Description

The M16C/62M group of single-chip microcomputers are built using the high-performance silicon gate CMOS process using a M16C/60 Series CPU core and are packaged in a 100-pin plastic molded QFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1 M bytes of address space, low voltage (2.2 V to 3.6 V), they are capable of executing instructions at high speed. They also feature a built-in multiplier and DMAC, making them ideal for controlling office, communications, industrial equipment, and other high-speed processing applications.
The M16C/62M group includes a wide range of products with different internal memory types and sizes and various package types.

Features

Applications

Audio, cameras, office equipment, communications equipment, portable equipment

Pin Configuration

Figures 1.1.1 and 1.1.2 show the pin configurations (top view).

Figure 1.1.1. Pin configuration (top view)

Figure 1.1.2. Pin configuration (top view)

Block Diagram

Figure 1.1.3 is a block diagram of the M16C/62M group.

Block diagram of the M16C/62M group

Note 1: ROM size depends on MCU type.
Note 2: RAM size depends on MCU type.

Figure 1.1.3. Block diagram of M16C/62M group

Performance Outline

Table 1.1.1 is a performance outline of M16C/62M group.
Table 1.1.1. Performance outline of M16C/62M group

Item		Performance
Number of basic instructions		91 instructions
Shortest instruction execution time		$100 \mathrm{~ns}(\mathrm{f}(\mathrm{XIN})=10 \mathrm{MHz}, \mathrm{VcC}=2.7 \mathrm{~V}$ to 3.6 V) $142.9 n \mathrm{f}(\mathrm{f}(\mathrm{XIN})=7 \mathrm{MHz}, \mathrm{VcC}=2.2 \mathrm{~V}$ to 3.6 V with software one-wait)
Memory capacity	ROM	(See the figure 1.1.4. ROM Expansion)
	RAM	10 K to 20 K bytes
I/O port	P0 to P10 (except P85)	8 bits $\times 10,7$ bits $\times 1$
Input port	P85	1 bit $\times 1$
Multifunction timer	TA0, TA1, TA2, TA3, TA4	16 bits $\times 5$
	TB0, TB1, TB2, TB3, TB4, TB5	16 bits $\times 6$
Serial I/O	UART0, UART1, UART2	(UART or clock synchronous) $\times 3$
	SI/O3, SI/O4	(Clock synchronous) $\times 2$
A-D converter		10 bits $\times(8+2)$ channels
D-A converter		8 bits $\times 2$
DMAC		2 channels (trigger: 24 sources)
CRC calculation circuit		CRC-CCITT
Watchdog timer		15 bits $\times 1$ (with prescaler)
Interrupt		25 internal and 8 external sources, 4 software sources, 7 levels
Clock generating circuit		2 built-in clock generation circuits (built-in feedback resistor, and external ceramic or quartz oscillator)
Supply voltage		2.7 V to 3.6 V (f(XIN) $=10 \mathrm{MHz}$, without software wait) 2.4 V to $2.7 \mathrm{~V}(\mathrm{f}(\mathrm{XiN})=7 \mathrm{MHz}$, without software wait) 2.2 V to 2.4 V ($\mathrm{f}(\mathrm{XIN})=7 \mathrm{MHz}$ with software one-wait)
Power consumption		28.5 mW ($\mathrm{f}(\mathrm{XIN})=10 \mathrm{MHz}$, VcC=3V without software wait)
I/O characteristics	I/O withstand voltage	3 V
	Output current	1 mA
Memory expansion		Available (to a maximum of 1M bytes)
Device configuration		CMOS high performance silicon gate
Package		100-pin plastic mold QFP

Mitsubishi plans to release the following products in the M16C/62M group:
(1) Support for mask ROM version and Flash memory version
(2) ROM capacity
(3) Package

100P6S-A : Plastic molded QFP (mask ROM and flash memory versions)
100P6Q-A : Plastic molded QFP (mask ROM and flash memory versions)

Figure 1.1.4. ROM expansion

The M16C/62M group products currently supported are listed in Table 1.1.2.

Table 1.1.2. M16C/62M group
June, 2000

Type No	ROM capacity	RAM capacity	Package type	Remarks
M30620MCM-XXXFP	128K byte	10K byte	100P6S-A	mask ROM version
M30620MCM-XXXGP			100P6Q-A	
M30624MGM-XXXFP	256K byte	20K byte	100P6S-A	
M30624MGM-XXXGP			100P6Q-A	
M30620FCMFP	128K byte	10K byte	100P6S-A	Flash memory 3V version
M30620FCMGP			100P6Q-A	
M30624FGMFP	256K byte	20K byte	100P6S-A	
M30624FGMGP			100P6Q-A	


```
Package type:
FP : Package 100P6S-A
GP : 100P6Q-A
ROM No.
Omitted for blank flash memory version
ROM capacity:
C : 128K bytes
G: 256K bytes
Memory type:
M : Mask ROM version
F : Flash memory version
Shows RAM capacity, pin count, etc (The value itself has no specific meaning)
M16C/62 Group
M16C Family
```

Figure 1.1.5. Type No., memory size, and package

Table 1.26.1. Absolute maximum ratings

Symbol		Parameter	Condition	Rated value	Unit
Vcc	Supply voltage		Vcc=AVcc	- 0.3 to 4.6	V
AVcc	Analog supply voltage		$\mathrm{Vcc}=\mathrm{AVcc}$	- 0.3 to 4.6	V
Vı	Input voltage	RESET, CNVss, BYTE, P0 to P07, P1o to P17, P2o to P27, P30 to P37,P40 to P47, P50 to P57, P6o to P67, P72 to P77, P80 to P87, P9o to P97, P100 to P107, Vref, XIn		- 0.3 to Vcc +0.3	V
		P70, P71		-0.3 to 4.6	V
Vo	Output voltage	P 0 to $\mathrm{P} 07, \mathrm{P} 10$ to $\mathrm{P} 17, \mathrm{P} 20$ to P 27 , P3o to P37, P4o to P47, P5 5 to P57, P60 to P67, P72 to P77, P80 to P84, P86, P87, P9o to P97, P100 to P107, Xout		- 0.3 to Vcc +0.3	V
		P70, P71		- 0.3 to 4.6	V
Pd	Power dissipation		Ta $=25{ }^{\circ} \mathrm{C}$	300	mW
Topr	Operating ambient temperature			- 20 to 85 / -40 to 85 (Note)	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature			-65 to 150	${ }^{\circ} \mathrm{C}$

Note : Specify a product of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ to use it.

Table 1.26.2. Recommended operating conditions (referenced to $\mathrm{VCC}=2.2 \mathrm{~V}$ to 3.6 V at $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Note3) unless otherwise specified)

Symbol	Parameter					Standard		Unit
					Min.	Typ.	Max.	
Vcc	Supply voltage				2.2	3.0	3.6	V
AVcc	Analog supply voltage					Vcc		V
Vss	Supply voltage					0		V
AVss	Analog supply voltage					0		V
Vıн	HIGH input voltage	P31 to P37, P40 to P47, P50 to P57, P60 to P67, P 72 to $\mathrm{P} 77, \mathrm{P} 80$ to $\mathrm{P} 87, \mathrm{P} 9$ to $\mathrm{P} 97, \mathrm{P} 10$ to P 107 , Xin, RESET, CNVss, BYTE			0.8 Vcc		Vcc	V
		P70, P71			0.8 Vcc		4.6	V
		P00 to P07, P10 to P17, P20 to P27, P30 (during single-chip mode)			0.8 Vcc		Vcc	V
		P00 to P07, P10 to P17, P20 to P27, P30 (data input function during memory expansion and microprocessor modes)			0.5 Vcc		Vcc	V
VIL	LOW input voltage	P31 to P37, P4o to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P9o to P97, P10 to P107, XIn, RESET, CNVss, BYTE			0		0.2 Vcc	V
		P00 to P07, P10 to P17, P20 to P27, P30 (during single-chip mode)			0		0.2 Vcc	V
		P0o to P07, P1o to P17, P2o to P27, P30 (data input function during memory expansion and microprocessor modes)			0		0.16 Vcc	V
$\mathrm{IOH}_{\text {(peak }}$	HIGH peak output current P 00 to $\mathrm{P} 07, \mathrm{P} 10$ to $\mathrm{P} 17, \mathrm{P} 20$ to $\mathrm{P} 27, \mathrm{P} 30$ to P 37, P 40 to $\mathrm{P} 47, \mathrm{P} 50$ to $\mathrm{P} 57, \mathrm{P} 60$ to $\mathrm{P} 67, \mathrm{P} 72$ to P 77, P 80 to $\mathrm{P} 84, \mathrm{P} 86, \mathrm{P} 87, \mathrm{P} 90$ to $\mathrm{P} 97, \mathrm{P} 100$ to P 107,						-10.0	mA
$\mathrm{IOH}(\mathrm{avg})$	HIGH average output P 0 to $\mathrm{P} 07, \mathrm{P} 10$ to $\mathrm{P} 17, \mathrm{P} 20$ to $\mathrm{P} 27, \mathrm{P} 30$ to P 37 , current P40 to P47, P50 to P57, P60 to P67, P72 to P77, P80 to P84, P86, P87, P90 to P97, P100 to P107, P 80 to $\mathrm{P} 84, \mathrm{P} 86, \mathrm{P} 87, \mathrm{P} 90$ to $\mathrm{P} 97, \mathrm{P} 100$ to P 107						- 5.0	mA
IOL (peak)	LOW peak output current		P 00 to $\mathrm{P} 07, \mathrm{P} 10$ to $\mathrm{P} 17, \mathrm{P} 20$ to $\mathrm{P} 27, \mathrm{P} 30$ to P 37,P 40 to $\mathrm{P} 47, \mathrm{P} 50$ to $\mathrm{P} 57, \mathrm{P} 60$ to $\mathrm{P} 67, \mathrm{P} 70$ to P 77,P 80 to $\mathrm{P} 84, \mathrm{P} 86, \mathrm{P} 87, \mathrm{P} 90$ to $\mathrm{P} 97, \mathrm{P} 100$ to P 107				10.0	mA
IOL (avg)	LOW average output current		P 0 o to $\mathrm{P} 07, \mathrm{P} 10$ to $\mathrm{P} 17, \mathrm{P} 20$ to $\mathrm{P} 27, \mathrm{P} 30$ to P 37 , P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P84, P86, P87, P9o to P97, P10 to P107				5.0	mA
f (XIN)	Main clock input oscillation frequency		No wait	$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6V	0		10	MHz
			$\mathrm{Vcc}=2.4 \mathrm{~V}$ to 2.7 V	0		$\begin{aligned} & 10 \times \mathrm{Vcc} \\ & -17 \end{aligned}$	MHz	
			$\mathrm{Vcc}=2.2 \mathrm{~V}$ to 2.4 V	0		$\begin{gathered} 17.5 \times \mathrm{Vcc} \\ -35 \end{gathered}$	MHz	
			with wait	$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6V	0		10	MHz
			$\mathrm{Vcc}=2.2 \mathrm{~V}$ to 2.7V	0		$\begin{gathered} 6 \times \mathrm{Vcc} \\ -6.2 \\ \hline \end{gathered}$	MHz	
$f(X \mathrm{cin}$)	Subclock oscillation frequency					32.768	50	kHz

Note 1: The mean output current is the mean value within 100 ms .
Note 2: The total lol (peak) for ports P0, P1, P2, P86, P87, P9, and P10 must be 80mA max. The total Ioh (peak) for ports P0, P1, P2, P86, P87, P9, and P10 must be 80mA max. The total lol (peak) for ports P3, P4, P5, P6, P7, and P80 to P84 must be 80 mA max. The total Ioh (peak) for ports P3, P4, P5, P6, P72 to P77, and P80 to P84 must be 80mA max.
Note 3: Specify a product of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ to use it.
Note 4: Relationship between main clock oscillation frequency and supply voltage.

Flash memory version program voltage and read operation voltage characteristics	
Flash program voltage	
Vcc=2.7V to 3.6 V	
Vcc=2.7V to 3.4 V	

Note 5: Execute case without wait, program / erase of flash memory by $\mathrm{VcC}=2.7 \mathrm{~V}$ to 3.6 V and $\mathrm{f}(\mathrm{BCLK}) \leq 6.25 \mathrm{MHz}$. Execute case with wait, program / erase of flash memory by $\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V and $f(B C L K) \leq 10.0 \mathrm{MHz}$.

Table 1.26.3. Electrical characteristics (referenced to $\mathrm{VCC}=2.7 \mathrm{~V}$ to 3.6 V , $\mathrm{V} \mathrm{VS}=0 \mathrm{~V}$ at $\mathrm{Ta}=-2 \mathbf{2 0}^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Note1), $\mathrm{f}(\mathrm{X} \mid \mathrm{N})=10 \mathrm{MHz}$ without wait unless otherwise specified)

Note 1: Specify a product of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ to use it.
Note 2: With one timer operated using fc32.

Table 1.26.4. A-D conversion characteristics (referenced to $\mathrm{Vcc}=\mathrm{AVcc}=\mathrm{VREF}=2.4 \mathrm{~V}$ to 3.6 V , $\mathrm{Vss}=\mathrm{AVss}$ $=0 \mathrm{~V}$, at $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Note2), $\mathrm{f}(\mathrm{XIN})=10 \mathrm{MHz}$ unless otherwise specified)

Symbol	Parameter		Measuring condition	Standard			Unit	
			Min.	Typ.	Max			
-	Resolution			Vref $=$ Vcc			10	Bits
-	Absolute accuracy	Sample \& hold function not available (8 bit)	$\mathrm{V}_{\text {REF }}=\mathrm{V}_{\mathrm{c}} \mathrm{C}=3 \mathrm{~V}, \mathrm{f}_{\mathrm{AD}}=\mathrm{f}_{\mathrm{AD}} / 2$			± 2	LSB	
Rladder	Ladder resistance		VREF $=$ Vcc	10		40	k Ω	
tconv	Conversion time (8bit)			9.8			$\mu \mathrm{S}$	
Vref	Reference voltage			2.4		Vcc	V	
VIA	Analog input voltage			0		VreF	V	

Note 1: Connect AVcc pin to Vcc pin and apply the same electric potential.
Note 2: Specify a product of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ to use it.
Table 1.26.5. D-A conversion characteristics (referenced to $\mathrm{Vcc}=2.4 \mathrm{~V}$ to 3.6 V , $\mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}, \mathrm{Vref}=3 \mathrm{~V}$, at $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Note2), $\mathrm{f}(\mathrm{XIN})=10 \mathrm{MHz}$ unless otherwise specified)

Symbol	Parameter	Measuring condition	Standard			Unit	
				Min.	Typ.		
-	Resolution				8	Bits	
-	Absolute accuracy				1.0	$\%$	
tsu	Setup time				3	$\mu \mathrm{~s}$	
Ro	Output resistance		4	10	20	$\mathrm{k} \Omega$	
IvREF	Reference power supply input current	(Note1)			1.0	mA	

Note 1: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to " 0016 ". The A-D converter's ladder resistance is not included.

Also, when DA register contents are not " 00 ", the current IVREF always flows even though Vref may have been set to be "unconnected" by the A-D control register.
Note 2: Specify a product of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ to use it.
Table 1.26.6. Flash memory version electrical characteristics
(referenced to $\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V , at $\mathrm{Ta}=0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter		Standard			
		Unit			
Page program time	Typ.	Max			
Block erase time		6	120	ms	
Erase all unlocked blocks time		50	600	ms	
Lock bit program time		$50 \times \mathrm{n}($ Note $)$	$600 \times \mathrm{n}($ Note $)$	ms	

Note : n denotes the number of block erases.
Table 1.26.7. Flash memory version program voltage and read operation voltage characteristics ($\mathrm{Ta}=0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$)

Flash program voltage	Flash read operation voltage
Vcc=2.7V to 3.6 V	Vcc=2.4V to 3.6 V
Vcc=2.7V to 3.4 V	Vcc=2.2V to 2.4 V

Timing requirements

(referenced to $\mathrm{VCC}=3 \mathrm{~V}$, $\mathrm{VsS}=0 \mathrm{~V}$, at $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (*) unless otherwise specified)
*: Specify a product of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ to use it.

Table 1.26.8. External clock input

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tc	External clock input cycle time	100		ns
$\mathrm{tw}(\mathrm{H})$	External clock input HIGH pulse width	40		ns
$\mathrm{tw}(\mathrm{L})$	External clock input LOW pulse width	40		ns
tr	External clock rise time		18	ns
tf	External clock fall time		18	ns

Table 1.26.9. Memory expansion and microprocessor modes

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tac1(RD-DB)	Data input access time (no wait)		(Note)	ns
tac2(RD-DB)	Data input access time (with wait)		(Note)	ns
tac3(RD-DB)	Data input access time (when accessing multiplex bus area)		(Note)	ns
tsu(DB-RD)	Data input setup time	80		ns
tsu(RDY-BCLK)	RDY input setup time	60		ns
tsu(HOLD-BCLK)	HOLD input setup time	80		ns
th(RD-DB)	Data input hold time	0		ns
th(BCLK -RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns
td(BCLK-HLDA)	HLDA output delay time		100	ns

Note: Calculated according to the BCLK frequency as follows:

$$
\begin{aligned}
& \operatorname{tac} 1(R D-D B)=\frac{10^{9}}{f(B C L K) \times 2}-90 \quad[\mathrm{~ns}] \\
& \operatorname{tac} 2(R D-D B)=\frac{3 \times 10^{9}}{f(B C L K) \times 2}-90 \quad[\mathrm{~ns}] \\
& \operatorname{tac} 3(R D-D B)=\frac{3 \times 10^{9}}{f(B C L K) \times 2}-90 \quad[\mathrm{~ns}]
\end{aligned}
$$

Timing requirements

(referenced to $\mathrm{VCC}=3 \mathrm{~V}$, $\mathrm{VSS}=0 \mathrm{~V}$, at $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(^{*}\right)$ unless otherwise specified)

* : Specify a product of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ to use it.

Table 1.26.10. Timer A input (counter input in event counter mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tc(TA)	TAils input cycle time	150		ns
tw(TAH)	TAils input HIGH pulse width	60		ns
$\mathrm{tw}_{\mathrm{w}}(\mathrm{TAL})$	TAiln input LOW pulse width	60		ns

Table 1.26.11. Timer A input (gating input in timer mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tc(TA)	TAis input cycle time	600		ns
tw(TAH)	TAiln input HIGH pulse width	300		ns
tw(TAL)	TAils input LOW pulse width	300		ns

Table 1.26.12. Timer A input (external trigger input in one-shot timer mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tc(TA)	TAils input cycle time	300		ns
tw(TAH)	TAils input HIGH pulse width	150		ns
tw(TAL)	TAils input LOW pulse width	150		ns

Table 1.26.13. Timer A input (external trigger input in pulse width modulation mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tw(TAH)	TAiin input HIGH pulse width	150		ns
$\mathrm{tw}_{\mathrm{w}(\mathrm{TAL})}$	TAiln input LOW pulse width	150		ns

Table 1.26.14. Timer A input (up/down input in event counter mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tc(UP)	TAiout input cycle time	3000		ns
tw(UPH)	TAiout input HIGH pulse width	1500		ns
tw(UPL)	TAiout input LOW pulse width	1500		ns
tsu(UP-TIN)	TAiout input setup time	600		ns
th(Tin-UP)	TAiout input hold time	600		ns

Timing requirements

(referenced to $\mathrm{VCC}=3 \mathrm{~V}$, $\mathrm{VSS}=0 \mathrm{~V}$, at $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(^{*}\right)$ unless otherwise specified)

* : Specify a product of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ to use it.

Table 1.26.15. Timer B input (counter input in event counter mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tc(TB)	TBiin input cycle time (counted on one edge)	150		ns
tw(TBH)	TBiIn input HIGH pulse width (counted on one edge)	60		ns
tw(TBL)	TBiin input LOW pulse width (counted on one edge)	60		ns
tc(TB)	TBiis input cycle time (counted on both edges)	300		ns
tw(TBH)	TBiin input HIGH pulse width (counted on both edges)	160		ns
tw(TBL)	TBiin input LOW pulse width (counted on both edges)	160		ns

Table 1.26.16. Timer B input (pulse period measurement mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tc (TB)	TBiln input cycle time	600		ns
tw(TBH)	TBiIN input HIGH pulse width	300		ns
$\mathrm{tw}_{\text {(TBL) }}$	TBils input LOW pulse width	300		ns

Table 1.26.17. Timer B input (pulse width measurement mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tc (TB)	TBis input cycle time	600		ns
tw(TBH)	TBiIn input HIGH pulse width	300		ns
tw(TBL)	TBis input LOW pulse width	300		ns

Table 1.26.18. A-D trigger input

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\operatorname{tc}(\mathrm{AD})$	$\overline{\text { ADTRG }}$ input cycle time (trigger able minimum)	1500		ns
$\mathrm{tw}(\mathrm{ADL})$	$\overline{\text { ADTRG }}$ input LOW pulse width	200		ns

Table 1.26.19. Serial I/O

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{tc}(\mathrm{CK})$	CLKi input cycle time	300		ns
$\mathrm{tw}(\mathrm{CKH})$	CLKi input HIGH pulse width	150		ns
$\mathrm{tw}(\mathrm{CKL})$	CLKi input LOW pulse width	150		ns
$\mathrm{td}(\mathrm{C}-\mathrm{Q})$	TxDi output delay time		160	ns
$\mathrm{th}(\mathrm{C}-\mathrm{Q})$	TxDi hold time	0		ns
$\operatorname{tsu(D-C)}$	RxDi input setup time	50		ns
$\operatorname{th}(\mathrm{C}-\mathrm{D})$	RxDi input hold time	90		ns

Table 1.26.20. External interrupt $\overline{\mathrm{INTi}}$ inputs

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tw(INH)	$\overline{\mathrm{INTi}}$ input HIGH pulse width	380		ns
tw(INL)	INTi input LOW pulse width	380		ns

Switching characteristics (referenced to $\mathrm{Vcc}=3 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ at $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Note 3), CM15 = " 1 " unless otherwise specified)

Table 1.26.21. Memory expansion and microprocessor modes (with no wait)

Symbol	Parameter	Measuring condition	Standard		Unit
			Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 1.26.1		60	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns
th(RD-AD)	Address output hold time (RD standard)		0		ns
th (WR-AD)	Address output hold time (WR standard)		0		ns
td(BCLK-CS)	Chip select output delay time			60	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns
td(BCLK-ALE)	ALE signal output delay time			60	ns
th(BCLK-ALE)	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			60	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			60	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (BCLK standard)			80	ns
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns
td(DB-WR)	Data output delay time (WR standard)		(Note1)		ns
th(WR-DB)	Data output hold time (WR standard)(Note2)		0		ns

Note 1: Calculated according to the BCLK frequency as follows:

$$
\operatorname{td}(D B-W R)=\frac{10^{9}}{f(B C L K) \times 2}-80
$$

[ns]

Note 2: This is standard value shows the timing when the output is off, and doesn't show hold time of data bus.
Hold time of data bus is different by capacitor volume and pull-up
(pull-down) resistance value.
Hold time of data bus is expressed in

$$
\mathrm{t}=-\mathrm{CR} \mathrm{X} \ln (1-\mathrm{VOL} / \mathrm{VCC})
$$

by a circuit of the right figure.
For example, when $\mathrm{VoL}=0.2 \mathrm{Vcc}, \mathrm{C}=30 \mathrm{pF}, R=1 \mathrm{k} \Omega$, hold time
 of output "L" level is

$$
\begin{aligned}
\mathrm{t} & =-30 \mathrm{pF} \times 1 \mathrm{k} \Omega \times \ln (1-0.2 \mathrm{Vcc} / \mathrm{Vcc}) \\
& =6.7 \mathrm{~ns}
\end{aligned}
$$

Note 3: Specify a product of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ to use it.

Figure 1.26.1. Port P0 to P10 measurement circuit

Switching characteristics (referenced to $\mathrm{Vcc}=3 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$ at $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Note 3), CM15 = "1" unless otherwise specified)

Table 1.26.22. Memory expansion and microprocessor modes
(when accessing external memory area with wait)

Symbol	Parameter	Measuring condition	Standard		Unit
			Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 1.26.1		60	ns
th (BCLK-AD)	Address output hold time (BCLK standard)		4		ns
$\mathrm{th}(\mathrm{RD}-\mathrm{AD})$	Address output hold time (RD standard)		0		ns
th(WR-AD)	Address output hold time (WR standard)		0		ns
to(BCLK-CS)	Chip select output delay time			60	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns
td(BCLK-ALE)	ALE signal output delay time			60	ns
th(BCLK-ALE)	ALE signal output hold time		-4		ns
td (BCLK-RD)	RD signal output delay time			60	ns
th (BCLK-RD)	RD signal output hold time		0		ns
td (BCLK-WR)	WR signal output delay time			60	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (BCLK standard)			80	ns
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns
td(DB-WR)	Data output delay time (WR standard)		(Note1)		ns
th(WR-DB)	Data output hold time (WR standard)(Note2)		0		ns

Note 1: Calculated according to the BCLK frequency as follows:

$$
\operatorname{td}(\mathrm{DB}-\mathrm{WR})=\frac{10^{9}}{\mathrm{f}(\mathrm{BCLK})}-80
$$

Note 2: This is standard value shows the timing when the output is off, and doesn't show hold time of data bus.
Hold time of data bus is different by capacitor volume and pull-up (pull-down) resistance value.
Hold time of data bus is expressed in

$$
t=-C R X \ln (1-V O L / V C C)
$$

by a circuit of the right figure.
For example, when VoL $=0.2 \mathrm{Vcc}, \mathrm{C}=30 \mathrm{pF}, \mathrm{R}=1 \mathrm{k} \Omega$, hold time
 of output "L" level is

$$
\begin{aligned}
\mathrm{t} & =-30 \mathrm{pF} \times 1 \mathrm{k} \Omega \times \ln (1-0.2 \mathrm{Vcc} / \mathrm{Vcc}) \\
& =6.7 \mathrm{~ns} .
\end{aligned}
$$

Note 3: Specify a product of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ to use it.

Switching characteristics (referenced to $\mathrm{Vcc}=3 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ at $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Note 2), CM15 = "1" unless otherwise specified)

Table 1.26.23. Memory expansion and microprocessor modes
(when accessing external memory area with wait, and select multiplexed bus)

Symbol	Parameter	Measuring condition	Standard		Unit
			Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 1.26.1		60	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		4		ns
$\operatorname{th}(\mathrm{RD}-\mathrm{AD})$	Address output hold time (RD standard)		(Note 1)		ns
th(WR-AD)	Address output hold time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip select output delay time			60	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		4		ns
th(RD-CS)	Chip select output hold time (RD standard)		(Note 1)		ns
th(WR-CS)	Chip select output hold time (WR standard)		(Note 1)		ns
td(BCLK-RD)	RD signal output delay time			60	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			60	ns
th (BCLK-WR)	WR signal output hold time		0		ns
td (BCLK-DB)	Data output delay time (BCLK standard)			80	ns
th(BCLK-DB)	Data output hold time (BCLK standard)		4		ns
td(DB-WR)	Data output delay time (WR standard)		(Note 1)		ns
th(WR-DB)	Data output hold time (WR standard)		(Note 1)		ns
td(BCLK-ALE)	ALE signal output delay time (BCLK standard)			60	ns
th(BCLK-ALE)	ALE signal output hold time (BCLK standard)		-4		ns
td(AD-ALE)	ALE signal output delay time (Address standard)		(Note 1)		ns
th(ALE-AD)	ALE signal output hold time(Address standard)		40		ns
td(AD-RD)	Post-address RD signal output delay time		0		ns
$\operatorname{td}(\mathrm{AD}-\mathrm{WR})$	Post-address WR signal output delay time		0		ns
tdz(RD-AD)	Address output floating start time			8	ns

Note 1: Calculated according to the BCLK frequency as follows:

$$
\begin{aligned}
& \operatorname{th}(\mathrm{RD}-\mathrm{AD})=\frac{10^{9}}{\mathrm{f}(\mathrm{BCLK}) \times 2} \\
& \operatorname{th}(\mathrm{WR}-\mathrm{AD})=\frac{10^{9}}{\mathrm{f}(\mathrm{BCLK}) \times 2} \quad[\mathrm{~ns}] \\
& \operatorname{th}(\mathrm{RD}-\mathrm{CS})=\frac{10^{9}}{\mathrm{f}(\mathrm{BCLK}) \times 2} \quad[\mathrm{~ns}] \\
& \operatorname{th}(\mathrm{WR}-\mathrm{CS})=\frac{10^{9}}{\mathrm{f}(\mathrm{BCLK}) \times 2} \\
& \operatorname{td}(\mathrm{DB}-\mathrm{WR})=\frac{10^{9} \times 3}{\mathrm{f}(\mathrm{BCLK}) \times 2}-80 \quad[\mathrm{~ns}] \\
& \operatorname{th}(\mathrm{WR}]-\mathrm{DB})=\frac{10^{9}}{\mathrm{f}(\mathrm{BCLK}) \times 2} \\
& \operatorname{td}(\mathrm{AD}-\mathrm{ALE})=\frac{10^{9}}{\mathrm{f}(\mathrm{BCLK}) \times 2}-45 \quad[\mathrm{~ns}]
\end{aligned}
$$

Note 2: Specify a product of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ to use it.

Figure 1.26.2. Vcc=3V timing diagram (1)

Figure 1.26.3. Vcc=3V timing diagram (2)

Figure 1.26.4. Vcc=3V timing diagram (3)

Figure 1.26.5. Vcc=3V timing diagram (4)

Figure 1.26.6. Vcc=3V timing diagram (5)

Usage Precaution

Timer A (timer mode)

(1) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Ai register with the reload timing gets "FFFF16". Reading the timer Ai register after setting a value in the timer Ai register with a count halted but before the counter starts counting gets a proper value.

Timer A (event counter mode)

(1) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Ai register with the reload timing gets "FFFF16" by underflow or "000016" by overflow. Reading the timer Ai register after setting a value in the timer Ai register with a count halted but before the counter starts counting gets a proper value.
(2) When stop counting in free run type, set timer again.

Timer A (one-shot timer mode)

(1) Setting the count start flag to " 0 " while a count is in progress causes as follows:

- The counter stops counting and a content of reload register is reloaded.
- The TAiout pin outputs "L" level.
- The interrupt request generated and the timer Ai interrupt request bit goes to " 1 ".
(2) The timer Ai interrupt request bit goes to " 1 " if the timer's operation mode is set using any of the following procedures:
- Selecting one-shot timer mode after reset.
- Changing operation mode from timer mode to one-shot timer mode.
- Changing operation mode from event counter mode to one-shot timer mode.

Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to " 0 " after the above listed changes have been made.

Timer A (pulse width modulation mode)

(1) The timer Ai interrupt request bit becomes " 1 " if setting operation mode of the timer in compliance with any of the following procedures:

- Selecting PWM mode after reset.
- Changing operation mode from timer mode to PWM mode.
- Changing operation mode from event counter mode to PWM mode.

Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to "0" after the above listed changes have been made.
(2) Setting the count start flag to "0" while PWM pulses are being output causes the counter to stop counting. If the TAiout pin is outputting an "H" level in this instance, the output level goes to "L", and the timer Ai interrupt request bit goes to " 1 ". If the TAiout pin is outputting an " L " level in this instance, the level does not change, and the timer Ai interrupt request bit does not becomes " 1 ".

Timer B (timer mode, event counter mode)

(1) Reading the timer Bi register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Bi register with the reload timing gets "FFFF16". Reading the timer Bi register after setting a value in the timer Bi register with a count halted but before the counter starts counting gets a proper value.

Timer B (pulse period/pulse width measurement mode)

(1) If changing the measurement mode select bit is set after a count is started, the timer Bi interrupt request bit goes to "1".
(2) When the first effective edge is input after a count is started, an indeterminate value is transferred to the reload register. At this time, timer Bi interrupt request is not generated.

A-D Converter

(1) Write to each bit (except bit 6) of A-D control register 0 , to each bit of A-D control register 1, and to bit 0 of A-D control register 2 when A-D conversion is stopped (before a trigger occurs).
In particular, when the Vref connection bit is changed from " 0 " to " 1 ", start A-D conversion after an elapse of $1 \mu \mathrm{~s}$ or longer.
(2) When changing A-D operation mode, select analog input pin again.
(3) Using one-shot mode or single sweep mode

Read the correspondence A-D register after confirming A-D conversion is finished. (It is known by AD conversion interrupt request bit.)
(4) Using repeat mode, repeat sweep mode 0 or repeat sweep mode 1

Use the undivided main clock as the internal CPU clock.

Stop Mode and Wait Mode

(1) When returning from stop mode by hardware reset, RESET pin must be set to "L" level until main clock oscillation is stabilized.
(2) When switching to either wait mode or stop mode, instructions occupying four bytes either from the WAIT instruction or from the instruction that sets the every-clock stop bit to "1" within the instruction queue are prefetched and then the program stops. So put at least four NOPs in succession either to the WAIT instruction or to the instruction that sets the every-clock stop bit to " 1 ".

Interrupts

(1) Reading address 0000016

- When maskable interrupt is occurred, CPU read the interrupt information (the interrupt number and interrupt request level) in the interrupt sequence.
The interrupt request bit of the certain interrupt written in address 0000016 will then be set to " 0 ". Reading address 0000016 by software sets enabled highest priority interrupt source request bit to " 0 ". Though the interrupt is generated, the interrupt routine may not be executed.
Do not read address 0000016 by software.
(2) Setting the stack pointer
- The value of the stack pointer immediately after reset is initialized to 000016. Accepting an interrupt before setting a value in the stack pointer may become a factor of runaway. Be sure to set a value in the stack pointer before accepting an interrupt.
When using the NMI interrupt, initialize the stack point at the beginning of a program. Concerning the first instruction immediately after reset, generating any interrupts including the $\overline{\mathrm{NMI}}$ interrupt is prohibited.
(3) The NMI interrupt
- The NMI interrupt can not be disabled. Be sure to connect NMI pin to Vcc via a pull-up resistor if unused.
- Do not get either into stop mode with the $\overline{N M I}$ pin set to "L".
(4) External interrupt
- When the polarity of the INT0 to INT5 pins is changed, the interrupt request bit is sometimes set to "1". After changing the polarity, set the interrupt request bit to "0".
(5) Rewrite the interrupt control register
- To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after the interrupt is disabled. The program examples are described as follow:

Example 1:

INT_SWITCH1:	
FCLR 1	; isable interrupts.
AND.B \#00h, 0055h	; Clear TAOIC int. priority level and int. request bit.
NOP	; Four NOP instructions are required when using HOLD function.
NOP	; Enable interrupts.

Example 2:

```
INT_SWITCH2:
    FCLR I ; Disable interrupts.
    AND.B #00h, 0055h ; Clear TAOIC int. priority level and int. request bit.
    MOV.W MEM, RO ; Dummy read.
    FSET I ; Enable interrupts.
```


Example 3:

INT_SWITCH3:
PUSHC FLG ; Push Flag register onto stack
FCLR I ; Disable interrupts.
AND.B \#00h, 0055h ; Clear TA0IC int. priority level and int. request bit.
POPC FLG ; Enable interrupts.
The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the interrupt control register is rewritten due to effects of the instruction queue.

- When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instruction. If this creates problems, use the below instructions to change the register.
Instructions : AND, OR, BCLR, BSET

Noise

(1) Insert bypass capacitor between Vcc and Vss pin for noise and latch up countermeasure.

- Insert bypass capacitor (about $0.1 \mu \mathrm{~F}$) and connect short and wide line between Vcc and Vss lines.

Notes on the microprocessor mode and transition after shifting from the microprocessor mode to the memory expansion mode

- Microprocessor mode

In microprocessor mode, the SFR, internal RAM, and external memory space can be accessed. For that reason, the internal ROM area cannot be accessed.

- Memory expansion mode

In memory expansion mode, external memory can be accessed in addition to the internal memory space (SFR, internal RAM, and internal ROM).
However, after the reset has been released and the operation of shifting from the microprocessor mode has started ("H" applied to the CNVss pin), the internal ROM area cannot be accessed even if the CPU shifts to the memory expansion mode.
 \title{

MITSUBISHI ELECTRIC-CHIP 16-BIT
 \title{ \section*{MITSUBISHI ELECTRIC-CHIP 16-BIT MICROCOMPUTER M30620MCM-XXXFP/GP MICROCOMPUTER M30620MCM-XXXFP/GP MASK ROM CONFIRMATION FORM}

 MASK ROM CONFIRMATION FORM}}

Mask ROM number	

Note : Please complete all items marked *.

*	Customer	Company name		TEL (Submitted by	Supervisor
		Date issued	Date :				

*1. Check sheet
Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in.
Prepare 3.5 inches 2HD (IBM format) floppy disks. And store only one mask file in a floppy disk.
Microcomputer type No. :
\square M30620MCM-XXXFP \square M30620MCM-XXXGP

File code :

(hex)

Mask file name :

.MSK (alpha-numeric 8-digit)
*2. Mark specification
The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi.

For the M30620MCM-XXXFP, submit the 100P6S mark specification sheet. For the M30620MCM-XXXGP, submit the 100P6Q mark specification sheet.

*3. Usage Conditions

For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered.
(1) Which kind of XIN-Xout oscillation circuit is used?
\square Ceramic resonator

Quartz-crystal oscillator
\square External clock inputOther ()

What frequency do not use?
$\mathrm{f}(\mathrm{XIN})=\square \mathrm{MHz}$

MITSUBISHI ELECTRIC-CHIP 16-BIT MICROCOMPUTER M30620MCM-XXXFP/GP

MASK ROM CONFIRMATION FORM

(2) Which kind of XCIN-XCOUT oscillation circuit is used?

Ceramic resonatorQuartz-crystal oscillator
External clock inputOther ()

What frequency do not use?
$f($ XCIN $)=$ \qquad kHz
(3) Which operation mode do you use?Single-chip modeMemory expansion modeMicroprocessor mode
(4) Which operating supply voltage do you use?
(Circle the operating voltage range of use)

(5) Which operating ambient temperature do you use?
(Circle the operating temperature range of use)

(6) Do you use $\mathrm{I}^{2} \mathrm{C}$ (Inter IC) bus function?
\square Not use
(7) Do you use IE (Inter Equipment) bus function?
\square Not use

Thank you cooperation.
*4. Special item (Indicate none if there is not specified item)
 \title{

MITSUBISHI ELECTRIC-CHIP 16-BIT
 \title{ \section*{MITSUBISHI ELECTRIC-CHIP 16-BIT MICROCOMPUTER M30624MGM-XXXFP/GP MICROCOMPUTER M30624MGM-XXXFP/GP MASK ROM CONFIRMATION FORM}

 MASK ROM CONFIRMATION FORM}}

| Mask ROM number |
| :--- | :--- |

Note : Please complete all items marked *.

*	Customer	Company name		TEL (Submitted by	Supervisor
		Date issued	Date :				

*1. Check sheet
Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that there is any discrepancy between the contents of these mask files and the ROM data to be burned into products we produce. Check thoroughly the contents of the mask files you give in.
Prepare 3.5 inches 2HD (IBM format) floppy disks. And store only one mask file in a floppy disk.
Microcomputer type No. : \square M30624MGM-XXXFP \square M30624MGM-XXXGP

File code :

(hex)

Mask file name :

.MSK (alpha-numeric 8-digit)
*2. Mark specification
The mark specification differs according to the type of package. After entering the mark specification on the separate mark specification sheet (for each package), attach that sheet to this masking check sheet for submission to Mitsubishi.

For the M30624MGM-XXXFP, submit the 100P6S mark specification sheet. For the M30624MGMXXXGP, submit the 100P6Q mark specification sheet.

*3. Usage Conditions

For our reference when of testing our products, please reply to the following questions about the usage of the products you ordered.
(1) Which kind of XIN-Xout oscillation circuit is used?
\square Ceramic resonator
\square Quartz-crystal oscillator
\square External clock inputOther ()

What frequency do not use?
$\mathrm{f}(\mathrm{XIN})=\square \mathrm{MHz}$

MITSUBISHI ELECTRIC-CHIP 16-BIT MICROCOMPUTER M30624MGM-XXXFP/GP

MASK ROM CONFIRMATION FORM

(2) Which kind of XCIN-Xcout oscillation circuit is used?

Ceramic resonatorQuartz-crystal oscillatorExternal clock inputOther ()

What frequency do not use?
$\mathrm{f}(\mathrm{XCIN})=\square \mathrm{kHz}$
(3) Which operation mode do you use?Single-chip modeMemory expansion modeMicroprocessor mode
(4) Which operating supply voltage do you use?
(Circle the operating voltage range of use)

(5) Which operating ambient temperature do you use?
(Circle the operating temperature range of use)

(6) Do you use $I^{2} C$ (Inter IC) bus function?
\square Not use
(7) Do you use IE (Inter Equipment) bus function?Not use

Thank you cooperation.
*4. Special item (Indicate none if there is not specified item)

Differences between M16C/62M (Low voltage version) and M30624FGLFP/GP

Item	M16C/62M (Low voltage version)	M30624FGLFP/GP
Memory area	1 Mbyte fixed	Memory expansion 1.2 Mbytes mode 4 Mbytes mode
Serial I/O	No CTS/RTS separate function	CTS/RTS separate function
IIC bus mode	Analog or digital delay is selected as SDA delay	Only analog delay is selected as SDA delay
Memory version	Mask ROM version Flash memory version	Flash memory version only
Standard serial I/O mode (Flash memory version)	Clock synchronized Clock asynchronized	Clock synchronized only

Keep safety first in your circuit designs!

- Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http:// www.mitsubishichips.com).
- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semicon ductor product distributor for further details on these materials or the products con tained therein.

MITSUBISHI SEMICONDUCTORS M16C/62M Group (Low voltage version)
 Specifications REV.B

Jun. First Edition 2000

Edition by
Committee of editing of Mitsubishi Semiconductor
Published by
Mitsubishi Electric Corp., Kitaitami Works

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation.
©2000 MITSUBISHI ELECTRIC CORPORATION

