V, } V_{GS} = 0$	f = 100 MHz""
9os	Common-Source Output Conductance		3.0 1.0		1.0		3.0 1.0	[	V _{DS} = 20 V, I _D = 200 μA	f= 1 kHz-
Ciss	Common-Source Input Capacitance		4.0		4.0		4.0	pF	V _{DS} = 20 V, V _{GS} = 0	f = 1 MHz
C _{rss}	Common-Source Reverse Transfer Capacitance		1,2		1.2		1.2			
Cdgo	Drain-Gate Capacitance		1.5		1.5		1,5		VDG = 10 V, 15 = 0	
ē _n	Equivalent Short Circuit Input Noise Voltage		.20		20		20	_nV √Hz	V _{DS} = 20 V, V _{GS} = 0.	f = 1 kHż
NF	Common-Source Spot Noise Figure		0.5		0.5		0.5	.dB	V _{DS} = 20 V, V _{GS} = 0 R _G = 10 MΩ	f = 100 Hz
IDSS1/IDSS2	Drain Saturation Current Ratio	0.95	1.0	0,95	1,0	0.95	1.0		Vps = 20 V, Vgs = 0	<del> </del>
VGS1-VGS2	Differential Gate-Source Voltage		5.0		10.0		15,0	m∀		
	Gate-Source Voltage		0.4		0.8		2.0	1		T = 25°C to =55°C
ΔIVGS1-VGS2	Differential Change with Temperature		0.5		1.0		2.5		$V_{DS} = .20 \text{ V, I}_{D} = 200 \ \mu\text{A}.$ $T \approx 25^{\circ}\text{C to}$	T ≈ 25°C to +125°C
9fs1/9fs2	Transconductance Ratio	0.97	1.0	0.97	1,0	0,95	1.0			
9os1-9os2	Differential Output Conductance		0.25		0.25		0.25	µmhos		f = 1 kHz


NOTE: 1. Per transistor.



#### **ABSOLUTE MAXIMUM RATINGS**

\( \text{TA} = 25^\circ \text{C unless otherwise noted} \)
\text{Drain-Gate Voltage} \qquad 25V
\text{Drain-Source Voltage} \qquad 25V
\text{Continuous Forward Gate Current} \qquad 10 mA
\text{Storage Temperature Range} \qquad -65^\circ \text{C to} +200^\circ \text{O}
\text{Operating Temperature Range} \qquad -55^\circ \text{C to} +150^\circ \text{C}
\text{Lead Temperature (Soldering, 10 sec.)} \qquad +300^\circ \text{C}
\text{Power Dissipation} \qquad 300 mW
\text{Derate above 25^\circ C} \qquad 1.7 mW/\circ \text{C}

## 2N5457-2N5459 N-Channel JFET



When ordering water/dice refer to Appendix B-23.

#### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

PARAMETER  BVGSS Gate-Source Breakdown Voltage			MIN -25	-60	MAX	UNITS	TEST CONDITIONS IG = -10 μA, V _{DS} = 0	
VGS(off)	Gate-Source Cutoff Voltage	2N5457	-0.5		-6.0		V _D S = 15 V, I _D = 10 nA	
		2N5458	-1.0		-7.0	V		
	•	2N5459	-2.0		-8.0			
VGS	Gate-Source Voltage	2N5457		2.5			V _{DS} = 15 V, I _D = 100 μA	
		2N5458		3.5		] ,V	$V_{DS} = 15 \text{ V}, 1_{D} = 200 \mu\text{A}$	
		2N5459	,	4.5 .			$V_{DS} = 15 \text{ V, } I_{D} = 400 \mu\text{A}$	
IDSS	Zero-Gate-Voltage Drain Current	2N5457	1.0	3.0	5.0		VDS = 15 V, VGS = 0	
		2N5458	2.0	6.0	9.0	mΑ		
		2N5459	4.0	9.0	16			
vfs	Forward Transfer Admittance	2N5457	1000	3000	5000	]		
		2N5458	1500	4000	5500	μmho	VDS = 15 V, VGS = 0, f = 1 kH	
		2N5459	2000	4500	6000		· · · · · · · · · · · · · · · · · · ·	
lyos	Output Admittance			10	50	μmho	VDS = 15 V, VGS = 0, f = 1 kHz	
Ciss	Input Capacitance			4.5	7.0	pF	VDS = 15 V, VGS = 0, f = 1 MHz	
Crss	Reverse Transfer Capacitance			1.5	3.0	pF	VDS = 15 V, VGS = 0,f = 1 MHz	
NF	Noise Figure				3.0	dB	V _{DS} = 15 V, V _{GS} = 0, R _G = 1 MI BW = 1 Hz, f = 1 KHz	

Pulse test required. PW  $\leq$  630 ms, duty cycle  $\leq$  10%



# 2N5460-2N5465 P-Channel JFET

#### **ABSOLUTE MAXIMUM RATINGS**

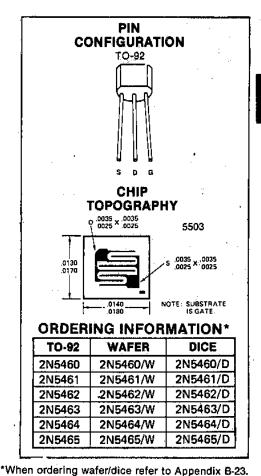
 (TA = 25° C unless otherwise noted)

 Drain-Gate or Source-Gate Voltage
 40V

 2N5460 - 2N5462
 40V

 2N5463 - 2N5465
 60V

 Gate Current
 10 mA


 Storage Temperature Range
 -65° C to +200° C

 Operating Temperature Range
 -55° C to +150° C

 Lead Temperature (Soldering, 10 sec.)
 +300° C

 Power Dissipation
 310 mW

 Derate above 25° C
 2.8 mW/° C

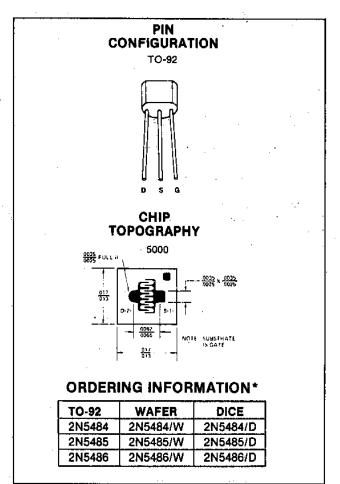


#### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

	PARAMETER		MIN	TYP	MAX	UNITS		TEST CONDITIONS	
	Gate Source Breakdown Voltage	2N5460, 2N5461, 2N5462_	40			Ψ.	lg = 10 μAdc, Vps = 0		
BVGSS	Gate-Source Breakdown Voltage	2N5463, 2N5464, 2N5465	60			] <u> </u>	IG - 10 AAdd, VDS - 0		
		2N5460, 2N5463	0.75		6.0				
VGS(off)	Gate-Source Cutoff Voltage	2N5461, 2N5464	1.0		7.6	] ٧	V _{DS} = 15 Vdc, I _D = 1,0 μAdc		
		2N5462, 2N5465	1.8		9.0				
	Gate Reverse Current	2N5460, 2N5461, 2N5462			5.0	] . [	V _{DS} = 0	V _{GS} = 20V	
	Gate Reverse Corrent	2N5463, 2N5464, 2N5465			5.0	nΑ		VGS = 30V	
1GSSR	TA = 100° C	2N5460, 2N5461, 2N5462.			1,0	μΑ		V _{GS} = 20V	
1	'A = 100°C	2N5463, 2N5464, 2N5465			1.0	] #4 [		V _{GS} = 30 ¹ /	
		2N5460, 2N5463	-1.0		-5.0				
DSS	Zero-Gate Voltage Drain Current	2N5461, 2N5464	<u>-2.Q</u>		-9.0	mA			
		2N5462, 2N5465	-4.0		16	<u> </u>	V _{DS} = -15V	. VGS = 0	
		2N5460, 2N5463	0.5	1	4.0	]		ID = 0.1 mA	
VGS.	Gate-Source Voltage	2N5461, 2N5464	8.0		4,5	) Ÿ		ID = -0.2 mA	
		2N5462, 2N5465	1.5		6.0	<u> </u>		I _D = -0.4 mA	
		2N5460, 2N5463	1000		4000				
9 _{fs}	Forward Transadmittance	2N5461, 2N5464	1500		5000	μmho .			
		2N5452, 2N5465	2000		6000	LI	V _{DS} = -15V	f = 1.0 kHz	
g _{os}	Output Admittance				75	μmho .	VGS = 0V	1 - 1:0 K112	
Ciss	Input Capacitance			. 5,0	7	pF	•65 0	1	
Crss	Reverse Transfer Capacitance			1.0	2.0	pF			
NF	Common-Source Noise Figure			1,0	2.5	dB		f = 100 Hz	
ē _n	Equivalent Short-Circuit Input Noise Voltage			.60	115	nV/ √Hz		BW = 1.0 Hz RG = 1.0 MΩ	



# 2N5484-2N5486 N-Channel JFET


#### **FEATURES**

- Up to 400 MHz Operation
- Economy Packaging
- C_{rss} < 1.0 pF</li>

# 1

#### **ABSOLUTE MAXIMUM RATINGS**

( I A = 25° U uniess otherwise specified)	
Drain-Gate Voltage	25V
Source Gate Voltage	
Drain Current 30	
Forward Gate Current	
Storage Temperature Range65°C to +20	0°C
Operating Temperature Range55°C to +15	0°C
Lead Temperature (Soldering, 10 sec.) +30	)0°C
Power Dissipation	
Derate above 25°C 2.8 mV	v/°.C



^{*}When ordering wafer/dice refer to Appendix B-23.

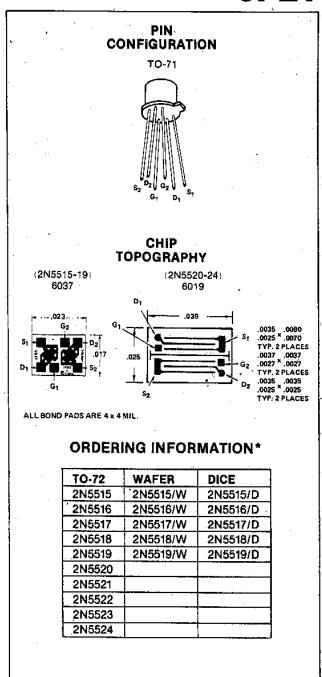
#### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

	PARAMETER	2N5	484	2N5	485	2N:	486	UNITS	TEST CONDITIONS		
	FARAIVIETER	MIN	MAX	MIN	MAX	MIN	MAX	1 014113.	LEST CONDITIONS		
¹ GSSR	Gate Reverse Current TA = 100°C		-1.0 -200		~1.0 -200	.,	~1.0 -200	пА	V _{GS} = -20 V, V _{DS} = 0	•	
8VGSS	Gate-Source Breakdown Voltage	-25		-25		-25			IG = -1 μA, VDS = 0		
VGS(off)	Gate-Source Cutoff Voltage	-0.3	-3.0	-0.5	-4.0	-2,0	-6.0	V	VDS = 15 V, ID = 10 nA		
DSS	Saturation Drain Current	1.0	5.0	4.0	10	8:0	20	" mA "	V _{DS} = 15 V, V _{GS} = 0 (Note 1)		
9fş	Common-Source Forward Transconductance	3000	6000	3500	7000	4000	8000			A A 1.11.	
gos	Common-Source Output Conductance		50		60 ,		75			f = 1 kHz	
Re(yfs)	Common-Source Forward Transconductance	2500.		3000	-	3500				f = 100 MHz f = 400 MHz	
Re(yos)	Common-Source Output Conductance		75		100		100	μmhos	; Vps = 16 V, Vgs = 0	f = 100 MHz f = 400 MHz	
Re _(yis)	Common Source Input Conductance		100		1000		1000			f = 100 MHz f = 400 MHz	
Ciss	Common-Source Input Capacitance		5.0		5.0		5.0				
Crss	Common-Source Reverse Transfer Capacitance		1.0	. ;	1.0		1.0	ρF		f = 1 MHz	
Coss	Common-Source Output Capacitance		2.0		2.0		2.0		'		
			2.5		2.5		2.5		VDS = 15 V, VGS = 0, RG = 1 MΩ	f ≃ 1 kHz	
NF ·	Noise Figure		3.0				-	] [	$V_{DS} = 15 \text{ V, } I_{D} = 1 \text{ mA, } R_{G} = 1 \text{ k}\Omega$	1 z=1100 MIN	
				<u> </u>	2.0 4.0		4.0	<u> </u>	Vps = 15 V, lp = 4 mA, Rg = 1-kΩ	f= 100 MHz f= 400 MHz	
		16	25					φB	V _{DS} = 15 V, 1 _D = 1 mA	f = 100 MHz	
G _{ps}	Common-Source Power Gain			18 10	30 20	18	30 20		V _{DS} = 15 V, I _D = 4 mA	f = 400 MHz	

**NOTE:** Pulse test required. Pulse width =  $300\mu$ s, duty cycle  $\leq 3\%$ .



#### **FEATURES**


- Tight Temperature Tracking
- Tight Matching
- High Common Mode Rejection
- Low Noise

#### **ABSOLUTE MAXIMUM RATINGS**

(T _A = 25°C unless otherwise specified)
Gate-Source or Gate-Drain Voltage40V
Gate Current (Note 1) 50 mA
Storage Temperature Range65°C to +200°C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300°C
ONE SIDE BOTH SIDES
Power Dissipation 250 mW 500 mW

Derate above 25°C .... 3.8 mW/°C ... 7.7 mW/°C

# 2N5515-2N5524 Monolithic Dual N-Channel JFET



^{*}When ordering wafer/dice refer to Appendix B-23.



#### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

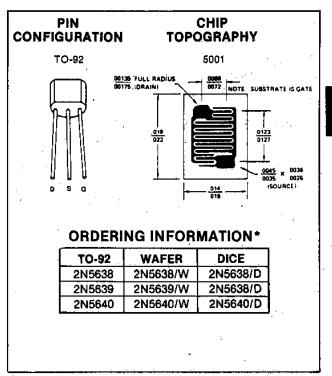
	PARAMETER		MIN	MAX	UNITS	TEST CONDITION	VS
IGSSR	Gate Reverse Current	T _A = 150°C		-250 -250	pA nA	V _{GS} = -30 V, V _{DS} = 0	
BVGSS	Gate-Source Breakdown Voltage		-40		V	$I_{G} = -1  \mu A, V_{DS} = 0$	
VP	Gate-Source Pinch-Off Voltage	-0.7	-4	7 <b>°</b> 1	V _{DS} = 20 V, I _D = 1 nA	· · · · · · · · · · · · · · · · · · ·	
IDSS	Drain Current at Zero Gate Volta	0.5	7.5	mA			
9fs	Common-Source Forward Transc (Note 1)	1000	4000	μmho		f = 1 kHz	
goss	Common-Source Output Conduc		10	]	$V_{DS} = 20 \text{ V, } V_{GS} = 0$		
C _{rss}	Common-Source Reverse Transfer Capacitance			-5	pF		f = 1 MHz
Ciss	Common-Source Input Capacitar	nce	1"	25	]		
		2N5515-19		30			f = 10 Hz
_	Maria Malana	2N5520-24		15	nV/√Hz		1 - 10 112
ē _n ·	Equivalent Input Noise Voltage	2N5515-24		10	1,		f=1kHz
1-	8-1- 6:			-100	pΑ		
IG	Gate Current	T _A = 125°C		-100	пА	$V_{DG} = 20 \text{ V, I}_{D} = 200 \mu \text{A}$	
VGS	Gate Source Voltage	1	-0.2	-3.8	V		
9fs	Common-Source Forward Transconductance (Note 1)			1000	μmho		f = 1 kHz
9oss .	Common Source Output Conduc	ctance		1	μmho		

#### MATCHING CHARACTERISTICS (25°C unless otherwise noted)

		2N55	15,20	2N59	16,21	2N55	17,22	2N5	518,23	2015	19,24	UNIT	TEST CONDITIONS	
. 174	ARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
IDSS1	Drain Current Ratio at	0.95	1. (	0.95	1	0.95	1	0,95	1	0.90	1		V _{DS} = 20 V, V _{GS} = 0	
DSS2	Zero Gate Voltage (Note 1)													
G1 -   G2	Differential Gate Current (+125°C)		10		10		- 10		10	•	10	пА	V _{DG} = 20 V, I _D = 200 μA	
9fs1	Transconductance Ratio	0.97	1	0.97	1	0,95	1	0.95	1	0.90	1		Vpg = 20 V, Ip = 200 μA	
9fs2	(Note 1)									1		] .	f = 1 KHz	
90ss1 = 90ss2  ·	Differential Output Conductance		0.1		0,1		0.1		0.1		0.1	μтhο	VDG = 20 V, ID = 200 μA f = 1 KHz	
VG\$1 -VGS2	Differential Gate-Source Voltage		5		5		10		15		15	mV ·	V _{DG} = 20 V, I _D = 200 μA	
<u>Δ VGS1 - VGS2</u> 1 ΔΤ	Gate-Source Voltage Differential Drift (TA = -55°C to : +125°C)		5		10		20		40		80	μV/°C	V _{DG} = 20 V, I _D = 200 μA	
CMRR	Common Mode Rejection Ratio (Note 2)	-100		100		90						dB	V _{DD} = 10 to 20 V, I _D = 200,	

1. Pulse duration of 28 ms used during test. 2. CMRR = 20 Log $_{10}\Delta V_{DD}/\Delta IV_{GS1} \sim V_{GS2}I$ , ( $\Delta V_{DD} \approx 10V$ )



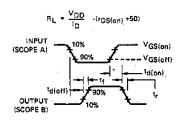

## 2N5638-2N5640 N-Channel JFET

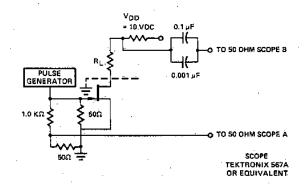
#### **FEATURES**

- Economy Packaging
- Fast Switching
- Low Drain-Source 'ON' Resistance

#### **ABSOLUTE MAXIMUM RATINGS**

(T _A = 25°C unless otherwise specified)	
Drain-Source Voltage 30V	1
Drain-Gate Voltage	1.
Source-Gate Voltage 30V	1
Forward Gate Current	
Storage Temperature Range65°C to +200°C	)
Operating Temperature Range55°C to +150°C	
Lead Temperature (Soldering, 10 sec.) +300°C	;
Power Dissipation 310 mW	l
Derate above 25°C 2.8 mW/°C	)





*When ordering wafer/dice refer to Appendix B-23.

#### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

	PARAMETER		2N	5638	2N	5639	2N!	5640	דומט	TEST CONDITIONS		
	ranawet en		MIN	MAX	MIN	MAX	MIN	MAX	ן ויואט. ך	TEST CONDITIONS	. 4	
6V _{GSS}	Gate Reverse Breakdown	Voltage	-30		-30		-30		, V	IG = -10 μA, V _{DS} = 0		
IGSSR	Gate Reverse Current			-1.0		-1,0		-1,0	пА	V _{GS} = -15 V, V _{DS} = 0		
-GSSA	Gate Neverse Current	T _A = 100°C		-1.0		~1.0		<b>⊷</b> 1.0	μА			
lat to	Drain Cutoff Current			1.0		1.0		1,0	nΑ	VDS = 15 V, VGS = -12 V (2N5638) VGS = -8 V (2N5639), VGS = -6 V (2N5640)		
^J D(off)	Diani Cutori Curient	$T_A = 100^{\circ}C$		1.0		1.0		1.0	μА			
IDSS	Saturation Drain Curren	:	50		25		5.0		mΑ	V _{DS} = 20 V, V _{GS} = 0 (Note 1)		
VDS(on)	Drain-Source ON Voltag	e		0.5		0.5		0,5	v	VGS = 0, ID = 12 mA (2N5638); ID = 6 mA (2N5639), ID = 3 mA (2N5640)		
rDS(on)	Static Drain-Source ON	Resistance		30		60		100	Ω	Ip = 1 mA, VGS = 0		
Tds(on)	Drain-Source ON Resista	ince		30		60		100	1 - **	'VGS = 0; LD = 0	= 1 kHz	
Ciss	Common-Source Input Capacitance			10		10		10	pF	Was = 12 W Was = 0	= 1 MHz	
Crss	Common Source Reverse Capacitance	Transfer		4.0		4.0		4.0	Pr.	VGŞ = -12 V, VDŞ = 0		
td(an)	Turn-On Delay Time			4.0		6.0		8.0		VDD = 10 V ID(on) = 12 mA (2N5638)		
tr	Rise Time	1 . 3.27		5.0		0,8		10	]	VGS(on) = 0   D(on) = 6 mA (2N5639)		
td ·	Turn-OFF Delay Time			5.0		10		15,	ns	VGS(off) = -10 V  D(on) = 3 mA (2N5640)		
tf	Fall Time			10	T	20		30	1	R _G = 50 Ω		

NOTE: 1. Pulse test; PW  $\leq$  300µs, duty cycle  $\leq$  3.0%.







# 2N5902-2N5909 Monolithic Dual N-Channel JFET

# 1

#### **FEATURES**

- Tight Tracking
- Good Matching

#### ABSOLUTE MAXIMUM RATINGS

(T_A = 25°C unless otherwise specified) Gate-Drain or Gate-Source

 Voltage (Note 1)
 -40V

 Gate Current (Note 1)
 10 mA

 Storage Temperature Range
 -65°C to +200°C

 Operating Temperature Range
 -55°C to +150°C

 Lead Temperature (Soldering, 10 sec.)
 +300°C

Derate above 25°C ..... 3 mW/°C 4 mW/

ONFIG	URATIO	FULL R	<del>-</del>	<u> </u>	GATES ARE ISOLATED FAIR SUBSTRATE  00332 0038 179 0032 179
c ^{∽2} ∭	P2    G2    D1 S1 ORDER	ING IN	FORM	ATION'	
c ^{∽2} ∭	D) S1	ING IN	FORM TO-99	ATION'	DICE
C 32 U	ORDER			WAFER	<del></del>
C 91 TO-99 2N5902	ORDER	DICE	TO-99	WAFER 2N5906/W	DICE
C 21 Q1 TO-99 2N5902 2N5903	ORDER WAFER 2N5902/W	DICE 2N5902/D	TO-99 2N5906 2N5907	WAFER 2N5906/W	DICE 2N5906/D

*When ordering wafer/dice refer to Appendix B-23.

#### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

1	PARAMETER	2N59	902-5	2N5	906-9	UNIT				
	FARAMETER ,	MIN	MAX	MIN	MAX	וואט	. TEST CO	ONDITIONS		
1GSSR	Gate Reverse Current		-5		-2	pΑ	Von = 20 V V- = = 0			
	TA = 125°C	<del></del>	-10		-5	пА	VGS = ~20 V, VDS = 0			
BVGSS	Gate-Source Breakdown Voltage	-40		-40			$I_G = -1 \mu A, V_{DS} = 0$	-		
VGS(off)	Gate-Source Cutoff Voltage.	-0.6	4.5	-0.6	-4.5	v [	$V_{DS} = 10 \text{ V, I}_{D} = 1 \text{ nA}$			
VGS	Gate Source Voltage		-4		4		- · · · · · · · · · · · · · · · · · · ·			
IG	Gate Operating Current T _A = 125°C	ļ	-3		-1	ρA	V _{DG} = 10.V, I _D = 30 μA			
DSS	Saturation Drain Current		~3		-1	nA	10G 101710 20MA			
צפטי	Common-Source Forward	30	500	30	500	μA				
9fs	Transconductance	70	250	70	250	umho		, , , , ,		
9os .	Common-Source Output Conductance		. 5		5	- μπιτιο	Vps = 10 V, Vgs = 0	f=1kHz		
C _{iss} "	Common-Source Input Capacitance		3		3	pF		f = 1 MHz		
C _{rss}	Common-Source Reverse Transfer Capacitance		1.5		1.5	] P'		T = 1 Mmz		
9fs	Common-Source Forward Transconductance	50	150	50	150		· · · · · · · · · · · · · · · · · · ·			
9os	Common-Source Output Conductance	ļ	1		<del>                                     </del>	μmho	VDG = 10 V, ID = 30 μA			
e _n	Equivalent Short Circuit Input Noise Voltage		0:2	<del> </del>	0.1	μV √Hz	-	-f=1kHz		
NF	Spot Noise Figure		3		1	dB	V _{DS} = 10 V, V _{GS} = 0	f = 100 Hz		
<u></u>	PARAMETER	2N59 MIN	02-6 MAX	2N5903-7 MIN MAX		2N5904-8 MIN MA	I I HALLT	RG = 10 MΩ TEST CONDITIONS		
			2.0		2.0	2.0	2.0	VDG = 10 V, 2N5902-5		
G1- G2	Differential Gate Current		0.2		0,2	0.2		$ID = 30 \mu A$ , $2N5906-9$		
IDSS1 IDSS2	Saturation Drain Current Ratio	0.95	1	0.95	1	0,95 1	0.95 1	V _{DS} = 10 V, V _{GS} = 0		
9fs1 9fs2	Transconductance Ratio	0.97	1	0,97	1	0.95 1	0.95 1	f = 1 kH2		
IVGS1-VG	S2 Differential Gate-Source Voltage		5		5	10	15 mV	1 .		
AlVastaVocal Gate-Source Voltage Differentia			5	-	10	20	40 μV/°C	V _{DG} = 10 V, T _A = 25°C 1 _D = 30 μA T _B = 125°C		
ΔΤ	Drift (Measured at end points TA and TB)		5		10	20		TA = -56°C TB = 25°C		
90s1-90s2	Differential Output Conductance		0,2		0.2	0.2	0.2 μmho			

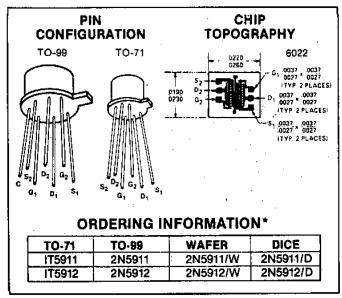
NOTE 1: Per transistor.



#### **FEATURES**

- Tight Tracking
- Low Insertion Loss
- Good Matching

#### **ABSOLUTE MAXIMUM RATINGS**


(TA = 25 C diffess officially
Gate-Drain or Gate Source Voltage25V
Gate Current 50 mA
Storage Temperature Range65°C to +200°C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300°C

TO-71 TO-99

ONE SIDE 80TH SIDES ONE SIDE 80TH SIDES
Power Dissipation 300 mW 500 mW 300 mW 500 mW

1.7 2.9 3.0 4.0
Derate above 25°C mW/°C mW/°C mW/°C mW/°C

## 2N5911, 2N5912 IT5911, IT5912 Monolithic Dual N-Channel JFET



*When ordering wafer/dice refer to Appendix B-23.

#### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

		PARAMETER			MIN	I N	/AX	UNIT	TEST CONDITIO	ONS		
IGSSR	Gaté F	Reverse Current	.0.				100	pΑ	VGS = -15 V, VDS = 0			
		IA *	= 150°C	<u>. ·                                     </u>	-		250	nΑ		· ·		
BVGSS		teverse Breakdown Voltage			-25	-			$1_{G} = -1  \mu A,  V_{DS} = 0$			
VGS(off)		ource Cutoff Voltage			_1		~5	V .	V _{DS} = 10 V, l _D = 1 nA			
VGS	Gate-S	ource Voltage			-0.3		-4					
IG	Gate 0	përating Current	= 125°C		1		·100 ·100	pA nA	$V_{DG} = 10 \text{ V, I}_{D} = 5 \text{ mA}$			
DSS	Saturation Drain Current (Pulsewidth 300 µs, duty cycle ≤ 3%)					7	40	mA	V _{DS} = 10 V, V _{GS} = 0 V			
9fs	Comm	on-Source Forward Transcon	nductane	е	5000	7 10	0,000		•	f = 1 kHz		
9fs	Comm	on-Source Forward Transcon	nductane	e	5000	) 10	000,0			f = 100 MHz		
9os	Comm				100	μmho	. '	f = 1 kHz				
9oss	Сотт		1		150		•	f = 100 MHz				
Ciss							5	'pF	$V_{DG} = 10 \text{ V}, I_{D} = 5 \text{ mA}$	f = 1 MHz		
Crss	Сотп	ion-Source Reverse Transfer (	Capacita	nce			1.2					
ēn	Equiv	alent Short Circuit Input Nois	se Voltaç	ge			20	_nV √Hz		f = 10 kHz		
NF	Spot I	Noise Figure					1	dB		f = 10 kHz R _G = 100KΩ		
	·	DADAMETED	l I	IT, 2N59		IT, 2	N5912	UNIT	TEST COMPLETIONS			
	ı	PARAMETER	IV	IIN	MAX	MIN	MAX	Civit	TEST CONDITIONS			
IG1-IG2		Differential Gate Current		- 1	20		20	nΑ	$V_{DG} = 10 \text{ V, ID} = 5 \text{ mA}$	125°C		
10551 10552		Saturation Drain Current Rat	tio 0	.95	1.	0.95	1		VDS = 10 V, VGS = 0 (Pulsewidth 300 $\mu$ s, duty cy	/cle <b>≤ 3%</b> )		
VGS1-V	GS2	Differential Gate-Source Volt	tage		10		15	mV				
Δ VGS1-\		Gate-Source Voltage Differen			20		40	μV/°C		$T_A = 25^{\circ}C$ $T_B = 125^{\circ}C$ $T_A = -65^{\circ}C$		
	Drift (Measured at end points, TA and TB)		s,		20		40	μν/ υ	V _{DG} = 10 V, I _D = 5 mA	T _A = -55°C T _B = 25°C		
9fs1 9fs2		Transconductance Ratio	0	.95	1	0.95	1			f = 1 kHz		



# 2N6483-2N6485 Monolithic Low Noise Dual N-Channel JFET

#### **FEATURES**


- Ultra Low Noise
- High CMRR
- Low Offset
- Tight Tracking

# 1

#### **ABSOLUTE MAXIMUM RATINGS**

(TA = 25°C unless otherwise noted)
Gate-Source or Gate-Drain Voltage (Note 1) ... -50V
Gate-Gate Voltage ... ±50V
Gate Current (Note 1) ... 50 mA
Storage Temperature Range ... -65°C to +200°C
Operating Temperature Range ... -55°C to +150°C
Lead Temperature (Soldering, 10 sec.) ... +300°C

ONE SIDE BOTH SIDES
Power Dissipation ... 250 mW ... 500 mW
Derate above 25°C ... 3.8 mw/°C ... 7.7 mW/°C



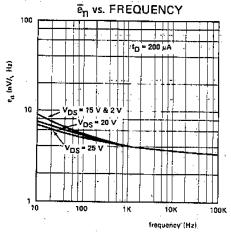
^{*}When ordering wafer/dice refer to Appendix B-23.

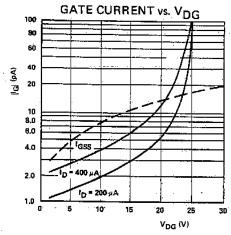
#### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

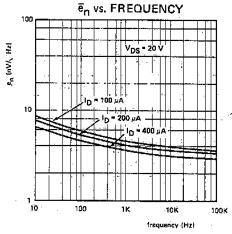
SYMBOL	PARAN	METER	MIN.	MAX.	UNIT	TEST CONDITIONS	
I _{GSS}	Gate Reverse Current		Ĭ	200	ı,Α.	V _{GS} = -30 V V _{DS} - 0	
.033		T _A = 150°C		200	пA		
BVGSS	Gate Source Breakdown V	oltage	50-		, ,	I _G = 1 μA, V _{DS} = 0	
Ϋ́ρ	Gate Source Pinch Off Vo	liage	0.7	4.0	· ·	V _{DS} : 20 V, I _D = 1 nA	
DSS	Drain Current at Zero Gat	e Voltage (Note 2)	0.5	7.5	, mA	V _{DS} = 20.V, V _{GS} = 0	
g _{fs}	Common Source Forward	Transconductance (Note 2)	1000	4000			
goss	Common Source Output C	Conductance		1,0 .	סוודוע	V _{DS} = 20 V, V _{GS} = 0, f = 1 KHz	
Ciss	Common Source Input Ca	pacitance		20	ηF		
C _{rss}	Common Source Reverse	Fransfer Capacitance	.,	3.5	- PF	V _{DS} = 20 V, V _{GS} = 0, r = 1 MHz	
1 _G	Gate Current		1	100	Αq	V _{GD} 20 V, I _D = 200 µA,	
		T _A = 150°C		100	nΑ	•	
V _G s	Gate-Source Voltage		0.2	3.8	٧	V _{DG} = 20 V, I _D = 200 µA	
915	Common Source Forward	Transconductance	500	1500		V _{DG} = 20 V, I _D = 200 μA, f = 1 KHz	
905	Common Source Output Conductance			1	μmho	V _{DG} = 20 V, I _D = 200 μA	
ē _n	Equivalent input Noise Voltage			10	nV/ <b>√</b> Ff2	V _{DS} = 20 V, I _D = 200 μA, I + 10 Hz	
			[	5		V _{DS} * 20 V, I _D * 200 µA, f = 1 KHz	

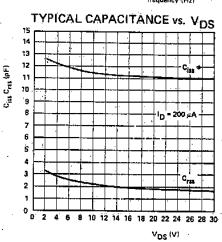
- NOTES: 1. Per transistor.
  - 2. Pulse test required; pulse width = 2 ms.

#### MATCHING CHARACTERISTICS (@ 25°C unless otherwise noted)


SYMBOL	PARAMETER	2N(	6483	. 2N	5484	2N	64.85	T	CONDITIONS
31 MBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT	
DSS1 DSS2	Drain Current Ratio at Zero Gate Voltage	0.95	1	0.95	, 1	0.95	1		V _{DS} = 20 V, V _{GS} = 0 (Note 2)
I _{G1} - I _{G2}	Differential Gate Current		10		10		10	nA	V _{DG} = 20 V, I _D = 200 μA T _A = +125°C
gfs1 ggs2	Transconductance Ratio	0.97	1	0.97	1	0.95	1		V _{DG} = 20 V, I _D = 200 μA, f = 1 KHz (Note 2)
g _{os1} - g _{os2}	Différential Output Conductance		Ó.1		0.1		0.1	μmho	V _{DG} = 20 V, I _D = 200 μA, f = 1 KHz
IV _{GS1} - V _{GS2} I	Differential Gate-Source Voltage		5		10	,	15	mV	V _{DG} = 20 V, I _D = 200 μA
ΔΙV _{GS1} - V _{GS2}   ΔΤ	Gate-Source Voltage Differential Drift		5		10		25	μV/°C	V _{DG} = 20 V, I _D = 200 μA T _A = -55°C to +125°C.
CMRR	Common Mode Rejection Ratio	100		100		90		dB.	V _{DD} = 10 to 20 V, I _D = 200 µA (Note 3)


NOTES: 1. These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.


2. Pulse duration of 2 ms used during test.


3. CMRR = 20Log₁₀^{ΔV}_{DD}^{ΔV}_{GS1} - V_{GS2}, (ΔV_{DD} = 10 V), not included in JEDEC registration

#### TYPICAL OPERATING CHARACTERISTICS









#### **FEATURES**

- Ultra Low Noise
- High CMRR
- Low Offset
- Tight Tracking

# 1

#### **ABSOLUTE MAXIMUM RATINGS**

 (TA = 25° C unless otherwise noted)

 Gate-Source or Gate-Drain Voltage (Note 1)
 -50V

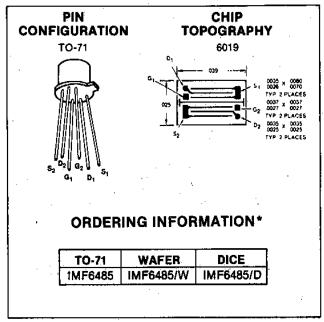
 Gate-Gate Voltage
 ±50V

 Gate Current (Note 1)
 50 mA

 Storage Temperature Range
 -65° C to +200° C

 Operating Temperature Range
 -55° C to +150° C

 Lead Temperature (Soldering, 10 sec.)
 +300° C


 ONE SIDE
 BOTH SIDES

 Power Dissipation
 250 mW
 500 mW

 Derate above 25° C
 3.8 mW/° C
 7.7 mW/° C

#### **GENERAL DESCRIPTION**

This N-Channel Junction FET is characterized for ultra low noise applications requiring tightly controlled and specified noise parameters at 10 Hz and 1000 Hz. Tight matching specifications make this device ideal as the input stage for low frequency differential instrumentation amplifiers.

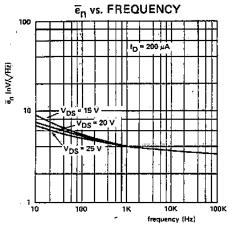


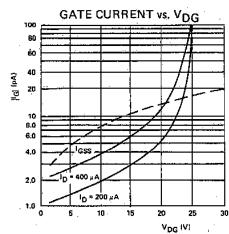
*When ordering wafer/dice refer to Appendix B-23.

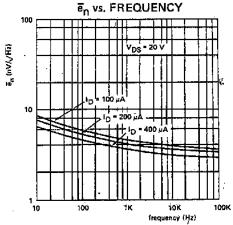
#### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

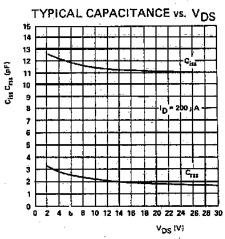
SYMBOL	PARAME	TER	MIN.	MAX.	UNIT	TEST CONDITIONS
1	Gate Reverse Current	ı		-200	рĄ	V _{GS} = -30 V, V _{DS} = 0,
^I GSS	Gate Neverse Current	T _A = 150°C		-200	nΑ	
BV _{GSS}	Gate-Source Breakdown Vo	oltage	-50		v.	I _G = -1 μA, V _{DS} = 0
v _p	Gate-Source Pinch-Off Vol	tage	-0.7	-4,0		V _{DS} = 20 V, I _D = 1 nA
DSS	Drain Current at Zero Ga (Note 2)	te Voltage	0.5	7.5	mA	V _{DS} = 20 V, V _{GS} = 0
9fs	Common-Source Forwar (Note 2)	d Transconductance	1000	4000	μmha	V _{DS} = 20 V, V _{GS} = 0, f = 1 KHz
9 _{oss}	Common Source Output Conductance			10		V _{DS} = 20 V, V _{GS} = 0, f = 1.KHz
C _{iss}	Common-Source Input Capacitance			20	ρË	V _{DS} = 20 V, V _{GS} = 0, f = 1 MHz
C _{rss}	Common-Source Reverse T	ransfer.Capacitance		3.5		V _{DS} = 20 V, V _{GS} = 0, F = 1 MHz
, ]	Cata Comment			-100	pΑ	V _{GD} = 20 V, I _D = 200 μA,
'G	Gate Current	T _A = 150°C		-100	nA '	
v _{GS}	Gate-Source Voltage	'	0.2	-3.8	V·	V _{DG} = 20 V, I _D = 200 μA
9fs	Common Source Forward Transconductance		500	1500	μπήο	V _{DG} = 20 V, I _D = 200 μA, f = 1 KHz
9 _{OS}	Common-Source Output Co	onductance		1		V _{DG} = 20 V, I _D = 200 μA
_	Port alexander a plat of the			15	nV/√Hz	V _{DS} = 20 V, I _D = 200 µA, f = 10 Hz
ēn	Equivalent Input Noise Vol	tage	. —	10		V _{DS} = 20.V, I _D = 200 μA, J = 1 KHz

#### NOTES:


- 1. Per transistor.
- 2. Pulse test required; pulse width = 2 ms.


#### MATCHING CHARACTERISTICS (@ 25° C unless otherwise noted)


SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
I _{DSS1}	Drain Current Ratio at Zero Gate Voltage	0.95	1		V _{DS} = 20 V, V _{GS} = 0 (Note 2)
	Differential Gate Current		10	пΑ	V _{DG} = 20 V, I _D = 200 μA T _A = +125° C
g _{fs1} g _{gs2}	Transconductance Ratio	0.95	1 .		V _{DG} = 20 V, I _D = 200 μA, f = 1 KHz (Note 2)
g _{os1} - g _{os2}	Differential Output Conductance		0.1	μmho ,	V _{DG} = 20 V, I _D = 200 μA, f = 1 KHz
v _{GS1} - v _{GS2}	Differential Gate-Source Voltage		25	mV	V _{DG} = 20 V, I _D = 200 μA
$\frac{\Delta \left  V_{GS1} - V_{GS2} \right }{\Delta T}$	Gate-Source Voltage Differential Drift		40	μV/° C	V _{CG} = 20 V, I _D = 200 μA T _A = -55°C to +125° C
CMRR	Common Mode Rejection Ratio	90		dB	V _{DD} = 10 to 20 V, I _D = 200 μA (Note 3)


NOTES: 1. These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.
 2. Pulse duration of 2 ms used during test.
 3. CMRR = 20Log₁₀ΔV_{DD}/ΔIV_{GS1} - V_{GS2}I, (ΔV_{DD} = 10 V)

#### TYPICAL OPERATING CHARACTERISTICS

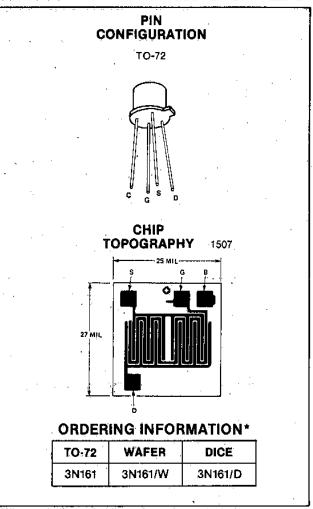











# 3N161 Diode Protected P-Channel Enhancement Mode MOSFET

#### **FEATURES**

- Channel Cut Off with Zero Gate Voltage
- Square-Law Transfer Characteristic Reduces Distortion
- Independent Substrate Connection Provides Flexibility in Biasing
- Internally Connected Diode Protects Gate from Damage due to Overvoltage

#### **ABSOLUTE MAXIMUM RATINGS**

(T _A = 25°C unless otherwise noted)
Drain-Source or Drain-Gate Voltage 40V
Drain Current 50 mA
Gate Forward Current
Gate Reverse Current 1 mA
Storage Temperature65°C to +200°C
Operating Temperature55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300°C
Power Dissipation
Derate above 25°C 3,0 mW/°C



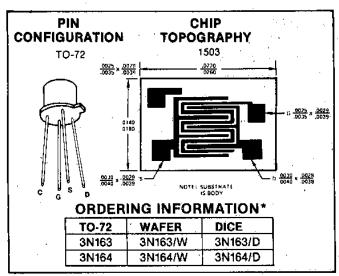
*When ordering wafer/dice refer to Appendix B-23.

#### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNIT	TEST CONDITIONS
1GSSF	Forward Gate-Terminal Current		-100		рÁ	V _{GS} = -25 V, V _{DS} = 0
	$T_A = +100^{\circ}C$			-1	nΑ	
BVGSS	Forward Gate-Source Break- down Voltage	-25	· .		V	IG -0.1 mA, VDS = 0,
1	Zana Cara Waltana Dunia Command		-:	~10	пA	V _{DS} = -15 V, V _{GS} = 0
IDSS	Zero-Gate-Voltage Drain Current			-10	μΑ	V _{DS} = -25 V, V _{GS} = 0
V _{GS(th)}	Gate-Source Threshold Voltage	-1.5		-5		$V_{DS} = -15V$ , $I_{D} = -10 \mu A$
V _G Ş	Gate-Source Voltage	-4.5		-8	V	VDS = -15 V, ID = -8 mA
ID(on)	On-State Drain Current	-40		-120	mΑ	V _{DS} = -15 V, V _{GS} = -15 V
yfsl .	Small-Signal Common-Source Forward Transfer Admittance	3500		6500		d - 11.11s
lyosi	Small-Signal Common-Source Output Admittance			250	μmho	f = 1 kHz
Ciss	Common-Source Short-Circuit Input Capacitance			10		VDS = -15 V, ID = -8 mA
Crss	Common-Source Short-Circuit Reverse Transfer Capacitance			4	pF	-



# 3N163, 3N164 P-Channel Enhancement **Mode MOS FET**


#### **FEATURES**

- Very High Input Impedance
- High Gate Breakdown
- Fast Switching
- Low Capacitance

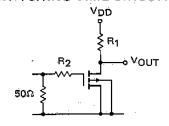
#### **ABSOLUTE MAXIMUM RATINGS** (Note 1)

(TA = 25°C unless otherwise noted) Drain-Source or Drain-Gate Voltage 3N163 ...... 3N164 ...... Static Gate-Source Voltage 3N163 ..... ±40V 3N164 ..... ±30V Transient Gate-Source Voltage (Note 2) ...... ±125V Drain Current ...... 50 mA Storage Temperature ...... -65°C to +200°C Operating Temperature ........... -55°C to +150°C Lead Temperature (Soldering, 10 sec.) ...... +300°C 

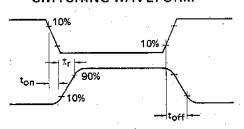
- 1. See handling precautions on 3N170 data sheet.
- 2. Devices must not be tested at ±125V more than once, nor for longer than 300 ms.



*When ordering wafer/dice refer to Appendix B-23.


#### ELECTRICAL CHARACTERISTICS (@ 25°C and V_{BS} = 0 unless noted)

	Parameter		. 3N1	1.63	3N1	164		TEAT CONSTITUTE
Symbol	Paramete	r	MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS
IGSSR	Gate Reverse Leakage (	Current		10		10		
IGSSF	Gate Forward Current			-10		-10	pA	VG5 = ~40V (3N163) VGS = ~30V (3N164)
	1	T _A = +125°,C		-25		-25		
BVoss	Drain-Source Breakdov	vn Voltage	<b>-40</b>		-30	Ĭ		I _D = -10 μA, V _{GS} = 0
. BV _{SDS} .	Source Drain Breakdov	wn Voltage	-40	1	-30			I _S = -10 μA, V _{GD} = 0, V _{DB} = 0
V _{GS(m1}	Threshold Voltage		-2,0	-5.0	-2,0	-5,0	V	V _{DS} = V _{GS} , I _D = -10 µA
V _{GS(th)}	Threshold Voltage	1	-2.0	-5.0	~2.0	-5.0	1	V _{DS} : -15V _c I _D ·· -10 µA
V _{GS}	Gate Source Voltage		-3.0	-6,5	-3.0.	6.5	] . `	V _{DS} = =15V, I _D = +0.5 mA
Ipss	Zero Gate Voltage Dra	in Current		200	į.	400		V _{DS} = -15V, V _{GS} - 0
1 _{SDS}	Source Disin Current			400		. 800	PA	V _{SD} 15V, V _{GS} · V _{DB} = 0
rDS(on)	Drain-Source on Resist	tance		250		300	òhms	V _{GS} = -20V, I _D = -100 μA
D(onl	On Drain Current		-5.0	-30.0	-3.0	-30.0	mA	V _{DS} = -15V, V _{GS} = -10V
915	Forward Transconduct	tance	2000	4000	1000	4000	μmhos	Vps = -16V, lp =-10 mA, f - 1 KHz
9os	Output Admittance			250		250	диноз	103 107,10 10117, 1117
, C _{iss}	Input Capacitance - C	utput Shorted		2.5		2.5		
C _{rss}	Reverse Transfer Capa	citance		0.7		0.7	pF	V _{DS} r =15V ₁ ·l _D = =10 mA ₁ f =-1 MHz
Coss	Output Capacitance In	put Shorted		3.0		3.0	]	


#### SWITCHING CHARACTERISTICS (@ 25°C and V_{BS} = 0)

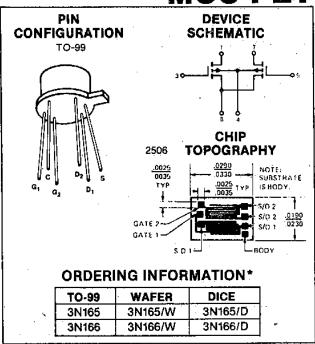
1	t _{oñ} -	Turn-On Delay Time	12	12		V _{DD} =: -15V
	t _r	Rise Time	24	24	FIS	locant = -10 mA
1	t _{oн}	Turn-Off Time	50	- 50	·	R _G = R _L = 1,4 kΩ .

#### SWITCHING TIME CIRCUIT



#### SWITCHING WAVEFORM






# 3N165, 3N166 Dual P-Channel Enhancement Mode MOS FET

#### **FEATURES**

- Very High Impedance
- · High Gate Breakdown
- Low Capacitance

#### ABSOLUTE MAXIMUM RATINGS (Note 1)



When ordering water/dice refer to Appendix B-23.

#### ELECTRICAL CHARACTERISTICS (@ 25°C and V_{3S} = 0 unless notes)

•	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
IGSSR	Gate Reverse Leakage Current		1,0		$V_{GS} = 40V$
Igssf	Gate Forward Leakage Current		- 10		V _{GS} = -40V
	T _A =+125°C		- 25	pΑ	VGS = -40V
IDSS	Drain to Source Leakage Current		- 200	1	$V_{DS} = -20V$
I _{SDS}	Source to Drain Leakage Current	· · · · · · · · · · · · · · · · · · ·	- 400,	1	$V_{SD} = -20, V_{DB} = 0$
I _{D(on)}	On Drain Current	-5	30	mA	$V_{DS} = -15V, V_{GS} = -10V$
V _{GS(th)}	Gate Source Threshold Voltage	-2	-5	V	$V_{DS} = -15V, I_{D} = -10\mu A$
V _{GS(th)}	Gate Source Threshold Voltage	-2	-5	] V	$V_{DS} = V_{GS}, I_{D} = -10\mu A$
rDS(on)	Drain Source ON Resistance		300	ohms	$V_{GS} = -20V, I_{D} = -100\mu A$
g _{fs}	Forward Transconductance	1500	3000	μmhos	$V_{DS} = -15V, I_{D} = -10mA, f = 1kHz$
gos	Output Admittance		300	ринноз	VDS = - (64, 10 = - 16112, 1 = 1812
Ciss	Input Capacitance		3.0	-	
Crss	Reverse Transfer Capacitance		0.7	ρF	$V_{DS} = -15V, I_{D} = -10mA, f = 1MHz$
Coss	Output Capacitance		3.0		
RE(Yfs)	Common Source Forward Transconductance	1200		μmhos	$V_{DS} = -15V$ , $I_{D} = -10$ mA, $f = 100$ MHz

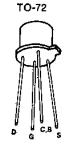
#### MATCHING CHARACTERISTICS 3N165

	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Y _{fs1} /Y _{fs2}	Forward Transconductance Ratio	0.90	1.0		$V_{DS} = -15V, I_D = -1500\mu A, f = 1KHz$
V _{GS1-2}	Gate-Source Threshold Voltage Differential		100	mV	$V_{DS} = -15V, I_{D} = -500\mu A$
ΔVGS1-2	Gate Source Threshold Voltage Differential Change with Temperature		100	V/9.0	V _{DS} = -15V, I _D = -500μA
			100	μV/°C	$T_A = -55^{\circ} \text{C to } +25^{\circ} \text{C}$

Note 1: See handling precautions on 3N170 data sheet. Note 2: Per transistor.

Note 3: Devices must not be tested at ±125V more than once, nor for longer than 300 ms.

# 


# 3N170, 3N171 **N-Channel Enhancement Mode MOS FET**

#### **FEATURES**

- Low Switching Voltages Fast Switching Times
- Low Drain-Source Resistance
- Low Reverse Transfer Capacitance

#### **ABSOLUTE MAXIMUM RATINGS**

#### PIN CONFIGURATION



#### CHIP **TOPOGRAPHY** 1003

 $\frac{0025}{0035} \times \frac{0029}{0039}$ Note: Substrate is body.

#### HANDLING PRECAUTIONS

MOS field-effect transistors have extremely high input resistance and can be damaged by the accumulation of excess static charge. To avoid possible damage to the device while wiring, testing, or in actual operation, follow the procedures outlined below.

- 1. To avoid the build-up of static charge, the leads of the devices should remain shorted together with a metal ring except when being tested or used:
- 2. Avoid unnecessary handling. Pick up devices by the case instead of the leads.
- 3. Do not insert or remove devices from circuits with the power on as transient voltages may cause permanant damage to the devices.

#### ORDERING INFORMATION*

TO-72	WAFER	DICE
3N170	3N170/W	3N170/D
3N171	3N170/W	3N170/D

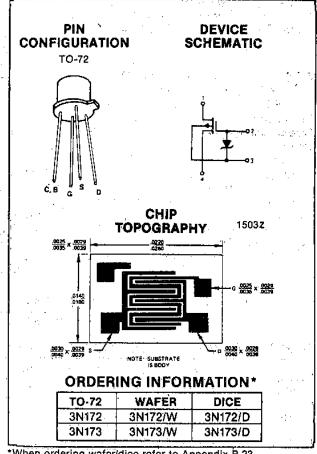
#### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) Substrate connectored to source.

PARAMETER		MIN	MAX	UNITS	TEST CONDITIONS			
BVDSS	Drain-Source Breakdov	vn Voltage	25		V	I _D = 10 μA, V _{GS} = 0		
1GSS Gate Leakage Current TA = 1				10	pΑ	V _{GS} = -35 V, V _{DS} = 0 .		
1033	3333	$T_A = 125^{\circ}C$		100	<u> </u>			
DSS -	Zero-Gate-Voltage Dra	in Current		10	nA	V _{DS} = 10 V, V _{GS} = 0		
		$T_A = 125^{\circ}C$		1,0	μΑ			
VGS(th)	Gate-Source Threshold	3N170	1.0	2.0	v	$V_{DS} = 10 \text{ V, I}_{D} = 10 \mu\text{A}$		
	Voltage	3N171	1.5	3.0				
ID(on)	"ON" Drain-Current		10	<del></del>	mA	VGS = 10 V, VDS = 10 V		
VDS(on)	Drain-Source "ON" Voltage			2.0	V	ID = 10 mA, VGS = 10 V		
rds(on)	Drain-Source ON Resistance			200	Ω	V _{GS} = 10 V, I _D = 0, f = 1.0 kHz		
Y _{fs}	Forward Transfer Admittance		1000		μmhos	$V_{DS} = 10 \text{ V, } I_D = 2.0 \text{ mA,}$ f = 1.0 kHz		
Crss	Reverse Transfer Capac	citance		1.3		V _{DS} = 0, V _{GS} = 0, f = 1.0 MHz		
Ciss	Input Capacitance			5.0	рF	V _{DS} = 10 V, V _{GS} = 0, f = 1.0 MHz		
C _{d(sub)}	Drain-Substrate Capaci	tance		5.0	<u> </u>	V _D (SUB) = 10 V, f = 1.0 MHz		
^t d(on)	Turn-On Delay Time Rise Time Turn-Off Delay Time			3.0	]	$V_{DD} = 10 \text{ V}, I_{D(on)} = 10 \text{ mA},$		
t _r				10	ns	$V_{GS(on)} = 10 \text{ V}, V_{GS(off)} = 0,$		
td(off)				3.0		$R_G = 50 \Omega$		
tf	Fall Time			15	<b>1</b>	r.C − 20 12		

^{*}When ordering wafer/dice refer to Appendix B-23.



# 3N172, 3N173 Diode Protected P-Channel Enhancement Mode MOS FET


#### FEATURES

- High Input Impedance
- Diode Protected Gate

#### ABSOLUTE MAXIMUM RATINGS

(T_A = 25°C unless otherwise noted)

Drain-Source or Drain-Gate Voltage
3N172 40\
3N173 30\
Drain Current 50 mA
Gate Forward Current
Gate Reverse Current 1 mA
Storage Temperature65°C to +200°C
Operating Temperature55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300°C
Power Dissipation
Derate above 25°C 3.0 mW/°C



*When ordering wafer/dice refer to Appendix B-23.

#### ELECTRICAL CHARACTERISTICS (@ 25°C and V_{BS} = 0 unless noted)

	PARAMETER		3N172		3N	173			
			MIN	MAX	MIN	MAX	UNITS	TEST CONDITIONS	
	I _{GSSR}	Gate Reverse Current	1	.a	-200		-500	pА	V _{GS} = -20V
•			T _A = +125°C		-0.5		-1.0	μΑ	
	BV _{GSS}	Gate Breakdown Voltage		-40	-125	-30 ·	-125	·	I _D = ~10 μA
	8V _{D\$S}	Drain-Source Breakdown Voltage		-40		-30			I _D = -10 μA
•	BV _{SOS}	Source-Drain Breakdown Voltage		-40		-30		v	$I_S = -10 \mu\text{A}, V_{OB} = 0$
	$V_{GS(th)}$	Threshold Voltage		-2.0	-5.0	-2.0	-5,0		V _{DS} = V _{GS} , I _D = -10 μA
				-2.0	<b>-</b> 5.0	-2.0	-5.0		V _{DS} = -15V, I _D = -10 μA
	V _{GS}	Gate Source Voltage		-3.0	-6.5	-2.5	-6.5		$V_{DS} = -15V$ , $I_{D} = -500 \mu\text{A}$
	loss	Zero Gate Voltage Drain Current			-0.4		-10	nΑ	V _{DS} = -15V, V _{GS} = 0
	lsos	Zero Gate Voltage Sc	ource Current		-0.4		-10	:	V _{SD} = -15V, V _{DB} = 0, V _{GD} = 0
	rosioni	Drain Source On Res	istance		250	,	350	ohms	V _{GS} = -20V, I _D = -100 μA
	I _{D(on)}	On Drain Current		-5.0	-30	-5.0	-30	mA	V _{DS} = -15V, V _{GS} = -10V



# 3N188-3N191 Dual P-Channel Enhancement Mode MOSFET

#### **FEATURES**

- · Very High Input Impedance
- High Gate Breakdown 3N190-3N191
- Zener Protected gate 3N188-3N189
- Low Capacitance

#### **ABSOLUTE MAXIMUM RATINGS**

 (TA = 25° C unless otherwise noted)

 Drain-Source or Drain-Gate Voltage (Note 1)

 3N188, 3N189
 40V

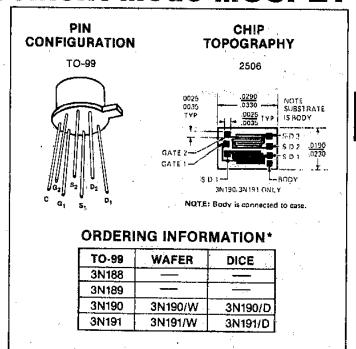
 3N190, 3N191
 30V

 Transient Gate-Source Voltage (Notes 1 and 2)
 ±125V

 Gate-Gate Voltagae
 ±80V

 Drain Current (Note 1)
 50 mA

 Storage Temperature
 -65°C to +200°C


 Operating Temperature
 -55°C to +150°C

 Lead Temperature (Soldering, 10 sec.)
 +300°C

 Power Dissipation
 0ne Side
 300 mW

 Both Sides
 525 mW

 Total Derating above 25°C
 4.2 mW/°C



When ordering wafer/dice refer to Appendix B-23.

#### ELECTRICAL CHARACTERISTICS (25°C and V_{BS} = 0 unless otherwise noted)

		3N188 3N190 3N189 3N191		II			-		
	PARAMETER		MIN	MAX	MIN	MAX	דואט [־	TEST CONDITIO	NS
IGSSR	Gate Reverse Current					10	1 . 1	V _{GS} = 40V	
IGSSE	Gate Forward Current			~200	<u> </u>	-10	T PA F		<del></del>
		TA = 125°C		-200		-25	1 1	∨ _{GS} ≈ -40∨	
BVDSS	Drain-Source Breakdown Vi	oltage	-40		-40		7 1	I _D = -10μA	
BV _{SDS}	Source-Drain Breakdown V	oltage	-40	/	-40		† <del>[</del> -	I _S = -10μA, V _{BD} = 0	
VGS(th)	Threshold Voltage		- 2.0	- 5.0	- 2.0	-5.0	1 v F	V _{DS} = -15V, I _D = -10 μA	
	· / [		2.0	-5,0	- 2.0	- 5.0	1 -	VDS = VGS, 1D = -10 µA	
∨gs	Gate Source Voltage		~ 3.0	-6.5	- 3.0	- 6.5	┨	V _{DS} = -15V I _D = -500 μA	
IDSS	Zero Gate Voltage Drain Cu	rrent		-200		- 200	<del>1</del>	V _{DS} = -15V	
ISDS	Source Drain Current	<del></del> -	•	-400	┿──	~400	- pA -		
(DS(an)	Drain-Source on Resistance			300	<del> </del>	300	ohms	V _{SD} = -15V, V _{DB} = 0	
I _{D(on)}	On Drain Current		~5.0	- 30.0	- 5.0	-30,0	mA	V _{DS} = -20V, 1 _D = -100 μA	·
9fs	Forward Transconductance	(Note 3)	1500	4000	1500	4000	<del>                                     </del>	V _{DS} = -15V, V _{GS} = -10V	
Yos	Output Admittance			300	1300	300	μmhos		f = 1kH;
Ciss	Input Capacitance Output S	horred	<del></del>	4.5	<del> </del>	4.5	<del>                                     </del>		
	Reverse Transfer Capacitano			1.5	<del>                                     </del>		4	V _{DS} = -15V, I _D = -5 mA	
Coss	Output Capacitance Input,S			3.0	<del>                                     </del>	1.0	pF .	f = 1	

#### SWITCHING CHARACTERISTICS (@ 25°C and Vas = 0 unless noted)

	MIN	MAX	UNITS	TEST CONDITIONS
t _{d(on)} Turn On Delay Time		15		V _{DD} = -15V, I _D = -5 mA
t _r Rise Time		. 30	πş	$R_G = R_1 = 1.4 k\Omega$
t _{off} Turn Off Time		50		

#### MATCHING CHARACTERISTICS (@ 25°C and VBS = 0 unless noted) 3N188 and 3N190

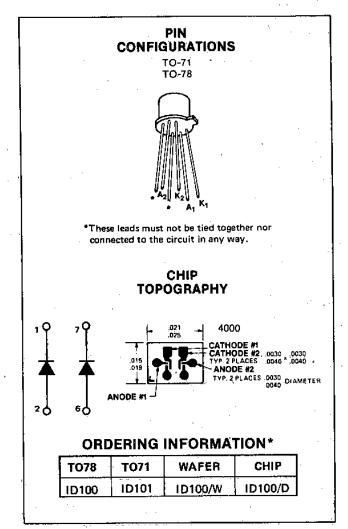
		MIN	MAX	UNITS	
Yfs1/Yfs2		0.85	1.0		V _{DS} = -15V, I _D = -500 μA, f = 1 kHz
VGS1-2	Gate Source Threshold Voltage-Differential		100	mV	V _{DS} , = -15V, I _D = -500 μA
ΔV _G \$1-2 ΔT	Gate Source Threshold Voltage Differential Change with Temperature (Note 4)		100	μV/°C	V _{Ds} = -15V, I _D = -500 μA, T = -55°C to + 25°C
<u>ΔVGS1-2</u> ΔΤ	Gate Source Threshold Voltage Differential Change with Temperature(Note 4)		100	μV/°C	V _{DS} = -15V, I _D = -500μA
	with temperature process	] . [		A*/ C	T = +25°C to +125°C

#### NOTES:

- 1. Per transistor
- Approximately doubles for every 10°C increase in T_A.

- 3. Pulse test duration = 300 µsec; duty cycle ≤ 3%.
- 4. Measured at end points, TA and TB.

#### **FEATURES**

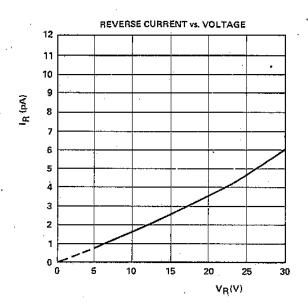

- $I_R = 0.1 pA (typical)$
- BVR > 30 V
- C_{rss} = 0.75 pF (typical)

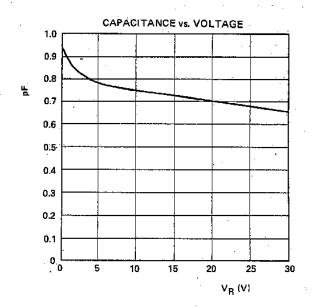
#### GENERAL DESCRIPTION

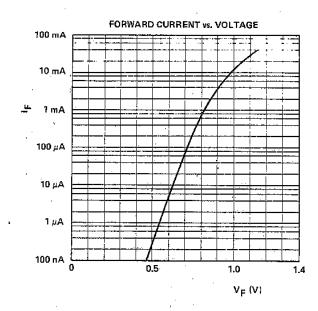
The ID100 and ID101 are monolithic dual diodes intended for use in applications requiring extremely low leakage currents. Applications include interstage coupling with reverse isolation, signal clipping and clamping and protection of ultra low leakage FET differential dual and operational amplifiers.

#### **ABSOLUTE MAXIMUM RATINGS**

(TA = 25°C unless otherwise noted)	
Diode Reverse Voltage 30	V
Diode to Diode Voltage ±50°	V
Forward Current	Д
Reverse Current	A
Storage Temperature Range65°C to +200°C	3
Operating Temperature Range55° C to +150° C	3
Lead Temperature (Soldering, 10 sec.) +300° (	
Power Dissipation	٧
Derate above 25°C 1.7 mW/°C	





^{*}When ordering water/dice refer to Appendix B-23.


#### ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise noted)

•	DADAMETER	ı	D100, ID10	11	UNITS	TEST CONDITIONS	
PARAMETER		MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS	
v _F	Forward Voltage Drop	0.8	·	1.1	٧	I _F = 10 mA	
BV _R	Reverse Breakdown Voltage	30			v	I _R = 1 μA	
I _R	Reverse Leakage Current	. '	0.1		Aq	V _R = 1 V	
•			2.0	1Q			
	$T_{A} = 125^{\circ}C$			10	nΑ	V _R = 10 V	
	Differential Leakage Current	:		3	pΑ		
C _{rss}	Total Reverse Capacitance		0.75	1	pF	V _R = 10 V, f = 1 MHz	

#### TYPICAL CHARACTERISTICS OF ID100/ID101





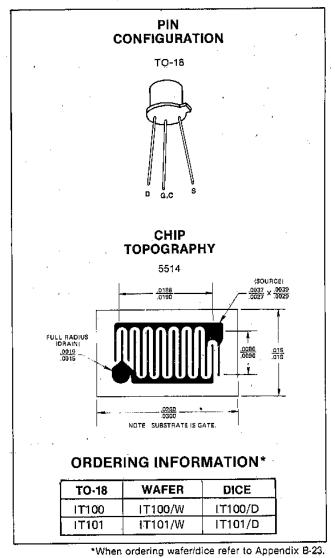




# IT100, IT101 P-Channel JFET

#### **FEATURES**

- Interfaces Directly w/T2L Logic Elements
- $r_{DS(on)} < 75\Omega$  for 5V Logic Drive
- I_{D(off)} < 100 pA</li>


#### **GENERAL DESCRIPTION**

This P-channel JFET has been designed to directly interface with  $T^2L$  logic, thus eliminating the need for costly drivers, in analog gate circuitry. Bipolar inputs of  $\pm 15$  V can be switched. The FET is OFF for hi level inputs ( $\pm 5$  V or  $\pm 15$  V) and ON for low level inputs ( $\pm 0.5$  V for IT100; $\pm 1.5$  V for IT101.

#### **ABSOLUTE MAXIMUM RATINGS**

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$ 

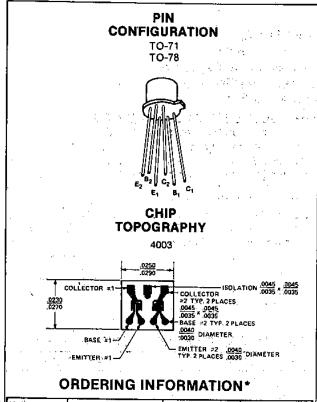
Gate-Source Voltage 35V
Gate-Drain Voltage
Gate Current 50mA
Storage Temperature Range65° C to +200° C
Operating Temperature Range55° C to +150° C
Lead Temperature (Soldering, 10 sec.) +300° C
Power Dissipation 300 mW
Derate above 25°C 1.7 mW/°C



#### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

	PARAMETER		IT100		IT101		TEST CONDITIONS	
			MIN MAX		MIN MAX			
IDSS	Drain Current	-10		-20		mΑ	V _{GS} = 0, V _{DS} = -15 V	
VP	Pinch Off Voltage	2	4.5	4	10		I _D = 1 nA, V _{DS} =-15 V	
BVGSS	Gate-Source Breakdown Voltage	35		35		].	1 _G = 1 μA, V _{DS} = 0	
IGSSR	Gate Reverse Current		200		200	pΑ	V _{GS} = 20 V, V _{DS} = 0	
g _{fs}	Transconductance	8		8				
g _{os}	Output Conductance	1	1	"	1	mmho	V _{GS} = 0, V _{DS} =-15 V	
D(off)	Drain (OFF) Leakage		-100		-10Ô	pА	$V_{DS} = -10 \text{ V}, V_{GS} = 15 \text{ V}$	
「DS(on)	Drain-Source "ON" Resistance		75		60	Ω	VGS = 0, VDS =-0.1 V	
Ciss	Input Capacitance	<u> </u>	35		35	_	V _{DG} =-20 V, V _{GS} = 0	
C _{rss}	Reverse Transfer Capacitance		12		12	T pF	V _{DG} =-10 V, I _S = 0	




#### **FEATURES**

- High h_{FE} at Low Current
   Low Output Capacitance
- Good Matching
- Tight VBE Tracking

#### **ABSOLUTE MAXIMUM RATINGS**

	то	-71	TO-78			
Power	ONE SIDE	BOTH SIDES	ONE	BOTH SIDES		
Dissipation	400 mW	750 mW	300 mW	500 mW		
Derate Above		•				
25° C	1.7 mW//°C	2.9 mW/°C	2.3 mW/2C	4.3 m/4//90		

# IT120-IT122 **Monolithic Dual NPN Transistor**



TO-78	TO-71	WAFER	DICE
IT120	IT120-TO71	IT120/W	IT120/D
IT121	IT121-T071	IT121/W	IT121/D
IT122	IT122-T071	1T122/W	IT122/D

*When ordering wafer/dice refer to Appendix B-23.

#### **ELECTRICAL CHARACTERISTICS**

(25°C unless otherwise noted)

	PARAMETER			IT120A		IT120		121	ΙΤ	122	·		
<del></del>	- 1111-1111-1-111		MIN	MAX	MIN.	MAX	:MIN.	MAX	MIN.	MAX	דומט	TEST CONDITIONS	
			200		200		80		80			Ic.= 10 μA, VcE = 5.0 V	
hFE	DC Current Gain		225		225		100		100			1c = 1.0 mA, VCE = 5.0 V	
	TA = -55°C Emitter-Base On Voltage		75	<u> </u>	75	, ,	30		. 30				
V _{BE} (ÓN)				0.7	"-	0.7		0:7		0.7	1	$I_{C} = 10 \mu\text{A},  V_{CE} = 5.0 \text{V}$	
V _{CE} (\$AT)	Collector Saturation Voltage		,	0,5		0.5		0.5		0.5	V	IC = 0.5 mA, IB = 0.05 mA	
СВО	Collector Cutoff Current		-	1.0		1.0		1.0		1.0	nΑ	<del></del> -	
		T _A = +150°C		10		10		1.0		10	- μΑ	IE-= 0, V _{CB} = 45 V	
IEBO	Emitter Cutoff Curre	nt		1.0		17.0		1.0		1.0	. nA	Ic = 0, V _{EB} = 5.0 V	
Copo	Output Capacitance		Ĭ	2.0		2.0		2.0		2.0	7	IE = 0, VCB = 5.0 V f =	
C _{te}	Emitter Transition Ca	pacitance		2.5		.2.5		2.5		2.5	DF.	IC = 0, VEB = 0.5 V 1 MI	
CC1, C2	Collector to Collector	Capacitance		4.0	Ĭ	4.0		4.0	~ 7	4.0	1	V _{CC} = 0	
C1.C2	Collector to Collector	Leakage Current	1	10		10	1	10		10	nΑ	V _{CC} = ±60 V	
V _{CEO} (SUST)	Collector to Emitter 9	Sustaining Voltage	45		45		45		45		V	IC = 1.0 mA, IB = 0	
GBW	Current Gain Bandwidth Product		10 220		10 220		7 180		7- 180		MHz	IC = 10 μA, VCE = 5 V IC = 1 mA, VCE = 5 V	
VBE1-VBE2	Base Emitter Voltage	Differential		1	<u> </u>	2		3	,,,,,,	5	mV.		
B1- B2	Base Current Differen	tial		2.5	<u> </u>	5		25		25	nA	IC = 10 μA, VCE = 5.0 V	
VBE1 - VBE2	Base-Emitter Voltage T Change with Tempera		3.		5		10		20	μV/°C	T _A = -55°C to +125°C I _C = 10 μA, V _{CE} = 5.0 \		

NOTES: 1. Per transistor.

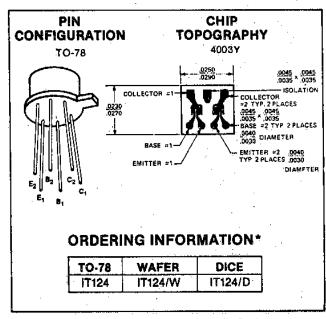
^{2.} The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed 10 µA.



# IT124 Monolithic Dual Super-Beta NPN Transistor

#### **FEATURES**

- · Very High Gain
- Low Output Capacitance
- Tight VBE Matching
- High GBW


#### **ABSOLUTE MAXIMUM RATINGS**

 ONE
 BOTH

 SIDE
 SIDES

 Power Dissipation
 300 mW
 500 mW

 Derate above 25°C
 1.7 mW/°C
 4.3 mW/°C



*When ordering wafer/dice refer to Appendix B-23.

#### ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNITS	CONDITIONS
		1500			I _C = 1μA, V _{CE} = 1V
hfE	DC Current Gain	1500			
•	T _A = -55° C	600			IC = 10μA, VCE = 1V
V _{BE} (ON)	Emitter-Base "ON" Voltage		0.7	l v	
V _{CE} (SAT)	Collector Saturation Voltage		0.5	ľ	$I_C = 1 \text{mA}$ , $I_B = 0.1 \text{mA}$
Гово	Collector Cutoff Current		100	pΑ	I _E = 0, V _{CB} = 1V
	$T_A = +150^{\circ} C$		100	nA	1E - 0, VOB - 11
IEBO	Emitter Cutoff Current		100	pΑ	$I_C = 0$ , $V_{EB} = 5V$
Cobo	Output Capacitance		0.8		$I_{\Xi} = 0$ , $V_{CB} = 1V$
Cte	Emitter Transition Capacitance		1.0	] pF	$I_{C} = 0$ , $V_{CB} = 1V$ $I_{C} = 0$ , $V_{EB} = 0.5V$ $f = 1$ MHz
Cc ₁ c ₂	Collector to Collector Capacitance		0.8		Vcc = 0
Ic ₁ c ₂	Collector to Collector Leakage Current		250	pΑ	Vcc = ±50V
GBW	Current Gain Bandwidth Product	10 100		MHz	$I_C = 10\mu A$ , $V_{CE} = 1V$ $I_C = 100\mu A$ , $V_{CE} = 1V$
NF .	Narrow Band Noise Figure		3	₫₿	$I_{C} = 10\mu A$ , $V_{CE} = 3V$ ,
; 					f = 1 KHz, Rg = 10 Kohms,
					BW = 200 Hz
ВУсво	Collector-Base Breakdown Voltage	2			$I_{C} = 10\mu A$ , $I_{E} = 0$
BVEBO (Note 2)	-Emitter-Base Breakdown Voltage	7	i	· V	$I_E = 10 \mu A$ , $I_C = 0$
Vçeo(SUST)	Collector-Emitter Sustaining Voltage	2		<u> </u>	$I_C = 1 \text{mA}, I_B = 0$

#### MATCHING CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	PARAMETER	TYP	MAX	UNITS	CONDITIONS
VBE1-VBE2	Base Emitter Voltage Differential	2	5	mV	Ic = 10μA, Vcε = 1V
Δ (VBE1-VBE2) /ΔT	Base Emitter Voltage Differential	5	- 15	μV/°C	$I_{C} = 10\mu A, V_{CE} = 1V$
	Change with Temperature				T = -55°C to +125°C
B1- B2	Base Current Differential		.6	nA	Tc = 10μA, VcE = 1V

#### NOTES:

- Per transistor.
- 2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed  $10\mu A$ .

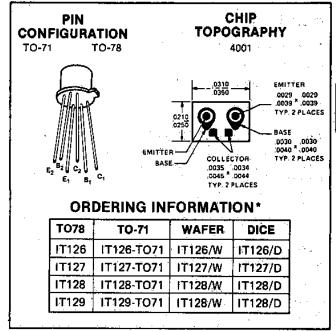


#### **FEATURES**

- High Gain at Low Current
- Low Output Capacitance
- Tight I_B Match
- Tight V_{BE} Tracking
   Dielectric Isolated Matched Pairs for Differential **Amplifiers**

#### ABSOLUTE MAXIMUM RATINGS

(TA = 25° C unless otherwise specified) Collector-Base Voltage (Note 1) IT126, IT127 ..... IT128 ..... IT129 ..... Collector-Emitter Voltage (Note-1) IT126, IT127 ..... IT128 ..... 55V IT129 ..... 45V Emitter-Base Voltage (Notes 1 and 2) ............ 7.0V Collector Current (Note 1) ........................ 100 mA Collector-Collector Voltage ...... 70V Storage Temperature Range ...... -65° C to +200° C Operating Temperature Range ...... -55°C to +150°C Lead Temperature (Soldering, 10 sec.) ...... +300°C


Power Dissipation Total Dissipation at 25°C Cast Temperature Derating Factor

· TO71 One Side Both Sides

**TO78** One Side Both Sides

0.3 Watt 0.5 Watt 0.4 Watt 0.75 Watt 1.7 mW/°C 2.9 mW/°C 2.5 mW/°C 4.3 mW/°C

# IT126-IT129 **Monolithic Dual NPN Transistor**



*When ordering wafer/dice refer to Appendix B-23.

#### ELECTRICAL CHARACTERISTICS (25° C unless otherwise noted)

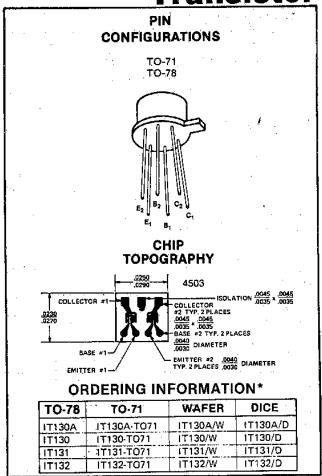
	D4 D 4445777		IT1	26	ΙT	127 🔻	IT'	128	, IT	29	UNITS	CONDITIONS
	PARAMETER		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	ONITS	CONDITIONS
			15 <b>0</b> °		150		100		70 [°]			I _C = 10 μA, V _{CE} = 5V
	1	•	200	800	200	800	150	800	100		i .	I _C = 1.0 mA, V _{CE} = 5V
hFE	DC Current Gain	` ,	230		230		170		115			I _C = 10 mA, V _{CE} = 5V
			100		100		75	· · · · · · · · · · · · · · · · · · ·	50			I _C = 50 mA, V _{CE} = 5V
	<u>1·</u>	T _A = -55°C	75		75		60		40			I _C = 1 mA, V _{CE} = 5V
V _{8E(on)}	Emitter-Base On Voltage			.9		.9		: ,9:		.9		I _C = 10 mA, V _{CE} = 5V
				1.0	1.	1.0		1.0		1.0	v .	1 _C = 50 mA, V _{CE} = 5V
VCE(sat)	Collector Saturation		.3	·	.3		.3		.3	I	I _C = 10 mA, I _B = 1 mA	
·				1.0		1.0		1.0		1.0	]	I _C = 50 mA, I _B = 5 mA
ICBO	Collector Cutoff Current			0.1		Q.1		0.1		0.1*	лÄ	I _E = 0, V _{CB} = 45V, 30V*
		T _A = +150°C		0.1		0.1		0.1		0.1*	μА	
¹ EBO	Emitter Cutoff Cu	rrent		0.1		D.1		0.1		0.1	nA	I _C = 0, V _{EB} = 5V
Cobo	Output Capacitano	e		3		3		3		3	pF	1 _E = 0, V _{CB} = 20V
BV _{C1} C ₂	Collector to Collec Voltage	tor Breakdown	± 100		±.100		± 100		± 100			I _C = ±1 μA
V _{CEO(sust)}	Collector to Emitte Voltage	er Süstaining !	60		60		55		45		v	I _C = 1 mA, I _B = 0
BVCBO	Collector Base Brea	akdown Voltage	60		60		55		45		1	I _C = 10 μA, I _E = 0
BVEBO	Emitter Base Break	down Voltage	7		7		7		7		1	$I_E = 10 \mu\text{A}$ , $I_C = 0$
MATC	HING CHARACTE	RISTICS				<del></del>						
IVBE, - VBE2	Base Emitter Volta	ge Differential		1		2		3	<u> </u>	5 .	mV	I _C = 1 ma , V _{CE} = 5V
Δ( VBE1 -/	Base Emitter Volta	ge Differential		3 -		5	<del>                                     </del>	10	<del></del>	20	μV/°C	I _C = 1 mA, V _{CE} = 5V
VBE2 1/AT	Change with Tem	perature .										T _A = -55°C to +125°C
_{B1} -   _{B2}	Base Current Differ	rential		2.5		5		. 10		20	nA:	I _C = 10 μA, V _{CE} = 5V
, , 21	•	. 1		.26	,	.5		1.0		2.0	μA	I _C = 1 mA, V _{CE} = 5V

#### NOTES:

- 1. Per transistor.
- 2. The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed  $10\mu$  Amps.



# IT130-IT132 Monolithic Dual PNP Transistor


#### **FEATURES**

- High h_{FE} at Low Current
- Low Output Capacitance
- Tight I_B Match
- Tight V_{BE} Tracking

#### ABSOLUTE MAXIMUM RATINGS

$T_A = 25^{\circ}$ C unless otherwise specified	
Collector-Base Voltage (Note 1)	/
Collector-Emitter Voltage (Note 1) 45\	/
Emitter Base Voltage (Notes 1 and 2)	/
Emitter base voltage (Notes 1 and 2)	
Collector Current (Note 1)	٦.
Collector-Collector Voltage 601	/
Storage Temperature Range65°C to +200°C	2
Operating Temperature Range55°C to +150°C	2
Operating reinherature hange	_
Lead Temperature (Soldering, 10 sec: +300° (	_

ONE BOTH ONE BOTH
Power SIDE SIDES SIDE SIDES
Dissipation ... 400 mW 750 mW 300 mW 500 mW 2.3 mW/°C 4.3 mW/°C 1.7 mW/°C 4.3 mW/°C



#### When ordering wafer/dice refer to Appendix 8-23.

#### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

		. I⊤	130A	. IT	130	, IT	131	IT'	132	UNIT	TEST CONDITIONS
	PARAMETER :		MAX	MIN	MAX	MIM	MAX	MIN	MAX	OWIT	
		200		200	i	80		80	:		$I_C = 10 \mu\text{A},  V_{CE} = 5.0 \text{V}$
)FE	DC Current Gain	225		225		100		100	" '		1c = 1.0 mA; VcE = 5.0 V
	TA = -55	°C . 75		75		30		30			IC = 10 μA, VCE = 5.0 V
/BE(ON)	Emitter-Base On Voltage		0.7		0.7		0,7		0.7	. v.	$I_C = 10 \mu\text{A},  \text{V}_{CE} = 5.0 \text{V}$
VCE(SAT)	Collector Saturation Voltage		0.5	1	0.5		0.5		0.5		$I_C = 0.5 \text{ mA}, I_B = 0.05 \text{ mA}$
OL COL			~1.0		-1.0		-1.0		-1.0	nΑ	LE = 0, VCB = 45 V
CBO . Collector	Collector Cutoff Current TA = +150	°C	-10	T . "	-10		-10		-10	μА	
EBO	Emitter Cutoff Current	[ · ·	-1:.0	· -	-1.0		~1.0		-1.0	пА	IC = 0, VEB = 5.0 V
Сор	Output Capacitance		2.0		2.0		2.0		2.0		IE = 0, VCB = 5.0 V
Cte	Emitter Transition Capacitance		2.5	<u> </u>	2.5	,	2.5		2.5	рF	t _C = 0, V _{EB} = 0.5 V
CC1-C2	Collector to Collector Capacitance		4.0	1	4.0		4.0		4.0	1	V _{CC} = 0
IC1-C2	Collector to Collector Leakage Current		10		10		10	]	10-	- nA	V _{CC} = ±60 V
VCEO(SUST)	Collector to Emitter Sustaining Voltage	e -45.		-45	1	-45		-45	].	V	IC = 1.0 mA, IB = 0
	Current Gain	5		5		4		4		MHz	I _C = 10 μA, V _{CE} = 5 V
GBW	Bandwidth Product	110		110	Ι	90		90			IC = 1 mA, VCE = 5 V
VBE1-VBE2	Base Emitter Voltage Differential		1		2.		3		5	mV	I _C = 10 μA, V _{CE} = 5.0 V
IIB1-IB2	Base Current Differential		2.5		5	1	25		25	nΑ	1 _C = 10 μA, V _{CE} = 5.0 V
	Bass Emitter Voltage Differential		. 3		5		10		20	μV/°C	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $I_C = 10 \mu\text{A},  V_{CE} = 5.0$

#### NOTES:

Per transistor.
 The reverse base-to-emitter voltage must never exceed 7.0V, and the reverse base-to-emitter current must never exceed 10 μA.



# IT136-IT139 **Monolithic Dual PNP Transistor**

#### **FEATURES**

- . High Gain at Low Current
- Low Output Capacitance
- Tight I_B Match
- Tight V_{BE} Tracking
  Dielectrically Isolated Matched Pairs for Differential Amplifiers

ABSOLUTE MAXIMUM RATING (TA = 25° C unless otherwise noted Collector-Base Voltage (Note 1)		
IT136, IT137		60V
IT138		
IT139		
Collector-Emitter Voltage (Note 1)		
IT136, IT137		60V
IT138		
IT139		45V
, Emitter-Base Voltage (Notes:1 and 2)		7V
Collector Current (Note 1)		
Collector-Collector Voltage		
Storage Temperature Range		
Operating Temperature Range		
Lead Temperature (Soldering, 10-sec.)		. +300° €
	то	78
	ONE	вотн
	SIDE	SIDES
Power Dissipation 0		
Derate above 25°C 2.3	3 mW/°C	4.3 mW/° C
•	TC	71
	ONE	BOTH SIDES
	SIDE	SIDES

Derate above 25° C . . . . . . 1.7 mW/° C 2.9 mW/° C

_					_
		PII CONFIGU			
		TO- TO-			
	· · · · · · · · · · · · · · · · · · ·	E ₂ B ₂ B ₃ 450 CHI TOPOGE	IP RAPHY	029 * 0029 039 * 0039 YP, 2 PLACES	
	).  Rattier			× .0030 × .0040 2 PLACES	
	BASE				
	OR	DERING IN	FORMAT	ION*	
	TO-78	TO-71	WAFER	DICE	
ĺ	IT136	IT136-T071	IT136/W	IT136/D	
- 1			10000000	4-4	Ĺ

TO-78	TO-71	WAFER	DICE
IT136	IT136-TO71	1T136/W	IT136/D
IT137	IT137-T071	IT137/W	IT137/D
IT138	IT138-T071	IT138/W	IT138/D
IT139	IT139-T071	IT139/W	IT139/D

^{*}When ordering wafer/dice refer to Appendix B-23.

#### ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise noted)

g to a second			•	IT1	36	İT	137		T138		IT13	9	UNITS	CONDITIONS
	PARA	METER	·	MIN	MAX	MIN	MAX	MIN	MA	X M	IIN 3	XAX	ONITS	CONDITIONS
				150		160		100			70			I _C = 10 μA, V _{CE} = 5V
				150	800	150	800	100	80	0 7	70	800	. 1	1 _C = 1.0 mA, V _{CE} = 5V
h _{FE} .	DC	Current Gain	,	125		125		80		٠	50		· · ·	I _C = 10 mA, V _{CE} = 5V
	1 .		į	65	·	60		40			25	Ť		I _C = 50 mA, V _{CE} = 5V
		T _A = 55°C		75		75		60	-	`	40			I _C = 1 mA, V _{CE} = 5V
V _{BE(on)}	Em	mitter - Base On Voltage			.9		.9			9		.9		I _C = 10 mA, V _{CE} = 5V
1			·		1.0		1.0		1.0	0		1.0	ν [	I _C = 50 mA, V _{CE} = 5V
V _{CE(sat)}	Col	lector Satura	tion Voltage		.3		.3		:	3		.3		$I_C = 1 \text{ mA}$ , $I_B = .1 \text{ mA}$
					.6		.6		ا،	6		.6		I _C = 10 mA, I _B = 1 mA
^I CBO	Col	lector Cutoff	Current		0.1		0.1		0.	1		0.1* -		IE = 0,VCB = 45V, 30V*
			T _A = +150°C		3.1		0.1		0.	1	0.1*		μА	
IEBO	Em	Emitter Cutoff Current			0.1		0.1		0.	1		0.1	nΆ	I _C = 0, V _{EB} = 5V
Cobo	Ou	utput Capacitance			3		3		3			3	pF	IE=0,VCB=20V, f=1 MHz
	PARAMETERS			1T	136	11	137	IТ	138	1-	г139	UNITS	CONDITIONS	
			, t		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	Civila	COMPLICITION
BV _{C1} C ₂		Collector to Voltage	Collector Bre	akdown	± 100		± 100		± 100		± 100	•		I _C = ±1 μΑ
V _{CEO(sust)}		Collector to Voltage	Emitter Susta	aining	60		60		55		45		v	I _C = 1 mA, I _B = 0
BV _{CBO}		Collector B	ase Breakdowr	n Voltage	: 60		60		55		45		٦.	I _C = 10 μA, I _E = 0
BVEBO		Emitter Bas	se Breakdown	Voltage	7		7		7		. 7		1	! _E = 10 μA, I _C = 0
					IT	136	IΤ	137	ŀΤ	138	l1	r139	1	
		ARAMETER	₹S		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	CONDITIONS
VBE ₁ - VBE ₂		Base Emitte	er Voltage Diff	ferential		1		2		3		5	mV	I _C =1 ma, V _{CE} =5V
Δ (VBE1 - VBE	_)  /ΔT	Base Emitte	er Voltage Diff	ferential		3		.5		10		20	μV/°C	I _C = 1 mA, V _{CE} = 5V
	•	Change w	ith Temperatu	ire				,						T _A = -55°C to +125°C
		Base Currer	nt Differential			2.5		5		10	··	20	ηA	I _C = 10 μA, V _{CE} = 5V
	Base Current Differentia													

NOTES: 1. Per transistor.

^{2.} The reverse base-to-emitter voltage must never exceed 7.0 volts and the reverse base-to-emitter current must never exceed 10μA



# IT500-IT505 Monolithic Dual Cascoded N-Channel JFET

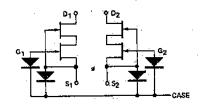
#### **FEATURES**

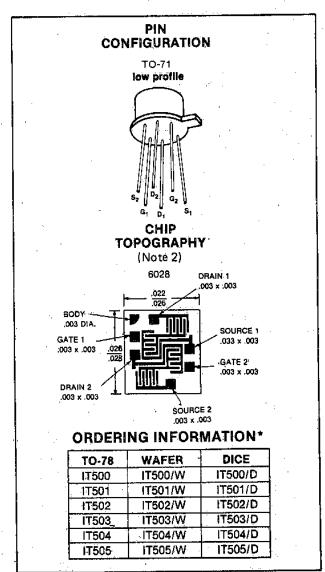
- C_{MRR} > 120 dB
- I_G < 5pA @ 50V_{DG}
- C_{rss} < 0.5 pF</li>
- $g_{os} > .025 \mu mhos$

#### **ABSOLUTE MAXIMUM RATINGS**

(T_A = 25° C unless otherwise specified)

Drain-Source and Drain-Gate
Voltages (Note 1) 60V
Drain Current (Note 1) 50 mA
Gate-Gate Voltage ±60V
Storage Temperature65° C to +200° C
Operating Temperature55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300° C


 Power Dissipation
 ONE SIDE 250 mW
 BOTH SIDES 500 mW


 Derate above 25° C
 3.8 mW/° C
 7.7 mW/° C

#### GENERAL DESCRIPTION

A low noise, low leakage FET that employs a cascode structure to accomplish very low IG at high voltage levels, while giving high transconductance and very high common mode rejection ratio.





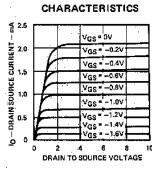


NOTE 1. Per transistor.

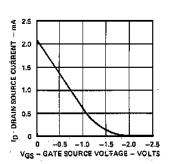
NOTE 2. Due to the non-symmetrical structure of these devices, the drain and source ARE NOT interchangeable.

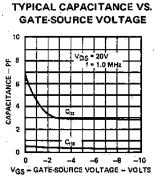
*When ordering wafer/dice refer to Appendix B-23.

Symbol	Char	acter	istics			М	in	Max		Unit		Т	est Co	nditions			
IGSSR	Gate Reverse C	urren	t	<del></del>				-10		рΑ	V	V _{GS} = -20V, V _{DS} = 0					
	Gate-Source 8		<u></u>	A = 1		-6		5	_	nΑ							
BVGSS	Gate-Source Co				ge	-0		4	$\dashv$	V	I'G	1	μΑ, V	= 1 nA			
V _{GS} (off)	Gate-Source V		Ç	ge		-0		-3.8		v	1 vp	S - 2	20 V , 1D	- 11174			<del></del>
<u> vGS</u>								-5		рÄ	┨╻╻	9 ≃ م	50V. In	= 200 μA	١		
ΙG	Gate Operating	Çurr	ent _T	<u>λ = 1</u>	25°C	:-		5	$\top$	nΑ	1 "	G		,,			
I _{DSS}	Saturation*Dra					0.1	7	. 7	$\top$	mΑ	VD	s = 2	20V, V	3S = 0	•	•	
9fs	Common-Sour Transconducta					10	00	4000	0		٧D	S = 2	20V, V	3S = 0			-
9fs	Common-Source Transconducta					70	0	160	5		VD	G = 2	20V, I _D	, = 200 μA		:	
g _{OS}	Common-Source Conductance	e Ou	tput				,	1	,	ımho	VD	s = 2	20V , V	'G\$ = 0	f = 1 kHz		
9 _{os} .	Common-Source Conductance	e Ou	tpuţ		•			0.02	5		-	٠.	_	= 200 µA		·	
C ₉₁₉₂	Gate to Gate C	apaci	tance					3.5		pΕ	V _G	1 = '	V _{G2} =	10V	ļ.		
C _{iss} .	Common-Source Capacitance	e Inp	out					7						f=1MHz		•	
C _{rss}	Common-Source Transfer Capac			te 3)				0.5		p۴	V _{DS} = 20V, V _{GS} = 0				•		
NE	Spot Noise Fig	ure						0.5		d₿				f = 100 Hz, R _G = 10 Ms:	,		
ē _n	Equivalent Inp	ut No	ise V	oltage	9			0.03		μV Hz	]			f = 10 Hz f = 1 kHz			
Symbol	Obavantariation		500	(T			02	_	03	-	0.4		505	Unit	Test Co	ditions	
Symbol	Characteristics	Min	Max	Min	Max	Min	Max	,Min	Max	Min	Max	Min	Max	Unit		iditions	
G1- ¹ G2	Differential Gate Current		5		.5		5		5	ľ	10		15	пА	$V_{DG} = 20V,$ $I_{D} = 200 \mu\text{A}$	+ 125 °C	
DSS1	Saturation Drain Current Ratio (Note 1)	0.95	1	, 0.95	7	0.95	1	0.95	1	0.9	1	0.85	1		V _{DS} = 20V,	V _{GS} = 0V	
DSS2 fs1/9 _{fs2}	Transconductance Ratio (Note 1)	0.97	1	0.97	1	0.95	1	0.95	1	0.90	1	0.85	1			f = 1 kHz	
GS1-VGS2	Differential Gate- Source Voltage		5		5		10		15		25		50	m/V			
V _{GS1} -V _{GS2}	Gate-Source Dif- ferential Voltage		5		10		20		40		100		200		V _{DG} = 20V	T _A = 25°C	
	Change with Temp. (Note 2)	١.	5	·	10		20		40		1 <b>0</b> 0		200	μV/°C	I _D = 200 μA	$T_A = 25 ^{\circ}\text{C}$ $T_B = 125 ^{\circ}\text{C}$ $T_A = -55 ^{\circ}\text{C}$ $T_B = 25 ^{\circ}\text{C}$	· .
			l i	i				Į		I	l	I	1			R = ←	


^{**}  $C_{MRR} = 20 \log_{10} \triangle V_{DD} / \triangle \{ V_{gs1} - V_{gs2} \}, \triangle V_{DD} = 10 / \cdot 20 V_{gs1}$  pulsewidth = 300 µs, duty cycle  $\leq 3\%$ .

NOTES: 1. Pulse test required, pulsewidth = 300 μs, duty cycle ≤3%.


2. Measured at end points,  $T_A$  and  $T_{B^+}$ 


#### **TYPICAL PERFORMANCE CURVES**

# GATE LEAKAGE TA = 25°C TA = 25°C TO = 200µA TA = 25°C TO = 200µA TO = 200µA TO = 200µA TO = 200µA TO = 200µA TO = 200µA TO = 200µA TO = 200µA TO = 200µA



OUTPUT





^{3.} With case guarded  $C_{rss}$  is typically < 0.15 pF.



# A050 Using the IT500 Family to Improve the Input Bias Current of BIFET OPAMPS

#### INTRODUCTION

The LF156 family of BiFET OPAMPS is very popular because of the combination of high slew rate (typically  $12V/\mu s$  @ unity gain) and moderate offset voltage (about 2mV). Input bias current, however, varies directly with input voltage, rising from 30pA @  $V_{IN}=-10V$ , to 50 pA @  $V_{IN}=0V$ , and finally to 80pA @  $V_{IN}=+10V$ . This can be improved markedly by using one of the IT500 series to drive the inputs of the LF156.

The IT500, like the others in its family, is a dual cascoded n-channel JFET pair, featuring a typical input bias current of <1pA with inputs ranging from -15V to +15V; actual Ig is quaranteed to be less than 5pA @  $V_{DG} = 50V$ .

Figure 1 shows an IT500 being used to drive the inputs of an LF156. This greatly reduces the input bias current, and in no way affects the already superior slew rate; the offset voltage is not significantly degraded because of the excellent matching of the IT500.

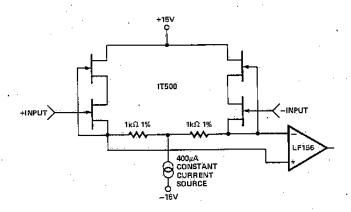



FIGURE 1, INPUT DRIVE CIRCUIT USING IT500

The constant current source can be designed with any transistor pair having a high beta  $\textcircled{0.1c} = 400 \mu A$ . See Figure 2.

An added bonus of the IT500 is its CMRR > 100dB, compared to the LF156 CMRR of 85dB.

This configuration is ideal for electrometer circuits, with good measurement accuracy down to 10pA of input current (< 10% error with 10pA of input current). A 10M $\Omega$  glass feedback resistor connected between the -INPUT and OPAMP OUTPUT does the trick. Other possible applications include sample and hold amplifiers, instrumentation amplifiers, etc.

Although this application note has dealt solely with the LF156, all present day BIFET OPAMPS exhibit the same IBIAS vs. VIN dependancy, and all will benefit from using the IT500 as a preamplifier.

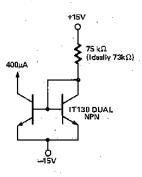



FIGURE 2. CONSTANT CURRENT SOURCE



# IT550 Dual N-Channel JFET

#### **FEATURES**

- Specified Matching Characteristics
- High Gain
- Low "ON" Resistance

#### **ABSOLUTE MAXIMUM RATINGS**

(25°C Unless otherwise noted)

Gate-Drain or Gate-Source Voltage40V
Gate Current 50 mA
Gate-Gate Voltage ±80V
Storage Temperature Range65°C to +200°C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300°C
One Side Both Sides
Power Dissipation
Derate above 25°C 2.2mW/°C 3.3mW/°C

# PIN CONFIGURATION TOPOGRAPHY TO-71 6033 ORDERING INFORMATION* TO-71 WAFER DICE IT550 IT550/W IT550/D

*When ordering wafer/dice refer to Appendix 8-23.

#### **ELECTRICAL CHARACTERISTICS**

TEST CONDITIONS (25°C unless otherwise noted)

SYMBOL	PARAMETERS	TEST CON	MIN.	MAX.	UNIT	
IGSSR	Gate-Reverse Current	$V_{GS} = -20V, V_{DS} = 0$		- 100.	pΑ	
- 45411	T _A = 150° C				- 200	mA
BVGSS	Gate-Source Breakdown Voltage	$I_{G} = -1\mu A, V_{DS} = 0$		-40		
V _{GS(off)}	Gate-Source Cutoff Voltage	$V_{DS} = 15V, I_{D} = 1nA$	-0.5	-3	٧	
V _{GS(f)}	Gate-Source Voltage	$V_{DS} = OV, I_G = 2mA$		1.0		
IDSS	Saturation Drain Current (Note 1)	$V_{DS} = 15V, V_{GS} = 0$	5	30	mA	
r _{DS(оп)}	Static Drain Source ON Resistance	$I_D = 1 \text{mA}, V_{GS} = 0$			100	Ω
9fs	Common-Source Forward		f = 1kHz	7500	12,500	
V10	Transconductance (Note 1)		f = 100MHz	7000		μmho
g _{os}	Common-Source Output Conductance		f = 1kHz		45	
C _{rss}	Common-Source Reverse	$V_{DG} = 15V, I_{D} = 2mA$	f == 1MHz		3	
-188	Transfer Capacitance	,				ρF
Ciss	Common-Source Input Capacitance				12	`
NF	Spot Noise Figure		f = 10Hz, R _g = 1M	,	1.0	dB
en	Equivalent Short Circuit		f = 10Hz		50	<u>nV</u>
-11	Input Noise Voltage	,	]			√Hz

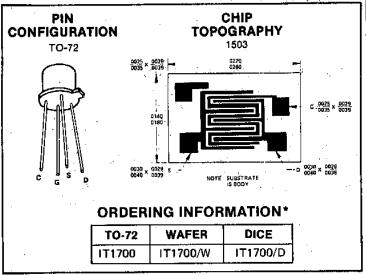
			IT	,	
SYMBOL	PARAMETERS	CONDITIONS	MIN.	MAX.	UNIT
DSS1	Saturation Drain Current Ratio (Notes 1 and 2)	V _{DS} = 15V, V _{GS} = 0	0.95	1	
V _{GS1} -V _{GS2}	Differential Gate-Source Voltage	V _{DS} = 15V, I _D = 2mA		50	mV
$\frac{\Delta  V_{GS1}-V_{GS2} }{\Delta T}$ .	Gate-Source Voltage Differential Drift (Note 3)	$(T_A = -55^{\circ}C \text{ to } + 125^{\circ}C)$	·	100	μV/°C
9fs1 9fs2	Transconductance Ratio (Notes 1 and 2)	$V_{DS} = 15V, I_{D} = 2mA$ $f = 1kHz$	0.90	1	_

#### NOTE

- 1. Pulse test required; pulse width  $300\mu s$ , duty cycle  $\leq 3\%$ .
- 2. Assumes smaller value in numerator
- 3. Measured at end points  $T_{\mbox{\scriptsize A}}$  and  $T_{\mbox{\scriptsize B}}$



# IT1700 P-Channel Enhancement Mode MOSFET


#### **FEATURES**

- Low ON-Resistance
- High Gain
- Low Noise Voltage
- High Input Impedance
- Low Leakage

#### **ABSOLUTE MAXIMUM RATINGS**

(TA = 25°C unless otherwise noted)

Drain-Source and Gate-Source Voltage40 V
Peak Gate-Source Voltage (Note 1) ±125 V
Drain Current , 50 mA
Storage Temperature65° C to +200° C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec) +300°C
Power Dissipation
Derate above 25°C 3 mW/°C



^{*}When ordering wafer/dice refer to Appendix B-23.

#### ELECTRICAL CHARACTERISTICS (25° C unless otherwise noted), VBS = 0 unless otherwise noted.

	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
BVDSS	Drain to Source Breakdown Voltage	-40		V	$V_{GS} = 0$ , $I_{D} = -10 \mu A$
BVSDS	Source to Drain Breakdown Voltage	-40		V	VGS = 0, ID = -10 μA
IGSS	Gate Leakage Current		(See note 2)		
DSS	Drain to Source Leakage Current		200	pΑ	
IDSS (150°C)	Drain to Source Leakage Current		0.4	μΑ	V _{GS} = 0, V _{DS} = -20 V
SDS	Source to Drain Leakage Current.		400	pΑ	
I _{SDS} (150°C)	Source to Drain Leakage Current		0.8	μΑ	
V _{GS} (th)	Gate Threshold Voltage	-2	-5	ν.	$V_{GS} = V_{DS}$ , $I_{D} = -10 \mu\text{Å}$
rDS (on)	Static Drain to Source "on" Resistance	-	400	ohms	VGS = -10 V, VDS = 0
IDS (on)	Drain to Source "on" Current	2		mA	V _{GS} = -10 V, V _{DS} = -15 V
9fs	Forward Transconductance Common Source	2000	4000	μmhos	$V_{DS} = -15 \text{ V}, I_{D} = -10 \text{ mA}$ f = 1 kHz
Ciss	Small Signal, Short Circuit, Common Source, Input Capacitance		.5	pF	V _{DS} = -15V, I _D = -10 mÅ f = 1 MHz
C _{rss}	Small Signal, Short Circuit, Common Source, Reverse Transfer Capacitance	-	1.2	ρF	V _{DG} = -15 V, I _D = 0 f = 1 MHz
Coss	Small Signal, Short Circuit, Common Source, Output Capacitance		3.5	pF	V _{DS} = -15 V, I _D = -10 mA f = 1 MHz

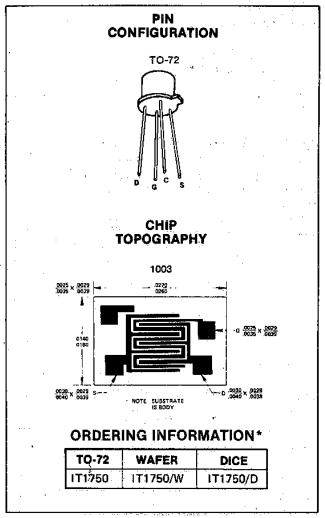
NOTES: 1. Device must not be tested at ±125V more than once nor longer than 300 ms.

 Actual gate current is immeasurable. Package suppliers are required to guarantee a package leakage of < 10 pA. External package leakage is the dominant mode which is sensitive to both transient and storage environment, which cannot be guaranteed.



# N-Channel Enhancement Mode MOSFET

#### **FEATURES**


- Low ON Resistance
- Low Cdq
- High Gain
- Low Threshold Voltage

# 1

#### **ABSOLUTE MAXIMUM RATINGS**

(TA = 25°C unless otherwise noted)

Drain-Source and Gate-Source Voltage	
Peak Gate-Source Voltage (Note 1)	±125V
Drain Current	100 mA
Storage Temperature Range65° C	to +200° C
Operating Temperature Range55° C	to +150°C
Lead Temperature (Soldering, 10 sec.)	+300°C
Power Dissipation	. 375 mW
Derate above 25°C	3 mW/° C



*When ordering wafer/dice refer to Appendix B-23.

#### ELECTRICAL CHARACTERISTICS (TA = 25°C, Body connected to Source and VBS = 0 unless otherwise noted)

PARAMETER		MIN	TYP	MAX	UMTS	TEST CONDITIONS		
VGS(th)	Gate to Source Threshold Voltage	0.50	1.5	3,0	V	$V_{DS} = V_{GS}$ , $I_{D} = 10 \mu A$		
DSS	Drain Leakage Current		0.1	10	пА	V _{DS} = 10 V, V _{GS} = 0		
1 _{GSS}	Gate Leakage Current		See note 2		Î			
BVDSS	Drain Breakdown Voltage	25			V	$I_D = 10 \mu\text{A},  \text{VGS} = 0$		
^r DS (on)	Drain To Source on Resistance		25	50	ohms	VGS = 20 V		
ID(on)	Drain Current	10	50		mA	V _{DS} = V _{GS} = 10 V		
Yfs .	Forward Transadmittance	3,000			μmhos	V _{DS} = 10 V, I _D = 10 mA, f = 1 KHz		
Ciss	Total Gate Input Capacitance		5.0	6,0	pF	I _D = 10 mA, V _{DS} = 10 V, f = 1 MHz		
C _{dg}	Gate to Drain Capacitance	-	1.3	1.6	ρF	V _{DG} = 10 V, f = 1 MHz		

#### NOTES

- 1. Devices must not be tested at ±125V more than once nor longer than 300 ms.
- Actual gate current is immeasurable. Package suppliers are required to guarantee a package leakage of < 10pA.</li>
   External package leakage is the dominant mode which is sensitive to both transient and storage environment, which cannot be guaranteed.



# J105-J107 N-Channel JFET

#### **FEATURES**

· Low rDS(on)

#### **APPLICATIONS**

- Analog Switches
- Choppers
- Commutators

#### ABSOLUTE MAXIMUM RATINGS

(T _A = 25°C unless otherwise noted)
Gate-Drain or Gate-Source Voltage25V
Gate Current 50 mA
Storage Temperature Range65°C to +200°C
Operating Temperature Range -55°C to +150°C
Lead Temperature (Soldering, 10 sec.)+300° C
Power Dissipation 360 mW
Derate above 25°C 3.3 mW/°C

#### PIN CONFIGURATION TO-92



#### **ORDERING INFORMATION***

J105	TO-92 only
J106	TO-92 only
J107	TO-92 only

#### **ELECTRICAL CHARACTERISTICS**

TEST CONDITIONS: 25 °C unless otherwise noted

*When ordering wafer/dice refer to Appendix B-23.

PARAMETER		J105 MIN TYP MAX		J106			J107			<b> </b>		
				MAX	MIN TYP.		MAX	MIN	TYP	MAX	UNIT TEST CONDITIONS	
lgss	Gate-Reverse Current (Note 1)			-3.		Τ	-3			-3	· nA ·	V _{DS} =0V, V _{GS} = -15V
VGS(off)	Gate-Source Cutoff Voltage	-4.5		-10	-2		-6	-0.5		-4:5	V	کبر 1±D ا V _{DS} =5V, 1D =1
BVGSS	Gate-Source Breakdown Voltage	-25	1	$\vdash$	-25	<u> </u>		-25	Ī			V _{DS} =0V, I _G = -1.μA
DSS	Drain Saturation Current (Note 2)	500			200	1	Γ	100		a!		V _{DS} =15V, V _{GS} =0V
¹ D(off)	Drain Cutoff Current (Note 1)	1		3			3			3	nΑ	$V_{DS} = 5V, V_{GS} = -10V$
DS(on)	Drain source ON Resistance			3			6			8	Ω	V _{DS} ≤0.1V, V _{GS} =0V
C _{dg(off)}	Drain Gate OFF Capacitance	1		35		1	35		<u> </u>	35		V _{DS} = 0V, V _{GS} = -10V
C _{sg(off)}	Source Gate OFF Capacitance	"		35	Ĩ		35	<u> </u>		35	1	<u> </u>
Cdg(on)	Drain Gate plus Source Gate ON Capacitance			160			160	•		160	pF	V _{DS} =V _{GS} =0V
td(on)	Turn On Delay Time	1	15	<b> </b>		15			15		1	Switching Time Test Condition J105 J106 J1
tr	Alse Time	]	20	Ĭ		20			20	<u> </u>	. ـ ا	V _{DD} 1.5V 1.5V 1.5
td(off)	Turn Off Delay Time		15			15			15		ns	VGS(off) - 12V - 7V -
tr	Fati Time	'	20	7	1	20	$\top$		20		]	R _L 50Ω 50Ω 5

NOTES: 1. Approximately doubles for every 10 °C increase in T_A.

2. Pulse test duration =300  $\mu$ s; duty cycle  $\leq$  3%.



# J111-J113 N-Channel JFET

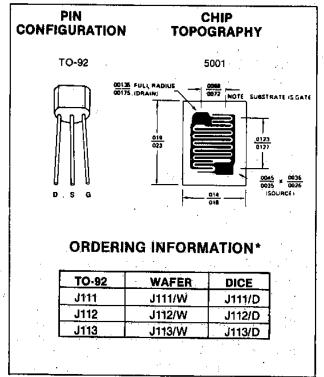
# 1

#### **FEATURES**

- Low Cost
- Automated Insertion Package
- Low Insertion Loss
- No Offset or Error Voltage Generated by Closed Switch

**Purely Resistive** 

High Isolation Resistance from Driver


- Fast Switching
- Short Sample and Hold Aperture Time

#### **APPLICATIONS**

- Analog Switches
- Choppers
- Commutators

#### ABSOLUTE MAXIMUM RATINGS

(ra - 25 C unless otherwise noted)
Gate-Drain or Gate-Source Voltage35V
Gate Current 50 mA
Storage Temperature Range65°C to +200°C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300° C
Power Dissipation 310 mW
Derate Above 25°C 2.8 mW/°C
Derate Above 25°C 2.8 mW/°C



^{*}When ordering wafer/dice refer to Appendix B-23.

#### **ELECTRICAL CHARACTERISTICS**

TEST CONDITIONS: 25°C unless otherwise noted

	J111							J113	3				
		TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	LIMIT	TEST CONDITIONS		
			-1				*****						
Gate Source Cutoff Voltage	-3	ļ	-10	-1			-0.5				$V_{DS} = 0V$ , $V_{GS} = -15V$ $V_{DS} = 5V$ , $I_D = 1\mu A$		
Gate Source Breakdown Voltage	-35	<del></del>	1	-35	<del></del>	<del>-</del> ٔ				٧	$V_{DS} = 0V$ , $I_{G} = -1\mu A$		
Drain Saturation Current (Note 2)	20		-			├─				mΑ	$V_{DS} = 15V, V_{GS} = 0V$		
Drain Cutoff Current (Note 1)	+	-	1	<del> </del>		1	-	<u> </u>					
			30	<del>-</del>	<u> </u>	50	<del>                                     </del>				V _{DS} = 5V, V _{GS} = -10V		
Drain Gate OFF Capacitance	<del></del>						-			. 3.5	$V_{DS} = 0.1V, V_{GS} = 0V$		
		:	<del></del>					·		7	V _{DS} = 0V, V _{GS} = -10V		
Drain Gate Plus Source Gate ON Capacitance	-		28		<del></del>	28			28	рF	$V_{DS} = V_{GS} = 0 \qquad \qquad f = 1 \text{ M}$		
Turn On Delay Time	1	7	-		7		┝╌┤	7			Switz-les Time To 10		
Rise Time	1	6	<del></del> -	-	- 6		$\vdash$	-		.	Switching Time Test Conditio		
Turn Off Delay Time	1-		<del></del>		_				$\dashv$	ne '	<u>J111 J112 J113</u>		
Fall Time		15			15	-		15		115	VDD 10V 10V 10V VGS(off) ~12V ~7V ~5V BL 0.8kΩ 1.6kΩ 3.2k;		
	ON Capacitance Turn On Delay Time Rise Time Turn Off Delay Time	Gate Reverse Current (Note 1) Gate Source Cutoff Voltage -3 Gate Source Breakdown Voltage -35 Drain Saturation Current (Note 2) 20 Drain Cutoff Current (Note 1) Drain Source ON Resistance Drain Gate OFF Capacitance Source Gate OFF Capacitance Drain Gate Plus Source Gate ON Capacitance Turn On Delay Time Rise Time Turn Off Delay Time	PARAMETERS MIN TYP  Gate Reverse Current (Note 1) Gate Source Cutoff Voltage -3 Gate Source Breakdown Voltage -35 Drain Saturation Current (Note 2) 20 Drain Cutoff Current (Note 1) Drain Source ON Resistance Drain Gate OFF Capacitance Source Gate OFF Capacitance Drain Gate Plus Source Gate ON Capacitance Turn On Delay Time 7 Rise Time 6 Turn Off Delay Time 20	PARAMETERS  Gate Reverse Current (Note 1)  Gate Source Cutoff Voltage  Gate Source Breakdown Voltage  Drain Saturation Current (Note 2)  Drain Cutoff Current (Note 1)  Drain Source ON Resistance  Drain Gate OFF Capacitance  Source Gate OFF Capacitance  Drain Gate Plus Source Gate  ON Capacitance  Turn On Delay Time  Turn Off Delay Time  Turn Off Delay Time  Min TYP MAX  3-1  -1  -1  -1  -1  -1  -1  -1  -1  -	PARAMETERS         MIN TYP MAX MIN           Gate Reverse Current (Note 1)         -1         -1           Gate Source Cutoff Voltage         -3         -10         -1           Gate Source Breakdown Voltage         -35         -35         -35           Drain Saturation Current (Note 2)         20         5         5           Drain Cutoff Current (Note 1)         1         1         1           Drain Source ON Resistance         30         30         30         30           Drain Gate OFF Capacitance         5         5         5         5           Drain Gate Plus Source Gate         28         28         28         28           ON Capacitance         7         7         Rise Time         6         7           Turn Off Delay Time         6         20         20         6	PARAMETERS         MIN TYP MAX MIN TYP           Gate Reverse Current (Note 1)         -1           Gate Source Cutoff Voltage         -3         -10         -1           Gate Source Breakdown Voltage         -35         -35         -35           Drain Saturation Current (Note 2)         20         5         5           Drain Cutoff Current (Note 1)         1         1         1           Drain Source ON Resistance         30         0         0         0           Drain Gate OFF Capacitance         5         0         0         0         0         0           Drain Gate Plus Source Gate         28         0         0         0         0         0         7         7         7           Rise Time         6         6         6         6         6         6         6         6         6         6         6         6         7         0         7         0         7         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	PARAMETERS         MIN TYP MAX MIN TYP MAX           Gate Reverse Current (Note 1)         -1         -1         -1           Gate Source Cutoff Voltage         -3         -10         -1         -5           Gate Source Breakdown Voltage         -35         -35         -35           Drain Saturation Current (Note 2)         20         5         -35           Drain Cutoff Current (Note 1)         1         1         1           Drain Source ON Resistance         30         50           Drain Gate OFF Capacitance         5         5           Source Gate OFF Capacitance         5         5           Drain Gate Plus Source Gate         28         28           ON Capacitance         7         7           Turn On Delay Time         7         7           Rise Time         6         6           Turn Off Delay Time         20         20	PARAMETERS         MIN TYP MAX MIN TYP MAX MIN         TYP MAX MIN TYP MAX MIN         TYP MAX MIN TYP MAX MIN         TYP MAX MIN TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN         TYP MAX MIN	PARAMETERS         MIN TYP MAX MIN TYP MAX MIN TYP           Gate Reverse Current (Note 1)         -1         -1         -1           Gate Source Cutoff Voltage         -3         -10         -1         -5         -0.5           Gate Source Breakdown Voltage         -35         -35         -35         -35         -35         -35         -35         -35         -2         -2         -2         -35         -35         -2         -2         -2         -35         -2         -2         -35         -35         -35         -35         -2         -2         -2         -35         -35         -35         -35         -35         -2         -2         -2         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -2         -2         -2         -2         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35         -35	PARAMETERS         MIN TYP MAX MIN TYP MAX MIN TYP MAX           Gate Reverse Current (Note 1)         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3         -3	PARAMETERS		

#### NOTES:

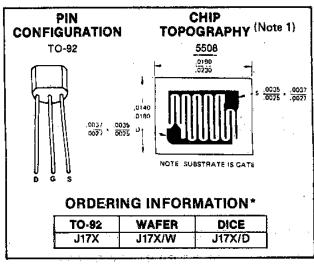
- 1. Approximately doubles for every 10°C increase in TA.
- Pulse Test duration 300µs; duty cycle ≤ 3%.



# J174-J177 P-Channel JFET

#### **FEATURES**

- Low Insertion Loss
- No Offset or Error Generated by Closed Switch


**Purely Resistive** 

High Isolation Resistance from Driver

- Short Sample and Hold Aperture Time
- Fast Switching

#### **APPLICATIONS**

- Analog Switches
- Choppers
- Commutators



*When ordering wafer/dice refer to Appendix B-23.

ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise not	<b>ARSOLUTE</b>	MAXIMIIM	RATINGS (T	$\Delta \simeq 25^{\circ} \text{C unless}$	otherwise note
----------------------------------------------------------	-----------------	----------	------------	--------------------------------------------	----------------

Gate-Drain or Gate-Source Voltage (Note 1)	30V
Gate Current	50 mA
Storage Temperature Range	65°C to +200°C
Operating Temperature Range	55° C to +150° C
Lead Temperature (Soldering, 10 sec.)	300° C
Power Dissipation	
Derate above 25°C	

#### **ELECTRICAL CHARACTERISTICS**

TEST CONDITIONS: 25°C unless otherwise noted

			J174			J175			J176			J177					
PARAMETERS		MIN	TYP	YP MAX	MIN	TYP	YP MAX	MIN	N TYP	MAX	MIN	I TYP	MAX	TINU	TEST CONDITIONS		
IGSSR	Gate Reverse Current (Note 2)			• 1			1	·		. 1			_	nA	$V_{DS} = 0$ , $V_{GS} = 20V$		
VGS(off)	Gate-Source Cutoff Voltage	5		10	3		6	1		4	0.8		2.25	>	V _{DS} = -15V, I _D = -10nA		
BVGss	Gate-Source.Breakdown Voltage	30	-		30			30			30				$V_{DS} = 0$ , $I_{G} = 1 \mu A$		
IDSS	Saturation Drain Current (Note 3)	-20		-100	<b>-7</b>		-60	-2		-25	-1.5		÷20	mA	V _{DS} = -15V, V _{GS} = 0		
ID(off)	Drain Cutoff Current (Note, 2)			-1			-1			-1		,	-1	пА	V _{DS} = -15V, V _{GS} = 10V		
TDS(on)	Drain-Source ON Resistance			85			125			250			300	Ω	V _{GS} = 0, V _{DS} = -0.1V		
Cdg(off)	Drain-Gate OFF Capacitance		5.5			5.5			5.5			5.5			V _{DS} = 0, V _{GS} = 10V		
Csg(off)	Source-Gate OFF Capacitance		5.5			5.5			5.5		<u> </u>	5.5		pF	f = 1		
Cdg(on) + Csg(on)	Drain-Gate Plus Source Gate ON Capacitance		40			40			40			40			V _{DS} = V _{GS} = 0		
td(on)	Turn On Delay Time		2			5			15			20			Switching Time Test Conditi J174   J175   J176		
t _r .	Rise Time		5	<u>                                      </u>	<u> </u>	10	<u> </u>	<u> </u>	20	<u> -</u>	1	25	1	ns.	V _{DD} -10V6V -6V		
td(off)	Turn Off Delay Time		5	l		10			15		<u>  </u>	20	<u> </u>	1	VGS(off) 12V 8V 6V		
t _f	Fall Time		10			20			20			25		l .	R _L 560Ω 12KΩ 5.6KΩ 1 VGS(on) 0V 0V 0V		

#### NOTES

- 1. Geometry is symmetrical. Units may be operated with source and drain leads interchanged.
- 2. Approximately doubles for every 10° C increase in TA.
- 3. Pulse test duration -300µs; duty cycle ≤ 3%.



### J201-J204 N-Channel JFET

1

#### **FEATURES**

- High Input Impedance
- Low IGSS

#### **ABSOLUTE MAXIMUM RATINGS**

(TA = 25° C unless otherwise noted)
Gate-Source or Gate-Drain Voltage ... -40V
Gate Current ... 50 mA
Storage Temperature Range ... -65° C to +200° C
Operating Temperature Range ... -55° C to +150° C
Lead Temperature (Soldering, 10 sec.) ... +300° C
Power Dissipation ... 360 mW
Derate above 25° C ... 3.3mW/° C

#### PIN CHIP CONFIGURATION **TOPOGRAPHY** TO-92 5010* .0013(.0330) .0017(.0432) FULL R. NOTE: SUBSTRATE IS GATE **ORDERING INFORMATION*** TO-92 WAFER DICE J201 J201/W J201/D J202 J202/W J202/D J203 J203/W J203/D J204 J204/W J204/D *DICE WITH 4 MIL BONDING PADS AVAILABLE, CONSULT FACTORY FOR DETAILS.

#### *When ordering wafer/dice refer to Appendix B-23.

#### **ELECTRICAL CHARACTERISTICS**

TEST CONDITIONS: 25 °C unless otherwise noted

		J201			"	J202			J203			J204					
PARAMETERS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	ТҮР	MAX	MIN:	TYP	MAX	UNIT	TEST CONDITION	ONS	
lgss	Gate Reverse Current (Note 2)		_	- 100			- 100			100			-100	рA	V _{DS} = 0, V _{GS} = - 20V		
VGS(off)	Gate-Source Cutoff Voltage	-0.3		- 1.5	0.8		- 4.0	- 2,0		- 10.0	-05	· .	2.0		V _{DS} = 20V, I _D = 10 nA	<u>-</u>	
BV _{GSS}	Gate-Source Breakdówn Voltage	- 40			- 40			-40			- 25			V	V _{DS} = 0, I _G = -1μA		
DSS	Saturation Drain Current (Note 3)	0.2		1.0	0.9		4.5	4,0		20		1.2		mA	V _{DS} = 20V, V _{GS} = 0		
G	Gate Current (Note 1)		- 3.5			- 3.5			~ 3.5			-3.5		ρA	V _{DG} = 20V, I _D = 200μA		
is	Common-Source Forward Transconductance(Note 2)	500			1,000			1,500	<del> </del>	:	<u> </u>	1500	-		BG THE		
los	Common Source Output		1			3.5			10	-		2.5		μmho	V _{DS} = 20V. V _{GS} = 0 f = 1 kH	f≃1 kHz	
lss	Common Source Input Capacitance		4 .			4		•	4		,	4	,			71	
rss	Common-Source Reverse Transfer Capacitance		1 /			1,			1			i		pF ·	f=1 N		
n	Equivalent Short-Circuit Input Noise Voltage		5		:"-	5			5.	•		10		n∨ √Hz	V _{DS} = 10V, V _{GS} = 0	f=1 KHz	

NOTES: 1. Approximately doubles for every 10 °C increase in TA.

2. Pulse test duration = 2ms.

				J204		<u> </u>			
		PARAMETERS	MIN	TYP	MAX	UNIT	TEST CONDITIO	NS	
	Τ,	Gate Reverse Current		ı	_ 100	рА	$V_{DS} = 0, V_{GS} = -20V$		
	IGSS	(Note 2)	1	<u></u>	100	<u> </u>	100 - 41 - 65 - 204	<del> </del>	
s	V	Gate-Source Cutoff	- 0.5		- 2.0	V	V _{DS} = 20V, ID = 10nA		
T	V _{GS(off)}	Voltage			- 4.0	'	109 - 5011 15 10114		
A ! T	DV.	Gate-Source Breakdown	<b>– 25</b>	1			$V_{DS} = 0$ , $I_G = -\mu \dot{A}$		
' !	BV _{G\$\$}	Voltage	- 20				יישן איינע – איינע		
כ	Ī	Saturation Drain Current		1.2		mA	$V_{DS} = 20V, V_{GS} = 0$		
	IDSS	(Note 3)		1.2					
	I _G	Gate Current (Note 1)		- 3.5		рÆ	$V_{DG} = 20V, I_{D} \dot{2}00\mu A$		
		Common-Source Forward		1500		,			
	9 _{fs}	Transconductance (Note 2)		1300		μmho	f=1		
)		Common Source Output		2.5		μιτιτο			
	g _{os}	Conductance		و.ع			$V_{DS} = 20V, V_{GS} = 0$		
V A		Common-Source Input		4			1 105 - 201, 165 - 0		
<b>₹</b>	C _{iss}	Сарасіталсе				pF		f= 1MHz	
ĺ		Common-Source Reverse	$\top$	1 1		"			
	C _{rss}	Transfer Capacitance		<u>_</u> '	<u>L</u>				
		Equivalent Short-Circuit		10		<u>n</u> V	$V_{DS} = 10V, V_{GS} = 0$	f= 1kHz	
	en	Input Noise Voltage	1	"		Hz	*DS - 104, *GS = 0	1 - 11012	



# J308-J310 **N-Channel JFET**

### **FEATURES**

- Industry Standard Part in Low Cost Plastic Package
- High Power Gain
- Low Noise
- Dynamic Range Greater than 100 dB
- Easily Matched to 75Ω Input

### **APPLICATIONS**

- VHF/UHF Amplifiers
- Oscillators
- Mixers

### ABSOLUTE MAXIMUM RATINGS (TA = 25° C unless otherwise noted)

( I A = 25° C unless otherwise noted)
Drain-Gate Voltage25V
Drain-Source Voltage -25V
Continuous Forward Gate Current -10 mA
Storage Temperature Pages
Storage Temperature Range65°C to +200°C
Operating Temperature Range55°C to +150°C
Lead Temperature   Soldering: 10 sec.   +300° C
Power Dissipation
Derate above 25°C

### **ELECTRICAL CHARACTERISTICS**

PIN CONFIGURATIO	0031 x 0060 0021 0050 0050 0050 0050 0050 0050 005	CHIP OPOGRAPHY  0170 0210 0140 0180 0180 0180 0180 0180 0180 01
ORDER	ING INFORM	#ATION*
	ING INFORM	ATION*

When ordering wafer/dice refer to Appendix B-23.

			J308			J309		T'	J310		·	<del></del>	
	PARAMETER	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	TINU	TEST COMP	TIONS
BVGSS	Gate-Source Breakdown Voltage	-25			-25			25	<u> </u>	- WAA	V	TEST COND	HONS
GSSR	Gate Reverse Current	<del>                                     </del>	1	-1.0	<del></del>	<del></del>	-1.0	<del></del> -		-1.0	пA	1	4
	T _A = 125°C			-1.0		<del></del>	-1.0	<del>                                     </del>	<del></del>	-1.0		Vgs = -15V.	}
VGS(off)	Voltage	-1.0		-6.5	-1.0		-4.0	-2.0	· .	-6.5	μA V	V _{DS} = 0 V _{DS} = 10V, I _D = 1nA	-
DSS	Saturation Drain Current (Note 1)	12		60	12		30	24		60	mA -	Vps = 10V, Vgs = 0	<u> </u>
/GS(f)	Gate-Source Forward Voltage			1.0	<u> </u>		- 1.0			1.0	V	Vps = 0, 1g = 1 mA	-
lfs	Common-Source Forward Transconductance	8,000	7 :	20,000	10,000		20,000	8,000		18,000	·		*
los	Common-Source Output Conductance			200			200			200	,	ļ. 1	
lfg .	Common-Gate Forward Transconductance		13,000			13,000			12,000	-	μmhos	V _{DS} = 10V, I _D = 10mA	f = 1 kHz
log	Common Gate Output Conductance	,	150			150			150				
C _{gd} —	Gate-Drain Capacitance		1.8	2.5		1.8	2.5	_	1.8	2.5			
-gs	Gate-Source Capacitance		4.3	5.0		4.3	5.0		4.3	5.0	pF	Vos = 0, Vos = -10V	f = 1 MHz
n .	Equivalent Short-Circuit Input Noise Voltage		10			10			10		_ <u>nv</u>	Vos = 10V,	f = 100 Hz
Re(Vfs)	Common-Source Forward Transconductance		12			12	<del>-</del>		12		√Hz	Io = 10 mA	100 Mz
le(Vfg)	Common-Gate Input Conductance		14			14			14				
e(Vis)	Common-Source Input Conductance		0,4		. 1	0.4			0.4		mmho	j	
e(vos)	Common-Source Output Conductance		0.15		· <u> </u>	0.15			0.15			V _{DS} = 10V,	f = 105 MHz
pg	Common-Gate Power Gain at Noise Match		16			16			16	-		ip = 10mA	
F	Noise Figure	·	1.5			1.5				<u> </u>			
pg	Common-Gate Power Gain at Noise Match	7	11		$\neg +$	11		-	1.5		dB		
F	Noise Figure		2.7			2.7			2.7		i		f = 450 MHz



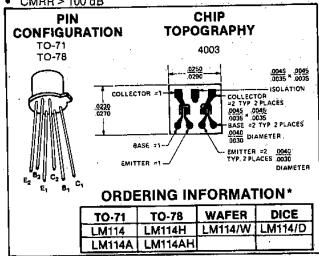
# LM114/H, LM114A/AH **Monolithic Dual NPN Transistor**

### **GENERAL DESCRIPTION**

These devices contain a pair of junction-isolated NPN transistors fabricated on a single silicon substrate. This monolithic structure makes possible extremely tight parameter matching at low cost. Further, advanced processing techniques yield exceptionally high current gains at low collector currents, virtual elimination of "popcorn noise," low leakages and improved long-term stability.

Although designed primarily for high breakdown voltage and exceptional DC characteristics, these transistors have surprisingly good high-frequency performance. The gain-bandwidth product is 300MHz with 1mA collector current and 5V collector-base voltage and 22MHz with 10µA collector current. Typical collector-base capacitance is only 1.6 pF at 5V.

### **ABSOLUTE MAXIMUM RATINGS**


(T_A = 25°C unless otherwise noted)

	Collector-Base Voltage (1)	
۰	Collector-Emitter Voltage (1)	
	Collector-Collector Voltage	
	Emitter-Base Voltage (1)	
	Collector Current (1)	
	Storage Temperature Range65° C to +200° C	ì
	Operating Temperature Range55° C to +150° C	è
	Lead Temperature (Soldering, 10 sec.) +300° C	į
	Power Dissipation 800mW	1
	Derate above 25° C 14mW/° C	į

### **FEATURES**

- Low offset voltage
- Low drift
- High current gain
- Tight beta match
- High breakdown voltage
- Matching guaranteed over a 0V to 45V collector-base voltage range

CMRR > 100 dB



### *When ordering wafer/dice refer to Appendix B-23.

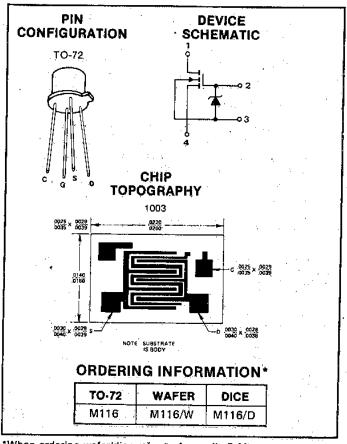
	· .	MAXIMUN	A LIMITS	] .				
PARAMETER		LM114A, AH	LM114, H	UNITS	CONDITIONS			
Offset Voltage		0.5	2:0	mV	1µA ≤ I _C ≤ 100µA			
Offset Current		2.0	10	nΑ	I _C = 10μA			
		0.5	,	[	l _C = 1μA			
Bias Current	Ī	20 .	40	nA	I _C = 10µA			
	Ì	3.0			I _C = 1µA			
Offset Voltage Cha	inge	0.2	1.5	,mV	$0V \le V_{GB} \le V_{MAX}$ , $I_C = 10\mu A$			
Offset Current Change		1.0	4.0	пА				
Offset Voltage Drift		2.0	10	μV/°C				
Offset Current		12	50		-55°C ≤ T _A ≤ +125°, I _C = 10μA			
Bias Current		60	150	nÀ				
Collector-Base Lea	akage Current	10	50	pA	V _{CB} = V _{MAX}			
	T _A = 125°C	10	50	nA	Oblin			
Collector-Emitter Leakage		50	200	pA	V _{CE} = V _{MAX,} V _{EB} = 0V			
	T _A = 125° C	50	200	пА				
Collector-Collector Leakage		100	300	pA	V _{CC} = V _{MAX}			
Current	T _A = 125° C	100	300	nA				

Note 1: Per transistor.

Note 2: These specifications apply for T_A = +25°C and 0V ≤ V_{CB} ≤ V_{MAX}, unless otherwise specified. For the LM114 and LM114A, V_{MAX} =



# M116 Diode Protected N-Channel Enhancement Mode MOSFET


### **FEATURES**

• Low IGSS

Integrated Zener Clamp for Gate Protection

### **ABSOLUTE MAXIMUM RATINGS**

(T _A = 25°C unless otherwise noted)
Drain to Source Voltage
Gate to Drain Voltage 30V
Drain Current
Gate Zener Current ±0.1 mA
Storage Temperature Range65°C to +200°C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec.) +300°C
Power Dissipation 300 mW
Derate above 25°C 2.2 mW/°C

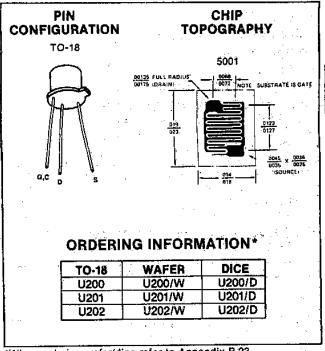


^{*}When ordering wafer/dice refer to Appendix B-23.

### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

PARAMETER			//116	UNITS	TEST COMPLETE	
, and the cell		MÍN	MAX	ONITS	TEST CONDITIONS	
rDS(on)	Drain Source ON Resistance		100	Ω	VGS = 20 V, ID = 100 μA, VBS = 0	
<u> </u>			200	32 [	$V_{GS} = 10 \text{ V, I}_{D} = 100 \mu\text{A, VBS} = 0$	
VGS(th)	Gate Threshold Voltage	1	5		$V_{GS} = V_{DS}$ , $I_{D} = 10 \mu A$ , $V_{BS} = 0$	
BVDSS	Drain-Source Breakdown Voltage	30		1 v [	i _D = 1 μA, V _{GS} = V _{BS} = 0	
BVSDS	Source-Drain Breakdown Voltage	30		1	I _S = 1 μA, V _{GD} = V _{BD} = 0	
BVGBS	Gate-Body Breakdown Voltage	· 30	60	ļ	IG = 10 μA, V _{SB} = V _{DB} = 0	
ID(OFF)	Drain Cutoff Current		10	nΑ	V _{DS} = 20 V, V _{GS} = V _{BS} = 0	
IS(OFF)	Source Cutoff Current	•	10		V _{SD} = 20 V, V _{GD} = V _{BD} = 0	
IGSS	Gate-Body Leakage		100	рA	VGS = 20 V, VDS = V8S = 0	
Cgs	Gate-Source		2.5		VGB = VDB = VSB = 0, f = 1 MHz	
Cgd	Gate-Drain Capacitance		2.5		Body Guarded	
C _{db}	Drain-Body Capacitance		7	pF	VGB = 0, VDB = 10 V, f = 1 MHz	
Ciss	Input Capacitance		10		VGB = 0, VDB = 10 V, VBS = 0 f = 1 MHz	




# U200-U202 N-Channel JFET

### **FEATURES**

- Low insertion Loss
- Good OFF Isolation

### **APPLICATIONS**

- Analog Switches
- Commutators
- Choppers



*When ordering wafer/dice refer to Appendix B-23.

### ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Gate-Drain or Gate-Source Voltage	30V
Gate Current	,., 50 IIIA
Storage Temperature Range	-65°C to +200°C
Operating Temperature Range	-55° C to +150° C
Lead Temperature (Soldering, 10 sec.)	
Total Device Dissipation	1.8W
Derate above 25° C	

### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

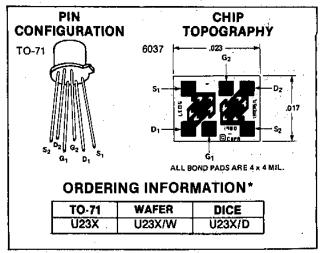
	<u> </u>		U2	00	U2	01	U2	02	Unit	Test Conditions	
	Parameter		Min	Max	Min	Max-	Min	Max	OIM.	lest-conditions	
	Gate Reverse Current			<b>–</b> î	1	-1		-1	.nA	:VGSS = 20.V, VDS = 0	
IGSS		T _A = 150° C		-1		1		-1	μΑ	- KG55 - 20-11 - D5 - 4	
BVGSS	Gate-Source Breakdown	Voltage	-30		- 30		- 30		V	$I_G = 1 \mu A$ , $V_{DS} = 0$	
VGS(off)	Gate-Source Cutoff Volt	age	- 0.5	-3	- 1.5	-5	- 3.5	- 10		V _{DS} = 20 V, I _D = 10 nA	
				1		. 1		. 1	nA	   V _{DS} = 10 V, V _{GS} = -12 V	
['] lĎ(off)	Drain Cutoff Current	T _A = 150° C		1	1		1	μА :	-Da - 10 11 143 - 121		
DSS	Saturation Drain Curren	t (Note 1)	3	25	15	75	30	150	mÆ	VDS = 20 V, VGS = 0	
rds(on)	Drain-Source ON Resist	ance		150		75		50	ohm	$V_{GS} = 0, I_D = 0$ $f = 1 \text{ kHz}$	
Ciss	Common-Source Input Capacitance (Note 1)			30		.30		30		V _{DS} = 20 V, V _{GS} = 0 f = 1 MHz	
C _{rss}	Common Source Revers Capacitance	se Transfer		8		8		8	∤ pF	V _{DS} = 0, V _{GS} = -12 V	

**NOTE 1:** Pulse test required, pulsewidth = 300  $\mu$ sec, duty cycle  $\leq 3\%$ .

# U231-U235 Monolithic Dual N-Channel JFET

### **FEATURES**

Good Matching Characteristics


### **APPLICATIONS**

- Differential Amplifiers
- Low and Maximum Frequency Amplifiers

### **ABSOLUTE MAXIMUM RATINGS**

### **ELECTRICAL CHARACTERISTICS**

TEST CONDITIONS: 25°C unless otherwise noted.



*When ordering wafer/dice refer to Appendix B-23.

	Parameter	Min	Max	Unit	Test Conditions	
IGSSR	Gate Reverse Current		-100	рA	Vgs = -30V, Vps = 0	
IGSSH	T _A = 150°C	7	-500	nA	VGS = 30V; VDS = 3	
BVGSS	Gate-Source Breakdown Voltage	-50	ſ		$I_G = 1 \mu A$ , $V_{DS} = 0$	
VGS(off)	Gate-Source Cutoff Voltage	-0.5	-4.5	] v	$V_{DS} = 20V, I_{D} = 1 \text{ nA}$	
Vgs	Gate-Source Voltage	-0:3	-4.0	1		
1	Gate Operating Current	T	-50	pΑ	V _{DG} = 20V, I _D = 200μA	
lg .	T _A = 125°(	<u> </u>	-250	пА		
loss	Saturation Drain Current (Note 2)	0.5	5.0	mΑ	V _{DS} = 20V, V _{GS} = 0	
		1000	3000		f = 1 k	Hz
gts .	Common-Source Forward Transconductance (Note 1)			┥	V _{DS} = 20V, V _{GS} = 0	<del></del>
	*	1000	<u> </u>	μmho	f = 100	HM C
gfs '	Common-Source Forward Transconductance (Note 1)	600	1600	بق ، ، ، ، ، ص	$V_{DG} = 20V, I_D = 200\mu A$	
gos	Common-Source Output Capacitance		35	1	$V_{DS} = 20V, V_{GS} = 0$ $f = 1 \text{ ki}$	Ηz
gos	Common-Source Output Conductance		10		$V_{DG} = 20V, I_D = 200\mu A$	
Ciss	Common-Source Input Capacitance		6	. pF	5_4	41.1-
Crss	Common-Source Reverse Transfer Capacitance	7.5	2		f = 1 N	VIMZ
				<u>nV</u> √Hz	V _{DS} = 20V, V _{GS} = 0	
<b>e</b> n ;	Equivalent Short Circuit Input Noise Voltage		80	√ Hz	f = 10	U HZ

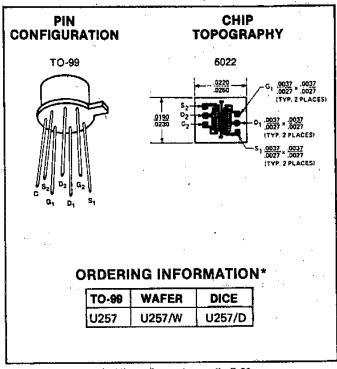
	Matching Characteristics	U231 Max	U232 Max	U233 Max	U234 Max	U235 Max	Unit	Test Conditions
lg1-lg2	Differential Gate Current	10	10	10	10	10	nA	V _{DG} = 20V, I _D = 200μA   125° C
(loss1-loss2) (loss1	Saturation Drain Current Match (Note 2)	7 5	5	5	10	15	. %	V _{DS} = 20V, V _{GS} = 0
VGS1-VGS2	Differential Gate-Source Voltage	5	10	.15	20	25	mV	
Δ V _{GS1} -V _{GS2}	Gate-Source Voltage	10	25	50	75	100	μV/°C	T _A = 25° C T _B = 125° C
	Differential Drift (Note 3)	10	25	- 50	75	100		T _A = -55° C V _{DG} = 20V, I _D = 200μA T _B = 25° C
(gfs1-gfs2) gfs1	Transconductance Match (Note 2)	3	5	5	10	15	%	f = 1 kHz
gos1-gos2	Differential Output Conductance	5	5	5	5	5	μmho	

### NOTES:

- 1. Per transistor.
- 2. Pulse test required, pulse width = 300 µs, duty cycle ≤ 3%.
- 3. Measured at end points, TA and TB.



# **U257 Monolithic Dual N-Channel JFET**


### **FEATURES**

•  $g_{fs} > 5000 \mu mho$  from DC to 100 MHz • Matched VGs,  $g_{fs}$  and  $g_{os}$ 

### **ABSOLUTE MAXIMUM RATINGS**

 $(T_A = 25^{\circ} \text{C unless otherwise noted})$ 

Gate-Drain or Gate-Source Voltage (Note 1)	25V
Gate Current (Note 1)	50 mA
Storage Temperature Range65°	C to +200° C
Operating Temperature Range55°	
Lead Temperature (Soldering, 10 sec.)	
ONE SIDE	<b>BOTH SIDES</b>
Power Dissipation 250 mW	500 mW
Derate above 25°C	7.7 mW/°C



^{*}When ordering wafer/dice refer to Appendix B-23.

### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

	PARAMETER	MIN	MAX	UNIT	TEST CONDITIONS
IGSSR	Gate Reverse Current TA = 150°C		-100 -250	pA. nA	VGS = 15 V, VDS = 0
₿VGSS	Gate-Source Breakdown Voltage	-25		V	I _G = -1 μA, V _{DS} = 0
VGS(off)	Gate-Source Cutoff Voltage	-1	5	V	V _{DS} = 10 V, I _D = 1 nA
DSS	Saturation Drain Current (Note 2)	5	40	mA	V _{DS} = 10 V, V _{GS} = 0
9fs	Common-Source Forward Transconductance	5000	10,000		$V_{DS} = 10 \text{ V, } I_{D} = 5 \text{ mA}  f = 1 \text{ kHz}$
9fs	Common-Source Forward Transconductance	5000	10,000	μmho	V _{DG} = 10 V, I _D = 5 mA   f = 100 MHz
gos	Common-Source Output Conductance		150	μιπιο	V _{DS} = 10 V, I _D = 5 mA   f = 1 kHz
goss	Common-Source Output Conductance		150		f = 100 MHz
Ciss	Common-Source Input Capacitance		. 5	ġF	VDG = 10 V, ID = 5 mA   f = 1 MHz
Crss	Common-Source Reverse Transfer Capacitance		1.2	<u> </u>	VDG = 10 V, 1D = 5 m/s 1 = 1 m/s
ēn	Equivalent Input Noise Voltage		30	$\frac{\text{nV}}{\sqrt{\text{Hz}}}$	f = 10 kHz
IDSS1 IDSS2	Drain Current Ratio at Zero Gate Voltage (Note 2)	0.85	1		V _{DS} = 10 V, V _{GS} = 0
VGS1-VGS2	Differential Gate-Source Voltage	<u> </u>	100	mV	
9fs1 9fs2	Transconductance Ratio	0.85	1		VDG = 10 V, ID = 5 mA
9os1-9os2	Differential Output Conductance		20	μmho	.   T T T K T Z

#### NOTES:

- 1. Per transistor.
- 2. Pulse test required, pulse width = 300  $\mu$ s, duty cycle  $\leq$  3%.



### **FEATURES**

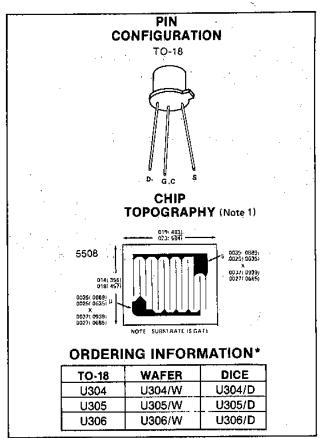
- Low ON Resistance
- I_{D(off)} <500 pA</li>
- Switches directly from T²L Logic (U306)

# 1

### **APPLICATIONS**

- Analog Switches
- Commutators
- · Choppers.

### **ABSOLUTE MAXIMUM RATINGS**


(TA = 25°C unless otherwise noted)

Gate-Drain or Gate-Source Voltage (Note 1) 30
Gate Current 50 m/
Storage Temperature Range65°C to +200°C
Operating Temperature Range55°C to +150°C
Lead Temperature (Soldering, 10 sec.) 300°C
Power Dissipation 350 mV
Derate above 25°C 2.8 mW/°C

### **ELECTRICAL CHARACTERISTICS**

TEST CONDITIONS: 25°C unless otherwise noted.

# U304-U306 P-Channel JFET



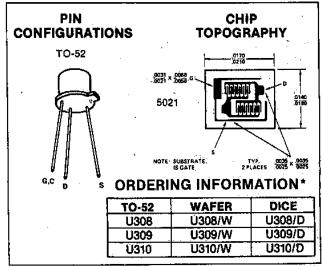
*When ordering wafer/dice refer to Appendix B-23.

		U304		U305		U306								
	Parameter	Min	Max	Min	Max	Min	Max	Unit	το	est Cond	litions			
• • •	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		500		500	,	500	pΑ	·-					
IGSSR	Gate Reverse Current					, , , , , , , , , , , , , , , , , , ,			$V_{GS} = 20V$ ; $V_{DS} = 0$					
100011	T _A = 150°C	·	1.0	٠.	1.0		1.0	μΑ						
BVgss	Gate-Source Breakdown Voltage	30		30		. 30			$I_{G} = 1 \mu A, V_{DS} = 0$				: '	
VGS(off)	Gate-Source Cutoff Voltage	5	10	3	6	1	4	ľ	V _{DS} = -	$V_{DS} = -15V$ , $I_D = -1\mu A$			41 1 1	
							1 77	v						
			1			· :		` .	$V_{GS} = 0$ ; $J_D = -15mA(U304)$ , $J_D = -7mA(U305)$ ,					
VDS(on)	Drain-Source_ON Voltage	ļ.,	-1.3		-0.8	i.	-0.6	l						
			ļ <u>.</u>							$I_D = -3mA (U306)$ $V_{DS} = -15V, V_{GS} = 0$				
loss	Saturation Drain Current (Note 2).	-30	-90	<del>-15</del>	-60	<b>−</b> 5	-25	mΑ				1.100.4		
		<u> </u>	-500		-500	<u> </u>	-500	pA.	Vos≐-		s = 12V ( s = 7V (U		}	
ID(off)	Drain Cutoff Current	1	١	١,	۱.,			٠ .			s = 7 v (t s:= 5 V (t			
	$T_A = 150^{\circ} C$	Ţ	1.0	ľ.—–	-1.0	· -	-1.0 175		· ·	V. Ip = -			<del>' - :</del>	
(DS(on)	Static Drain-Source ON Resistance	<u> </u>	85		110			Ω				· -	f = 1 kHz	
fds(on)	Drain-Source ON Resistance	<u> </u>	85	<u> </u>	110	<u> </u>	175 27	12		V, Ip = 0 15V, Vgs			1 - 1 1/12	
C _{iss} .	Common-Source Input Capacitance		27	<u> </u>	27	ļ	2/	ļ ·				141	f = 1. MHz	
				l .	l ·	ļ			VDS				: — i∵iyii∓ta	
1	Common-Source Reverse Transfer		_		7	·	7	pF	VGS = 7V (U305), VGS = 5V (U306)					
Crss	Capacitance	1 .	7				′	] : :						
	*	+ -	<del> </del>	ļ	- · ·				-	U304	U305 1	U30	6	
	Town ON Balay Time	ļ.,	20	,.	25		25		<del></del>		0000	- <del></del>	· · · · · · · · · · · · · · · · · · ·	
td(on)	Turn-ON Delay Time	┿	120	├─		-	<del></del>	1	VDD	-10V	-6v	-6V		
tr	Rise Time	'	15		25		35	ns	VGS(off)	12V	7V	5V		
td(off)	Turn-OFF Delay Time	†	10	i	15	· ·	20	1	RL	580Ω	743Ω	1800	DΩ	
t _f	Fall Time	1	25	1	40		60	1	VGS(on)	0 .	0	o		
**				1				l	(Dion)	~15mA	-7mA	-3m	Α	

#### NOTES

- 1. Due to symmetrical geometry these units may be operated with source and drain leads interchanged.
- Pulse test pulsewidth = 300µs, duty cycle ≤3%.




### **FEATURES**

- . Industry Standard Part in Low Cost Plastic Package
- High Power Gain
- Low Noise
- . Dynamic Range Greater than 100 dB
- Easily Matched to 75 $\Omega$  Input

### **ABSOLUTE MAXIMUM RATINGS**

(T _A = 25° C unless otherwise noted)
Gate-Drain or Gate-Source Voltage25V
Gate Current 20 mA
Storage Temperature65° C to +200° C
Operating Temperature Range55°C to +150°C
Led Temperature (Soldering, 10 sec.) +300°C
Power Dissipation 500 mW
Derate above 25°C

# U308-U310 N-Channel JFET



*When ordering wafer/dice refer to Appendix B-23.

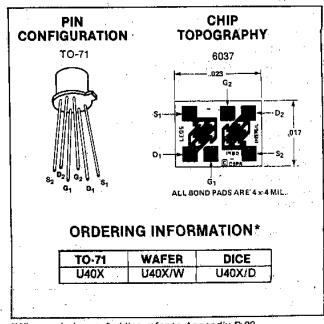
### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

e)///	PARAMETER			U308			U309	,		U310		UNIT	TEST CONDITIONS		
SYMBOL	PARAMETE	in ·	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	Sitt 1	TEST CONE		
I _{GSSR}	Gate Reverse	Current			-150			-150		-	-150	. рА	V _{GS} = -15 V		
GSSH	,	T _A = 125°C			-150			-150			-150	nA	V _{GS} = 0		
BV _{GSS}	Gate-Source E Voltage	3 reakdown	<del>-</del> 25	. 1	•	-25		,	-25			ŀ	I _G = -1 μA, V _{DS} = 0		
V _{GS(off)}	Gate-Source ( Voltage	Cutoff	-1.0		-6.0	-1,0		-4.0	-2.5		-6.0	. V	V _{DS} = 10 V, I _D = 1 nA*		
¹ oss	Saturation Di (Note 1)	rain Current	12		60	12		30	24		60	mA ·	V _{DS} = 10 V, V _{GS} = 0		
V _{GS(f)}	Gate-Source Voltage	Forward			1.0		· [	1.0			1.0	v	I _G = 10 mA, V _I	: ::::::::::::::::::::::::::::::::::::	
9 _{fg}	Common-Gat Transconduc	te Forward tance (Note 1)	10		20	10		20	10		18	mmho	V _{DS} = 10 V,		
g _{ogs}	Common-Ga Conductance				150			150			150	μmho	I _D = 10 mA. f = 1 kl	f=1kHz	
C _{gd}	Drain-Gate C	apacitance			2.5			2.5		!	2.5		V _{GS} := -10 V,		
C _{gs}	Gate-Source	Capacitance			5.0		1	5.0			5.0	ρF	V _{DS} = 10 V	f = 1 MHz	
ēn	Equivalent S Input Noise			10			. 10			10		$\sqrt{\frac{nV}{Hz}}$	V _{DS} = 10 V, I _D = 10 mA	f = 100 Hz	
s _{fg}	Common-Ga Transconduc		·	15 14			15 14			15 14				f = 100 MHz f = 450 MHz	
g _{ogs}	Common-Ga Conductance			0.18			0.18 0.32			0.18 0.32		mmho	V _{DS} = 10 V,	f = 100 MHz f = 450 MHz	
G _{pg}	Common-Ga Gain	ite Power		16 11			16 11			16 11			I _D = 10 mA		
NF	Noise Figure	·		1.5			1.5		-	1.5		dB .	· •	f = 100 MHz f = 450 MHz	

NOTE: Pulse test duration = 2 ms.



# U401-U406 Monolithic Dual N-Channel JFET


### **FEATURES**

- Minimum System Error and Calibration
- Low Drift with Temperature
- Operates from Low Power Supply Voltages
- High Output Impedance

### **ABSOLUTE MAXIMUM RATINGS**

### **ELECTRICAL CHARACTERISTICS**

TEST CONDITIONS: 25° unless otherwise noted.



*When ordering wafer/dice refer to Appendix B-23.

Parameters		U401 U402		02	U4	103	IJ	104	U4	05	. U4	106	Unit	Test Conditions		
Parai	meters	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Oran ,	lest Co	Hattions
BVGSS	Gate-Source Breakdown Voltage	-50		-50	_	<del>-5</del> 0		-50		-50		-50		. V.	V _{DS} = 0,-1G = -	. i <u> </u>
less	Gate Reverse Current		-25		-25		-25		-25	·	-25		~25	рA	Vps = 0, Vgs =	
VGS(off)	Gate-Source Cutoff Voltage	ф·	-2.5	5	-2.5	-,5	-2.5		→2.5	<b>5</b>	-2.5	5	-2.5	v	Vps = 15V, lp	
VgS(on)	Gate-Source Voltage (on)		-2.3		-2.3		-2.3	l	-2.3		-2.3		-2.3	Ì.	V _{DG} = 15V, lp	· · · · · · · · · · · · · · · · · · ·
loss	Saturation Drain Current (Note 3)	0.5	10.0	0.5		0.5	10.0	0.5	10.0	0.5	10.0	0.5	10.0	mΑ	V _{DS} = 10V, V _G	s = 0
	Operationg		-15		-15		-15		-15		-15		-15	pΑ	$V_{DG} = 15V$ ,	
Ig	Gate Current (Note 2) TA = 125°C		-10		-10:		~10	:	-10		-10		-10	nΑ	I _D = 200μA	
BVG1-G2	Gate-Gate Breakdown  Voltage	±50		±50	·	±50		±50		±50		±50		V	V _{DS} = 0, V _{GS} =	0, Iα = ±1μΑ
<b>9</b> fs	Common-Source Forward Transconductance(Note 3)	2000		2000		2000		2000	7000	2000	,	2000			V _{DS} = 10V,	f = 1 kHz
gos	Common-Source Output Conductance		20	. "	20		20		20		20		20	umho	Vgs = 0	
⊈fs	Common-Source Forward Transconductance	1000		1000	<u>                                     </u>	1000		1000	1600	1000		1000	,	ľ		f = 1 kHz
gos.	Common-Source Output Conductance		2.0		2.0		2.0		2.0		2.0		2.0	<u></u>	V _{DG} = 15V,	
Ciss	Common-Source Input Capacitance		8.0		8:0		8.0		8.0		8.0		8:0	bF	I _D = 200μA	f = 1 MHz
Crss .	Common-Source Reverse Transfer Capacitance		3.0		3.0		3.0		3.0		3.0		<b>a.</b> 0			
e _n	Equivalent Short-Circuit Input Noise Voltage		20		20		20		20		20		20	_nV √Hz	$V_{DS} = 15V$ , $V_{GS} = 0$	f = 10 Hz
CMRR	Common-Mode Rejection Ratio (Note 4)	95		95		95		95		90				dB	V _{DG} = 10 to 2	
VGS1-VGS2	Differential Gate-Source Voltage		5		10		10		15		20		40	mV	Vpg = 10V, lp	= 200µA
<u>2T 2T 2T 2T 2T 2T 2T 2T 2T 2T 2T 2T 2T 2</u>	Gate-Source Voltage Differ- ential Drift (Note 5)		10	, .	10		25		25		40		80	μV/°C	V _{DG} = 10V, I _D = 200μA	$T_A = -55^{\circ} \text{ C},$ $T_B = +25^{\circ} \text{ C},$ $I_D = 200 \mu \text{A}$ $T_C = +125^{\circ} \text{ C}$

### NOTES:

- 1. Per transistor.
- 2. Approximately doubles for every 10°C increase in TA.
- 3. Pulse test duration = 300  $\mu$ sec; duty cycle  $\leq$  3%.
- 4. Measured at end points, TA and TB.

5. CMRR = 20 
$$\log_{10} \left[ \frac{\Delta V_{DD}}{\Delta \left[ V_{GS_1} - V_{GS_2} \right]} \right]$$
,  $\Delta V_{DD} = 10 \text{ V}$ 

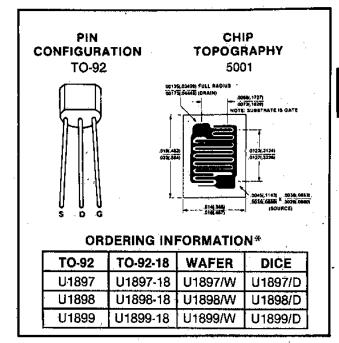


### U1897-U1899 N-Channel JFET

### **FEATURES**

- Low Insertion Loss
- No Error or Offset Voltage Generated by Closed Switch

### **APPLICATIONS**


Analog Switches, Choppers

### **ABSOLUTE MAXIMUM RATINGS**

(TA = 25° C unless otherwise noted)
Gate-Drain or Gate-Source Voltage ..... -40V
Forward Gate Current ...... 10 mA
Storage Temperature Range ... -65° C to +200° C
Operating Temperature Range ... -55° C to +150° C
Lead Temperature (Soldering, 10 sec) ... +300° C
Power Dissipation ...... 350 mW
Derate above 25° C ...... 3.5 mW/° C

### **ELECTRICAL CHARACTERISTICS**

TEST CONDITIONS: 25 °C unless otherwise noted



*When ordering wafer/dice refer to Appendix B-23.

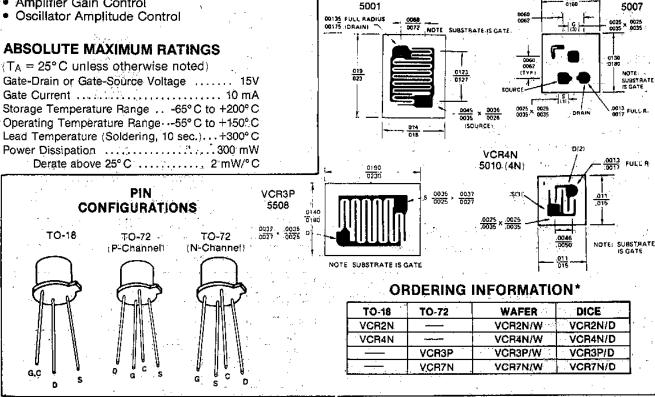
,		Ų18	397	Ų18	398	U18	199		
	PARAMETERS	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS
BV _{GSS}	Gate-Source Breakdown Voltage	- 40		- 40		- 40		٧	IG = -1μA, V _{DS} = 0
GSSR	Gate Reverse Current		400		400		<b>- 400</b> ¹		$V_{GS} = -20V, V_{DS} = 0$
DGO	Drain-Gate Leakage Current		200		200		200		$V_{DG} = 20V, I_S = 0$
sgo	Source-Gate Leakage Current		200		200		200	pΑ	$V_{SG} = 20V, I_{D=0}$
D(off)	Drain Cutoff Current TA = 85 °C		200 10		200 10		10	nA	V _{DS} = 20V, V _{GS} = -12V (U1897) V _{GS} = -8V (U1898) V _{GS} = -6V (U1899)
VGS(off)	Gate-Source Cutoff Voltage	– 5.0	10	- 2.0	-7.0	- 1.0	- 5.0	V	V _{DS} =20V, I _D =1 na
DSS	Saturation Drain Current (Note 1)	30		15		8.0		mA	V _{DS} = 20V, V _{GS} = 0
V _{DS(on)}	Drain-Source ON Voltage		0.2		0.2		0.2	٧	V _{GS} =0, I _D =6.6mA (U1897) I _D =4.0mA (U1898) I _D =2.5mA (U1899)
^r DS(on)	Static Drain-Source ON Resistance		30		50		80	Ω	ID = 1mA, VGS = 0
Cdg	Drain-Gate Capacitance		5		5		5		V _{DG} = 20V, I _S = 0
Csg	Source-Gate Capacitance		5		.5		5		V _{SG} = 20V, I _D = 0
Ciss	Common-Source Input Capacitance		16	ļ	16		16	pF	f=1 MHz V _{DS} =20V, V _{GS} =0
C _{rss}	Common Source Reverse Transfer Capacitance		3.5		3.5		3.5		
t _{d(on)}	Turn ON Delay Time		15		15		20		Switching Time Test Conditions
tr	Rise Time		10		20		40	ns	U1897 U1898 U1899
		,			60		80		V _{DD} 3V 3V 3V V _{GS(on)} 0 0 0 V _{GS(off)} -12V -8V -6V
^t off	Turn OFF Time		40		50		00		R _L 425Ω 770Ω 1120Ω I _D (on) 6.6mA 4mA 2.5mA

NOTE: 1. Pulse test pulsewidth = 300 µs; duty cycle < 3%



### VCR2N/3P/4N/7N Voltage Controlled Resistors

CHIP


TOPOGRAPHY

VCR7N

### **APPLICATIONS**

- Small Signal Attenuators
- Filters
- Amplifier Gain Control

Gate-Drain or Gate-Source Voltage ...... 15V Gate Current ..... 10 mA Storage Temperature Range .. -65° C to +200° C Operating Temperature Range -- 55° C to +150° C Lead Temperature (Soldering, 10 sec.)...+300° C 



VCR2N

*When ordering wafer/dice refer to Appendix B-23.

### ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted) N-Channel VCR FETs

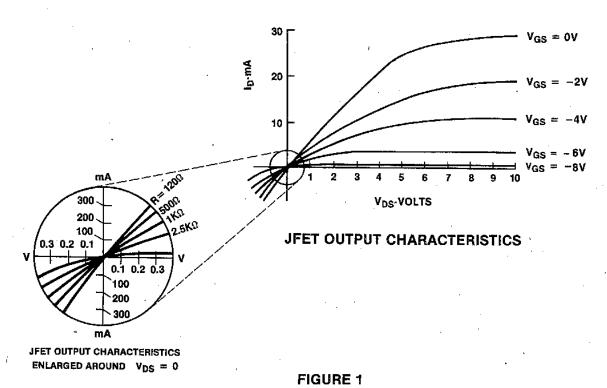
Γ	Parameter			R2N	٧C	VCR4N		VCR7N			
ŀ				Max	Min	Max	Min	Max	Unit	Test Conditions	
<u>\$</u>	lgss	Gate Reverse Current		-5		-0.2		-0.1	nA	$V_{GS} = -15V$ , $V_{DS} = 0$	
ΙĀ	BVGSS	Gate-Source Breakdown Voltage	-15		-15		-15		V	$I_{G} = -1 \mu A, V_{DS} = 0$	
ĬΪ	VGS(off)	Gate-Source Cutoff Voltage	-3.5	-7	-3.5	-7	-2.5	-5	· V	$I_D = 1  \mu A$ , $V_{DS} = 10 V$	
lċ	rds(on)	Drain Source ON Resistance	20	60	200	600	4,000	8,000	Ω	Vgs = 0, lb = 0	f = 1 kHz
Ъ	Cdgo	Drain-Gate Capacitance		7.5		3		1.5	ρF	$V_{GD} = -10V$ , $I_{S} = 0$	f = 1 MHz
Y	Csgo	Source-Gate Capacitance		7.5		3	ŀ	1.5	۲,۰	V _{GS} = -10V, I _D = 0	1 1011 12

### P-Channel VCR FETs

		Parameter	VC	R3P	Unit	Test Conditions		
S	lass	Gate Reverse Current		20	nA	$V_{GS} = 15V, V_{DS} = 0$		
Å	BVGSS	Gate-Source Breakdown Voltage	. 15			$I_{G} = 1 \mu A, V_{DS} = 0$		
T	VGS(off)	Gate-Source Cutoff Voltage	3.5	7	. <b>v</b>	$I_D = -1\mu A$ , $V_{DS} = -10V$		
۱ċ.	rds(on)	Drain-Source ON Resistance	70	200	Ω	$V_{GS} = 0, I_{D} = 0$	f = 1 kHz	
۵	Cdgo	Drain-Gate Capacitance		6	pF V _{GD} = 10V, ls = 0		f = 1 MHz	
Υ	Csgo	Source-Gate Capacitance		6	PΓ	VGS = 10V, ID = 0	] - 1 1411 12	

# 1

### JFETS AS VOLTAGE CONTROLLED RESISTORS


The voltage controlled resistor is a junction field effect transistor whose drain to source ON resistance is controlled by gate to source voltage.

The gate control terminal is high impedance thereby allowing negligible control current. The gate voltage is zero for minimum resistance, and increases as the gate voltage approaches the pinch-off voltage.

This VCR is intended for use on applications using low level AC signals. Figure 1 shows the output characteristics, with an enlarged graph of VDS = 0 for AC signals with no DC component. Operation is in the first and third quadrants; the device will operate in the first quadrant only if a constant current is applied to the drain and the input signal level is kept low.

Figure 1 also shows that certain combinations of gate control voltage and signal levels will cause resistance modulation. This distortion may be improved by introducing local feedback as shown in figure 2 for best frequency response and impedance levels; eliminating the feedback capacitor will require the gate control voltage to be double for the same ON resistance. The resistor values should be equal, and about  $100 k\Omega$ .

Best gate control voltage for best linearity is up to about 0.8V_{PK}; ON resistance increases rapidly beyond this point.



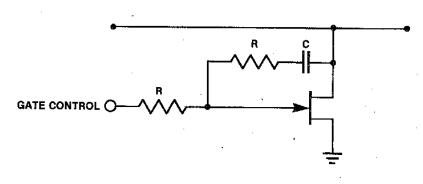



FIGURE 2