4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD75P3036 replaces the μ PD753036's internal mask ROM with a one-time PROM or EPROM.
Because the μ PD75P3036 supports programming by users, it is suitable for use in prototype testing for system development using the μ PD753036 and for use in small-scale production.

Caution The μ PD75P3036KK-T is not designed to guarantee the reliability required for use in massproduction. Please use it only for performance evaluation during testing and test production runs.

Detailed descriptions of functions are provided in the following document. Be sure to read the document before designing.
μ PD753036 User's Manual : U10201E

FEATURES

- Compatible with μ PD753036
- Internal PROM: 16384×8 bits
- μ PD75P3036KK-T : Reprogrammable (ideally suited for system evaluation)
- μ PD75P3036GC, 75P3036GK : One-time programmable (ideally suited for small-scale production)
- Internal RAM: 768×4 bits
- Can operate in the same power supply voltage as the mask version μ PD753036
- $V_{D D}=1.8$ to 5.5 V
- LCD controller/driver
- A/D converter

Caution Mask-option pull-up resistors are not provided in this device.

ORDERING INFORMATION

	Part Number	Package	Internal PROM	Quality Grade
	μ PD75P3036GC-3B9	80-pin plastic QFP ($14 \times 14 \mathrm{~mm}, 0.65-\mathrm{mm}$ pitch)	One-time PROM	Standard
	μ PD75P3036GK-BE9	80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}, 0.5-\mathrm{mm}$ pitch)	One-time PROM	Standard
*	μ PD75P3036KK-T	80-pin ceramic WQFN	EPROM	Not applicable

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

In this document, the term PROM is used in parts common to one-time PROM versions and EPROM versions.

The information in this document is subject to change without notice.

Document No. U11575EJ1V0DS00 (1st edition)

Functional Outline

CONTENTS

1. PIN CONFIGURATION (Top View) 4
2. BLOCK DIAGRAM 6
3. PIN FUNCTIONS 7
3.1 Port Pins 7
3.2 Non-port Pins 9
3.3 Pin Input/Output Circuits 11
3.4 Recommended Connection of Unused Pins 14
4. Mk I MODE AND Mk II MODE SELECTION FUNCTION 15
4.1 Difference between Mk I Mode and Mk II Mode 15
4.2 Setting of Stack Bank Selection Register (SBS) 16
5. DIFFERENCES BETWEEN μ PD75P3036 AND μ PD753036 17
6. PROGRAM COUNTER (PC) AND MEMORY MAP 18
6.1 Program Counter (PC) 18
6.2 Program Memory (PROM) 18
6.3 Data Memory (RAM) 20
7. INSTRUCTION SET 21
8. PROM (PROGRAM MEMORY) WRITE AND VERIFY 30
8.1 Operation Modes for Program Memory Write/Verify 30
8.2 Program Memory Write Procedure 31
8.3 Program Memory Read Procedure 329. PROGRAM ERASURE (μ PD75P3036KK-T ONLY)33

*

10. OPAQUE FILM ON ERASURE WINDOW (μ PD75P3036KK-T ONLY) 33
11. ONE-TIME PROM SCREENING 33

* 12. ELECTRICAL SPECIFICATIONS 3413. CHARACTERISTIC CURVES (FOR REFERENCE ONLY)49

14. PACKAGE DRAWINGS 5115. RECOMMENDED SOLDERING CONDITIONS54
APPENDIX A. FUNCTION LIST OF μ PD75336, 753036, AND 75P3036 55
APPENDIX B. DEVELOPMENT TOOLS 56
APPENDIX C. RELATED DOCUMENTS 60

1. PIN CONFIGURATION (Top View)

- 80-pin plastic QFP $(14 \times 14 \mathrm{~mm})$ μ PD75P3036GC-3B9
- 80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$)
μ PD75P3036GK-BE9
- 80-pin ceramic WQFN μ PD75P3036KK-T

Caution Connect the Vpp pin directly to Vdd.

PIN IDENTIFICATIONS

P 00 to P03	: Port0	S12 to S31	: Segment Output 12-31
P10 to P13	: Port1	COM0 to COM3	: Common Output 0-3
P20 to P23	: Port2	V Lco to VLCz	: LCD Power Supply 0-2
P30 to P33	: Port3	BIAS	: LCD Power Supply Bias Control
P40 to P43	: Port4	LCDCL	: LCD Clock
P50 to P53	: Port5	SYNC	: LCD Synchronization
P60 to P63	: Port6	TIO to TI2	: Timer Input 0-2
P70 to P73	: Port7	PTO0 to PTO2	: Programmable Timer Output 0-2
P80 to P83	: Port8	BUZ	: Buzzer Clock
BP0 to BP7	: Bit Port0-7	PCL	: Programmable Clock
KR0 to KR7	: Key Return 0-7	INTO, INT1, INT4	: External Vectored Interrupt 0, 1, 4
SCK	: Serial Clock	INT2	: External Test Input 2
SI	: Serial Input	X1, X2	: Main System Clock Oscillation 1, 2
So	: Serial Output	XT1, XT2	: Subsystem Clock Oscillation 1, 2
SB0, SB1	: Serial Bus 0,1	$\overline{\text { RESET }}$: Reset
$\mathrm{AV}_{\text {ReF }}$: Analog Reference	VPP	: Programming Power Supply
AVss	: Analog Ground	VDD	: Positive Power Supply
ANO-AN7	: Analog Input 0-7	Vss	: Ground
MD0 to MD3	: Mode Selection 0-3		
D0 to D7	: Data Bus 0-7		

2. BLOCK DIAGRAM

3. PIN FUNCTIONS

3.1 Port Pins (1/2)

Pin name	I/O	Alternate function	Function	$\begin{gathered} \text { 8-bit } \\ \text { I/O } \end{gathered}$	Status after reset	I/O circuit type ${ }^{\text {Note }} 1$
P00	Input	INT4	This is a 4-bit input port (PORTO). Connection of an on-chip pull-up resistor can be specified in 3-bit units by software for P01 to P03.	No	Input	
P01	I/O	$\overline{\text { SCK }}$				<F>-A
P02	I/O	SO/SB0				$<F>-B$
P03	I/O	SI/SB1				$<\mathrm{M}>-\mathrm{C}$
P10	Input	INTO	This is a 4-bit input port (PORT1). Connection of an on-chip pull-up resistor can be specified in 4-bit units by software. P10/INTO can select noise elimination circuit.	No	Input	$-C$
P11		INT1				
P12		INT2				
P13		TIO				
P20	I/O	PTO0	This is a 4-bit I/O port (PORT2). Connection of an on-chip pull-up resistor can be specified in 4 -bit units by software.	No	Input	E-B
P21		PTO1				
P22		PCL/PTO2				
P23		BUZ				
P30	I/O	LCDCL/MD0	This is a programmable 4-bit I/O port (PORT3). Input and output can be specified in bit units. Connection of an on-chip pull-up resistor can be specified in 4-bit units by software.	No	Input	E-B
P31		SYNC/MD1				
P32		MD2				
P33		MD3				
P40 ${ }^{\text {Note } 2}$	I/O	D0	This is an N-ch open-drain 4-bit I/O port (PORT4). When set to open-drain, voltage is 13 V . Also functions as data I/O pin (lower 4 bits) for program memory (PROM) write/verify.	Yes	High impedance	M-E
P41 ${ }^{\text {Note }} 2$		D1				
P42 ${ }^{\text {Note } 2}$		D2				
P43 ${ }^{\text {Note }} 2$		D3				
P50 ${ }^{\text {Note } 2}$	I/O	D4	This is an N-ch open-drain 4-bit I/O port (PORT5). When set to open-drain, voltage is 13 V . Also functions as data I/O pin (upper 4 bits) for program memory (PROM) write/verify.		High impedance	M-E
P51 ${ }^{\text {Note } 2}$		D5				
P52 ${ }^{\text {Note } 2}$		D6				
P53 ${ }^{\text {Note } 2}$		D7				

Notes 1. Circuit types enclosed in brackets indicate Schmitt trigger input.
2. Low level input leakage current increases when input instructions or bit manipulate instructions are executed.

3.1 Port Pins (2/2)

Pin name	I/O	Alternate function	Function	$\begin{gathered} \text { 8-bit } \\ \text { I/O } \end{gathered}$	Status after reset	I/O circuit type ${ }^{\text {Note }} 1$
P60	I/O	KR0	This is a programmable 4-bit I/O port (PORT6). Input and output can be specified in bit units. Connection of an on-chip pull-up resistor can be specified in 4-bit units by software.	Yes	Input	<F>-A
P61		KR1				
P62		KR2				
P63		KR3				
P70	I/O	KR4	This is a 4-bit I/O port (PORT7). Connection of an on-chip pull-up resistor can be specified in 4-bit units by software.		Input	$<\mathrm{F}>-\mathrm{A}$
P71		KR5				
P72		KR6				
P73		KR7				
P80	I/O	TI1	This is a 4-bit I/O port (PORT8). Connection of an on-chip pull-up resistor can be specified in 4-bit units by software.	No	Input	<E>-E
P81		TI2				
P82		AN6				Y-B
P83		AN7				
BP0	Output	S24	These pins are also used as 1-bit I/O port (BIT PORT) segment output pin.	No	Note 2	H-A
BP1		S25				
BP2		S26				
BP3		S27				
BP4	Output	S28				
BP5		S29				
BP6		S30				
BP7		S31				

Notes 1. Circuit types enclosed in brackets indicate Schmitt trigger input.
2. BP0 through BP7 select VLC1 as an input source.

However, the output levels change depending on the external circuit of BP0 through BP7 and VLc1.

* Example Because BP0 through BP7 are mutually connected inside the μ PD75P3036, the output levels of BP0 through $B P 7$ are determined by R_{1}, R_{2}, and R_{3}.

3.2 Non-port Pins (1/2)

Pin name	I/O	Alternate function	Function		Status after reset	I/O circuit typenote
TIO	Input	P13	External event pulse input to timer/event counter		Input	-C
TI1		P80			<E>-E	
TI2		P81				
PTO0	Output	P20	Timer/event counter output		Input	E-B
PTO1		P21				
PTO2		P22/PCL				
PCL	Output	P22/PTO2	Clock output		Input	E-B
BUZ	Output	P23	Frequency output (for buzzer or system clock trimming)		Input	E-B
$\overline{\text { SCK }}$	I/O	P01	Serial clock I/O		Input	<F>-A
SO/SB0	I/O	P02	Serial data output Serial data bus I/O		Input	$<$ < $>-B$
SI/SB1	I/O	P03	Serial data input Serial data bus I/O		Input	$<M>-C$
INT4	Input	P00	Edge detection vectored interrupt input (valid for detecting both rising and falling edges)		Input	
INTO	Input	P10	Edge detection vectored interrupt input (detected edge is selectable) INT0/P10 can select noise elimination circuit.	Noise elimination circuit /asynchronous is selectable	Input	$-C$
INT1		P11		Asynchronous		
INT2	Input	P12	Rising edge detection test input	Asynchonous	Input	$-C$
KR0 to KR3	Input	P60 to P63	Parallel falling edge detection test input		Input	<F>-A
KR4 to KR7	Input	P70 to P73	Parallel falling edge detection test input		Input	<F>-A
X1	Input	-	Ceramic/crystal oscillation circuit connection for main system clock. If using an external clock, input to X1 and input inverted phase to X2.		-	-
X2	-	-				
XT1	Input	-	Crystal oscillation circuit connection for subsystem clock. If using an external clock, input to XT1 and input inverted phase to XT2. XT1 can be used as a 1-bit (test) input.		-	-
XT2	-	-				
$\overline{\text { RESET }}$	Input	-	System reset input (low level active)		-	
MD0	I/O	P30/LCDCL	Mode selection for program memory (PROM) write/verify		Input	E-B
MD1		P31/SYNC				
MD2, MD3		P32, P33				
D0 to D3	I/O	P40 to P43	Data bus for program memory (PROM) write/verify		Input	M-E
D4 to D7		P50 to P53				
Vpp	-	-	Programmable power supply voltage for program memory (PROM) write/verify. For normal operation, connect to V_{DD}. Apply +12.5 V for PROM write/verify.		-	-
Vdd	-	-	Positive power supply		-	-
Vss	-	-	Ground		-	-

Note Circuit types enclosed in brackets indicate Schmitt trigger input.

3.2 Non-port Pins (2/2)

Pin name	I/O	Alternate function	Function	Status after reset	I/O circuit type
S12 to S23	Output	-	Segment signal output	Note 1	G-A
S24 to S31	Output	BP0 to BP7	Segment signal output	Note 1	H-A
COM0 to COM3	Output	-	Common signal output	Note 1	G-B
VLco to VLC2	-	-	Power source for LCD driver	-	-
BIAS	Output	-	Output for external split resistor cut	High impedance	-
LCDCL ${ }^{\text {Note }} 2$	Output	P30/MD0	Clock output for driving external expansion driver	Input	E-B
SYNC ${ }^{\text {Note } 2}$	Output	P31/MD1	Clock output for synchronization of external expansion driver	Input	E-B
AN0 to AN5	Input	-	Analog signal input for A/D converter	Input	Y
AN6		P82			Y-B
AN7		P83			
AVref	-	-	A/D converter reference voltage	-	Z-N
AVss	-	-	A/D converter reference GND potential	-	Z-N

Notes 1. The $\operatorname{Vlcx}(X=0,1,2)$ shown below are selected as the input source for the display outputs. S12 to S31: Vlc1, COM0 to COM2: Vlcz, COM3: Vlco
2. These pins are provided for future system expansion. Currently, only P30 and P31 are used.

3.3 Pin Input/Output Circuits

The input/output circuits for the μ PD75P3036's pins are shown in schematic form below.
TYPE A

Note Becomes active when an input instruction is executed.

* 3.4 Recommended Connection of Unused Pins

Pin	Recommended connection
P00/INT4	Connect to Vss or Vid
P01/SCK	Connect to Vss or Vod via a resistor individually
P02/SO/SB0	
P03/SI/SB1	Connect to Vss
P10/INT0 to P12/INT2	Connect to Vss or Vdo
P13/TI0	
P20/PTO0	Input status : connect to Vss or Vod via a resistor individually. Output status: open
P21/PTO1	
P22/PTO2/PCL	
P23/BUZ	
P30/LCDCL	
P31/SYNC	
P32, P33	
P40 to P43	Connect to Vss
P50 to P53	
P60/KR0 to P63/KR3	Input status : connect to $\mathrm{V}_{\text {Ss }}$ or V_{DD} via a resistor individually. Output status: open
P70/KR4 to P73/KR7	
P80/TI1	
P81/Tl2	
P82/AN6	
P83/AN7	
S12 to S23	Open
S24/BP0 to S31/BP7	
COM0 to COM3	
VLco to V LCo2	Connect to Vss
BIAS	Connect to Vss only when VLCo to VLC2 are all not used. In other cases, leave open.
XT1 ${ }^{\text {Note }}$	Connect to Vss or Vdo
XT2 ${ }^{\text {Note }}$	Open
AN0 to AN5	Connect to Vss or Vid
VPP	Connect to Vod directly

Note When the subsystem clock is not used, set SOS. 0 to 1 (so as not to use the internal feedback resistor).

4. Mk I MODE AND Mk II MODE SELECTION FUNCTION

Setting a stack bank selection (SBS) register for the μ PD75P3036 enables the program memory to be switched between Mk I mode and Mk II mode. This function is applicable when using the μ PD75P3036 to evaluate the μ PD753036.

When the SBS bit 3 is set to 1 : sets Mk I mode (supports Mk I mode for μ PD753036)
When the SBS bit 3 is set to 0 : sets Mk II mode (supports Mk II mode for μ PD753036)

4.1 Difference between Mk I Mode and Mk II Mode

Table 4-1 lists points of difference between the Mk I mode and the Mk II mode for the μ PD75P3036.

Table 4-1. Difference between Mk I Mode and Mk II Mode

Item		Mk I Mode	Mk II Mode
Program counter		PC13-0	
Program memory (bytes)		16384	
Data memory (bits)		768×4	
Stack	Stack bank	Selectable via memory banks 0 to 2	
	No. of stack bytes	2 bytes	3 bytes
Instruction	BRA !addr1 instruction CALLA !addr1 instruction	Not available	Available
Instruction	CALL !addr instruction	3 machine cycles	4 machine cycles
execution time	CALLF !faddr instruction	2 machine cycles	3 machine cycles
Supported mask ROM versions		When set to Mk I mode for μ PD753036	When set to Mk II mode for μ PD753036

Caution The Mk II mode supports a program area exceeding 16 Kbytes for the 75 X and 75 XL series. Therefore, this mode is effective for enhancing software compatibility with products exceeding 16 Kbytes.

When the Mk II mode is selected, the number of stack bytes used during execution of subroutine call instructions increases by one byte per stack compared to the Mk I mode. When the CALL !addr and CALLF !faddr instructions are used, the machine cycle becomes longer by one machine cycle. Therefore, use the Mk I mode if the RAM efficiency and processing performance are more important than software compatibility.

4.2 Setting of Stack Bank Selection Register (SBS)

Use the stack bank selection register to switch between Mk I mode and Mk II mode. Figure 4-1 shows the format for doing this

The stack bank selection register is set using a 4-bit memory manipulation instruction. When using the Mk I mode, be sure to initialize the stack bank selection register to $10 x x B^{\text {Note }}$ at the beginning of the program. When using the Mk II mode, be sure to initialize it to $00 x^{\prime} B^{\text {Note }}$.

Note Set the desired value for xx.

Figure 4-1. Format of Stack Bank Selection Register

Cautions 1. SBS3 is set to " 1 " after RESET input, and consequently the CPU operates in Mk I mode. When using instructions for Mk II mode, set SBS3 to " 0 " and set Mk II mode before using the instructions.
2. When using Mk II mode, execute a subroutine call instruction and an interrupt instruction after $\overline{\text { RESET input and after setting the stack bank selection register. }}$

5. DIFFERENCES BETWEEN μ PD75P3036 AND μ PD753036

The μ PD75P3036 replaces the internal mask ROM in the program memory of the μ PD753036 with a one-time PROM or EPROM. The μ PD75P3036's Mk I mode supports the Mk I mode in the μ PD753036 and the μ PD75P3036's Mk II mode supports the Mk II mode in the μ PD753036.
Table 5-1 lists differences among the μ PD75P3036 and the μ PD753036. Be sure to check the differences among these products before using them with PROMs for debugging or prototype testing of application systems or, later, when using them with a mask ROM for full-scale production.
As to CPU function and on-chip hardware, see the User's Manual.

Table 5-1. Differences between μ PD75P3036 and μ PD753036

Item		μ PD753036	μ PD75P3036
Program counter		14 bits	
Program memory (bytes)		16384 Mask ROM	16384 One-time PROM, EPROM
Data memory (x 4 bits)		768	
Mask option	Pull-up resistor of ports 4,5	Yes (can specify whether to incorporate on-chip or not)	No (don't incorporate on-chip)
	Split resistor for LCD driving power supply		
	Selection of oscillation stabilization wait time	Yes (can select either $2^{17} / \mathrm{fx}$ or $2^{15 / f x}$) ${ }^{\text {Note }}$	No (fixed to $\left.2^{15} / \mathrm{fx}\right)^{\text {Note }}$
	Selection of subsystem clock feedback resistor	Yes (can select either use enabled or use disabled)	No (use enabled)
Pin configuration	Pin No. 29 to 32	P40 to P43	P40/D0 to P43/D3
	Pin No. 34 to 37	P50 to P53	P50/D4 to P53/D7
	Pin No. 50	P30/LCDCL	P30/LCDCL/MD0
	Pin No. 51	P31/SYNC	P31/SYNC/MD1
	Pin No. 52	P32	P32/MD2
	Pin No. 53	P33	P33/MD3
	Pin No. 69	IC	Vpp
Other		Noise resistance and noise radiation may differ due to the different circuit sizes and mask layouts.	

Note $2^{17} / \mathrm{fx}$ is 21.8 ms during $6.0-\mathrm{MHz}$ operation, and 31.3 ms during $4.19-\mathrm{MHz}$ operation.
$2^{15} / \mathrm{fx}$ is 5.46 ms during $6.0-\mathrm{MHz}$ operation, and 7.81 ms during $4.19-\mathrm{MHz}$ operation.

Caution Noise resistance and noise radiation are different in PROM and mask ROM versions. In transferring to mask ROM versions from the PROM version in a process between prototype development and full production, be sure to fully evaluate the mask ROM version's CS (not ES).

6. PROGRAM COUNTER (PC) AND MEMORY MAP

6.1 Program Counter (PC) ... 14 bits

This is a 14-bit binary counter that stores program memory address data.

Figure 6-1. Configuration of Program Counter

PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0

6.2 Program Memory (PROM) ... 16384×8 bits

The program memory consists of 16384×8-bit one-time PROM or EPROM.

- Addresses 0000 H and 0001 H

Vector table wherein the program start address and the values set for the RBE and MBE at the time a RESET signal is generated are written. Reset start is possible from any address.

- Addresses 0002H to 000DH

Vector table wherein the program start address and the values set for the RBE and MBE by each vectored interrupt are written. Interrupt processing can start from any address.

- Addresses 0020H to 007FH

Table area referenced by the GETI instruction ${ }^{\text {Note }}$.

Note The GETI instruction realizes a 1-byte instruction on behalf of any 2-byte/3-byte instruction, or two 1-byte instructions. It is used to decrease the number of program steps.

Figure 6-2 shows the addressing ranges for the program memory, branch instruction and the subroutine call instruction.

Figure 6-2. Program Memory Map

Note Can be used only in the Mk II mode.

Remark For instructions other than those noted above, the BR PCDE and BR PCXA instructions can be used to branch to addresses with changes in the PC's lower 8 bits only.

6.3 Data Memory (RAM) ... 768×4 bits

Figure 6-3 shows the data memory configuration.
Data memory consists of a data area and a peripheral hardware area. The data area consists of 768×4-bit static RAM.

Figure 6-3. Data Memory Map

Note Memory bank 0, 1, or 2 can be selected as the stack area.

7. INSTRUCTION SET

(1) Representation and coding formats for operands

In the instruction's operand area, use the following coding format to describe operands corresponding to the instruction's operand representations (for further description, see the RA75X Assembler Package User's Manual—Language (EEU-1363)). When there are several codes, select and use just one. Codes that consist of uppercase letters and + or - symbols are key words that should be entered as they are.

For immediate data, enter an appropriate numerical value or label.
Enter register flag symbols as label descriptors instead of mem, fmem, pmem, bit, etc. (for further description, see the User's Manual). The number of labels that can be entered for fmem and pmem are restricted.

Representation	Coding format
reg reg1	$\begin{aligned} & X, A, B, C, D, E, H, L \\ & X, B, C, D, E, H, L \end{aligned}$
rp rp1 rp2 rp' rp'1	$\begin{aligned} & X A, B C, D E, H L \\ & B C, D E, H L \\ & B C, D E \\ & X A, B C, D E, H L, X A^{\prime}, B C^{\prime}, D E^{\prime}, H L^{\prime} \\ & B C, D E, H L, X A^{\prime}, B C^{\prime}, D E^{\prime}, H L^{\prime} \end{aligned}$
rpa rpa1	HL, HL+, HL-, DE, DL DE, DL
n4 n8	4-bit immediate data or label 8-bit immediate data or label
mem bit	8-bit immediate data or label№te 2-bit immediate data or label
fmem pmem	FBOH-FBFH, FFOH-FFFH immediate data or label FCOH-FFFH immediate data or label
addr addr1	0000H-3FFFH immediate data or label 0000H-3FFFH immediate data or label
caddr faddr	12-bit immediate data or label 11-bit immediate data or label
taddr	$20 \mathrm{H}-7 \mathrm{FH}$ immediate data (however, bit0 $=0$) or label
PORTn IEXXX RBn MBn	PORT0-PORT8 IEBT, IECSI, IETO-IET2, IE0-IE2, IE4, IEW RB0-RB3 MB0-MB2, MB15

Note When processing 8-bit data, only even-numbered addresses can be entered.
(2) Operation legend

A	: A register; 4-bit accumulator
B	: B register
C	: C register
D	: D register
E	: E register
H	: H register
L	: L register
X	: X register
XA	: Register pair (XA); 8-bit accumulator
BC	: Register pair (BC)
DE	: Register pair (DE)
HL	: Register pair (HL)
XA'	: Expansion register pair (XA')
BC'	: Expansion register pair (BC')
DE'	: Expansion register pair (DE')
HL'	: Expansion register pair (HL')
PC	: Program counter
SP	: Stack pointer
CY	: Carry flag; bit accumulator
PSW	: Program status word
MBE	: Memory bank enable flag
RBE	: Register bank enable flag
PORTn	: Port n (n = 0 to 8)
IME	: Interrupt master enable flag
IPS	: Interrupt priority selection register
IEXXX	: Interrupt enable flag
RBS	: Register bank selection register
MBS	: Memory bank selection register
PCC	: Processor clock control register
:	: Delimiter for address and bit
(XX)	: The contents addressed by XX
XXH	: Hexadecimal data

(3) Description of symbols used in addressing area

*1	$\begin{aligned} & \mathrm{MB}=\mathrm{MBE} \cdot \mathrm{MBS} \\ & \quad \mathrm{MBS}=0-2,15 \end{aligned}$	
*2	$M B=0$	
*3	$\begin{aligned} \mathrm{MBE}=0 & : \mathrm{MB}=0(000 \mathrm{H}-07 \mathrm{FH}) \\ & \mathrm{MB}=15(\mathrm{~F} 80 \mathrm{H}-\mathrm{FFFH}) \\ \mathrm{MBE}=1 & : \mathrm{MB}=\mathrm{MBS} \\ & \mathrm{MBS}=0-2,15 \end{aligned}$	Data memory addressing
*4	$M B=15$, fmem $=$ FBOH-FBFH, FFOH-FFFH	
*5	$\mathrm{MB}=15$, pmem $=\mathrm{FCOH}-\mathrm{FFFH}$	\downarrow
*6	addr $=0000 \mathrm{H}-3 \mathrm{FFFH}$	
*7	$\begin{aligned} \text { addr, addr1 }= & (\text { Current PC) }-15 \text { to (Current PC) }-1 \\ & (\text { Current PC) }+2 \text { to (Current PC) }+16 \end{aligned}$	
*8	caddr $=0000 \mathrm{H}-0 F F F H\left(\mathrm{PC}_{13,12}=00 \mathrm{~B}: \mathrm{Mk} \mathrm{I} \mathrm{or} \mathrm{Mk} \mathrm{II} \mathrm{mode}\right)$ or 2000H-2FFFH (PC ${ }_{13,12}=10 \mathrm{~B}:$ Mk I or Mk II mode) or 3000H-3FFFH (PC ${ }_{13,12}=11 \mathrm{~B}:$ Mk I or Mk II mode)	Program memory addressing
*9	faddr $=0000 \mathrm{H}-07 \mathrm{FFH}$	
*10	taddr $=0020 \mathrm{H}-007 \mathrm{FH}$	
*11	addr1 $=0000 \mathrm{H}-3 \mathrm{FFFH}$	

Remarks 1. MB indicates access-enabled memory banks.
2. In area * $2, \mathrm{MB}=0$ for both MBE and MBS.
3. In areas * 4 and $* 5, M B=15$ for both MBE and MBS.
4. Areas * 6 to *11 indicate corresponding address-enabled areas.

(4) Description of machine cycles

S indicates the number of machine cycles required for skipping of skip-specified instructions. The value of S varies as shown below.

- No skip \qquad $S=0$
- Skipped instruction is 1 -byte or 2-byte instruction.... S = 1
- Skipped instruction is 3-byte instruction ${ }^{\text {Note }}$ \qquad $S=2$

Note 3-byte instructions: BR !addr, BRA !addr1, CALL !addr, CALLA !addr1

Caution The GETI instruction is skipped for one machine cycle.

One machine cycle equals one cycle (= tcy) of the CPU clock Φ. Use the PCC setting to select among four cycle times.

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Transfer	MOV	A, \#n4	1	1	A<-n4		String-effect A
		reg1, \#n4	2	2	reg1<-n4		
		XA, \#n8	2	2	XA<-n8		String-effect A
		HL, \#n8	2	2	HL<-n8		String-effect B
		rp2, \#n8	2	2	rp2<-n8		
		A, @HL	1	1	A<-(HL)	*1	
		A, @HL+	1	$2+$ S	A<-(HL), then $\mathrm{L}<-\mathrm{L}+1$	*1	$\mathrm{L}=0$
		A, @HL-	1	2+S	A<-(HL), then $\mathrm{L}<-\mathrm{L}-1$	*1	L=FH
		A, @rpa1	1	1	A<-(rpa1)	*2	
		XA, @HL	2	2	XA<-(HL)	*1	
		@HL, A	1	1	$(\mathrm{HL})<-\mathrm{A}$	*1	
		@HL, XA	2	2	$(\mathrm{HL})<-\mathrm{XA}$	*1	
		A, mem	2	2	A<-(mem)	*3	
		XA, mem	2	2	XA<-(mem)	*3	
		mem, A	2	2	(mem)<-A	*3	
		mem, XA	2	2	$(\mathrm{mem})<-\mathrm{XA}$	*3	
		A, reg1	2	2	A<-reg 1		
		XA, rp'	2	2	XA<-rp'		
		reg1, A	2	2	reg $1<-\mathrm{A}$		
		rp'1, XA	2	2	rp'1<-XA		
	XCH	A, @HL	1	1	A $<->$ (HL)	*1	
		A, @HL+	1	$2+$ S	$A<->(H L)$, then $L<-L+1$	*1	L=0
		A, @HL-	1	2+S	$A<->(H L)$, then $L<-L-1$	*1	L=FH
		A, @rpa1	1	1	A<->(rpa1)	*2	
		XA, @HL	2	2	XA<->(HL)	*1	
		A, mem	2	2	A<->(mem)	*3	
		XA, mem	2	2	$X A<->$ (mem)	*3	
		A, reg1	1	1	A<->reg1		
		XA, rp'	2	2	XA<->rp'		
Table reference	MOVT	XA, @PCDE	1	3	XA<-(PC13-8+DE)ROM		
		XA, @PCXA	1	3	XA<-(PC13-8+XA)ROM		
		XA, @BCDE	1	3	XA<-(BCDE) ROM ${ }^{\text {Note }}$	*6	
		XA, @BCXA	1	3	XA<-(BCXA)ROM ${ }^{\text {Note }}$	*6	

Note Only the lower 2 bits in the B register are valid.

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Bit transfer	MOV1	CY, fmem.bit	2	2	CY<-(fmem.bit)	*4	
		CY, pmem.@L	2	2	CY<-(pmem7-2+L3-2.bit(L1-0))	*5	
		CY, @H+mem.bit	2	2	CY<-(H+mem3-0.bit)	*1	
		fmem.bit, CY	2	2	(fmem.bit)<-CY	*4	
		pmem.@L, CY	2	2	$($ pmem7-2+L3-2.bit(L1-0))<-CY	*5	
		@H+mem.bit, CY	2	2	(H+mem3-0.bit)<-CY	*1	
Arithmetic/ logical operation	ADDS	A, \#n4	1	1+S	A<-A+n4		carry
		XA, \#n8	2	2+S	XA<-XA+n8		carry
		A, @HL	1	1+S	A<-A+(HL)	*1	carry
		XA, rp'	2	$2+$ S	$X A<-X A+r p \prime$		carry
		rp'1, XA	2	2+S	rp'1<-rp'1+XA		carry
	ADDC	A, @HL	1	1	$A, C Y<-A+(H L)+C Y$	*1	
		XA, rp'	2	2	XA, CY<-XA+rp'+CY		
		rp'1, XA	2	2	rp'1, CY<-rp'1+XA+CY		
	SUBS	A, @HL	1	$1+\mathrm{S}$	A<-A-(HL)	*1	borrow
		XA, rp'	2	$2+$ S	XA<-XA-rp'		borrow
		rp'1, XA	2	2+S	rp'1<-rp'1-XA		borrow
	SUBC	A, @HL	1	1	$A, C Y<-A-(H L)-C Y$	*1	
		XA, rp'	2	2	$X A, C Y<-X A-r p \prime-C Y$		
		rp'1, XA	2	2	rp'1, CY<-rp'1-XA-CY		
	AND	A, \#n4	2	2	$\mathrm{A}<-\mathrm{A} \wedge \mathrm{n} 4$		
		A, @HL	1	1	$\mathrm{A}<-\mathrm{A} \wedge(\mathrm{HL})$	*1	
		XA, rp'	2	2	XA<-XA^rp'		
		rp'1, XA	2	2	rp'1<-rp'1^XA		
	OR	A, \#n4	2	2	A<-Avn4		
		A, @HL	1	1	$\mathrm{A}<-\mathrm{Av}(\mathrm{HL})$	*1	
		XA, rp'	2	2	XA<-XAvrp'		
		rp'1, XA	2	2	rp'1<-rp'1vXA		
	XOR	A, \#n4	2	2	$A<-A \forall n 4$		
		A, @HL	1	1	$A<-A \forall(H L)$	*1	
		XA, rp'	2	2	XA<-XA \quad rp'		
		rp'1, XA	2	2	rp'1<-rp'1 \forall XA		
Accumulator manipulation	RORC	A	1	1	CY<-A0, $\mathrm{A}_{3}<-C Y, \mathrm{An}^{2} 1<-\mathrm{A}_{n}$		
	NOT	A	2	2	A $<-\overline{\mathrm{A}}$		
Increment/ decrement	INCS	reg	1	$1+\mathrm{S}$	reg<-reg+1		$\mathrm{reg}=0$
		rp1	1	1+S	rp1<-rp1+1		$\mathrm{rp1}=00 \mathrm{H}$
		@HL	2	2+S	$(\mathrm{HL})<-(\mathrm{HL})+1$	*1	$(\mathrm{HL})=0$
		mem	2	$2+$ S	$(\mathrm{mem})<-(\mathrm{mem})+1$	*3	$(\mathrm{mem})=0$
	DECS	reg	1	1+S	reg<-reg-1		$\mathrm{reg}=\mathrm{FH}$
		rp'	2	$2+$ S	rp'<-rp'-1		rp' $=$ FFH

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Comparison	SKE	reg, \#n4	2	$2+$ S	Skip if reg=n4		$\mathrm{reg}=\mathrm{n} 4$
		@HL, \#n4	2	$2+$ S	Skip if(HL) $=\mathrm{n} 4$	*1	$(\mathrm{HL})=\mathrm{n} 4$
		A, @HL	1	1+S	Skip if $A=(H L)$	*1	$\mathrm{A}=(\mathrm{HL})$
		XA, @HL	2	2+S	Skip if $\mathrm{XA}=(\mathrm{HL})$	*1	$\mathrm{XA}=(\mathrm{HL})$
		A, reg	2	$2+$ S	Skip if $A=r e g$		A=reg
		XA, rp'	2	2+S	Skip if $X A=r p$ '		XA=rp'
Carry flag manipulation	SET1	CY	1	1	$C Y<-1$		
	CLR1	CY	1	1	$C Y<-0$		
	SKT	CY	1	$1+$ S	Skip if $C Y=1$		$C Y=1$
	NOT1	CY	1	1	$C Y<-\overline{C Y}$		
Memory bit manipulation	SET1	mem.bit	2	2	(mem.bit)<-1	*3	
		fmem.bit	2	2	(fmem.bit)<-1	*4	
		pmem.@L	2	2	$($ pmem7-2+L3-2.bit(L1-0))<-1	*5	
		@H+mem.bit	2	2	(H+mem3-0.bit)<-1	*1	
	CLR1	mem.bit	2	2	(mem.bit)<-0	*3	
		fmem.bit	2	2	(fmem.bit)<-0	*4	
		pmem.@L	2	2	$($ pmem7-2+L3-2.bit(L1-0))<-0	*5	
		@ $\mathrm{H}+$ mem.bit	2	2	(H+mem3-0.bit)<-0	*1	
	SKT	mem.bit	2	2+S	Skip if(mem.bit)=1	*3	$($ mem. bit $)=1$
		fmem. bit	2	$2+$ S	Skip if(fmem.bit)=1	*4	$($ fmem. bit $)=1$
		pmem.@L	2	2+S	Skip if(pmem7-2+L3-2.bit(L1-0))=1	*5	(pmem.@L)=1
		@ $\mathrm{H}+$ mem.bit	2	$2+$ S	Skip if (H+mem3-0.bit) $=1$	*1	$(@ H+$ mem.bit $)=1$
	SKF	mem.bit	2	$2+$ S	Skip if(mem. bit $)=0$	*3	(mem. bit) $=0$
		fmem.bit	2	2+S	Skip if(fmem.bit)=0	*4	(fmem.bit) $=0$
		pmem.@L	2	2+S	Skip if(pmem7-2+L3-2.bit(L1-0))=0	*5	(pmem.@L)=0
		@ $\mathrm{H}+$ mem.bit	2	2+S	Skip if (H+mem3-0.bit) $=0$	*1	$(@ H+$ mem.bit $)=0$
	SKTCLR	fmem.bit	2	$2+$ S	Skip if(fmem.bit)=1 and clear	*4	$($ fmem. bit $)=1$
		pmem.@L	2	2+S	Skip if(pmem7-2+L3-2.bit (L1-0))=1 and clear	*5	$($ pmem.@L)=1
		@H+mem.bit	2	2+S	Skip if(H+mem3-0.bit)=1 and clear	*1	$(@ H+$ mem.bit $)=1$
	AND1	CY, fmem.bit	2	2	CY<-CY^(fmem.bit)	*4	
		CY, pmem.@L	2	2	$C Y<-C Y \wedge(p m e m 7-2+L 3-2 . \operatorname{bit}(\mathrm{L} 1-0)$)	*5	
		CY, @H+mem.bit	2	2	CY<-CY^(H+mem3-0.bit)	*1	
	OR1	CY, fmem.bit	2	2	CY<-CYv(fmem.bit)	*4	
		CY, pmem.@L	2	2	CY<-CYv(pmem7-2+L3-2.bit(L1-0))	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY}<-\mathrm{CYv}$ (H+mem3-o.bit)	*1	
	XOR1	CY, fmem.bit	2	2	$C Y<-C Y \forall$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY<- CY ${ }^{\text {(pmem7-2+L3-2.bit(L1-0) }}$)	*5	
		CY, @H+mem.bit	2	2	$C Y<-C Y \forall(H+$ mem3-0.bit $)$	*1	

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Branch	$\mathrm{BR}^{\text {Note } 1}$	addr	-	-	PC13-0<-addr $\left(\begin{array}{l}\text { Use the assembler to select the } \\ \text { most appropriate instruction } \\ \text { among the following. } \\ \text { - BR !addr } \\ \text { - BRCB !caddr } \\ \text { - BR \$addr }\end{array}\right)$	*6	
		addr1	-	-	PC13-0<-addr1 $\left(\begin{array}{l}\text { Use the assembler to select } \\ \text { the most appropriate instruction } \\ \text { among the following. } \\ \text { - BRA !addr1 } \\ \text { - BR laddr } \\ \text { - BRCB !caddr } \\ \text { - BR \$addr1 }\end{array}\right)$	*1	
		laddr	3	3	PC13-0<-addr	*6	
		\$addr	1	2	PC13-0<-addr	*7	
		\$addr1	1	2	PC13-0<-addr1		
		PCDE	2	3	PC ${ }_{13-0<-\mathrm{PC}_{13-8+D E} \text { (}}$		
		PCXA	2	3	PC $13-0<-\mathrm{PC}_{13-8+\mathrm{XA}}$		
		BCDE	2	3	PC13-0<-BCDE ${ }^{\text {Note } 2}$	*6	
		BCXA	2	3	PC13-0<-BCXA ${ }^{\text {Note } 2}$	*6	
	BRA ${ }^{\text {Note }} 1$!addr1	3	3	$\mathrm{PC}_{13-0<-\mathrm{addr}} 1$	${ }^{*} 11$	
	BRCB	! caddr	2	2	$\mathrm{PC}_{13-0<-\mathrm{PC}_{13,12+c a d d r 11-0}}$	*8	

Notes 1. The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.
2. Only the lower 2 bits in the B register are valid.

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	Skip condition
Subroutine stack control	CALLA ${ }^{\text {Note }}$!addr1	3	3	$\begin{aligned} & \hline \hline(\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4)<-\mathrm{PC}_{11-0} \\ & (\mathrm{SP}-5)<-0,0, \mathrm{PC} 13,12 \\ & (\mathrm{SP}-2)<-\mathrm{X}, \mathrm{X}, \mathrm{MBE}, \mathrm{RBE} \\ & \mathrm{PC}_{13-0<- \text { addr1, } \mathrm{SP}<-\mathrm{SP}-6} \\ & \hline \end{aligned}$	*11	
	CALL ${ }^{\text {Note }}$!addr	3	3 4	$\begin{aligned} & (\mathrm{SP}-4)(\mathrm{SP}-1)(\mathrm{SP}-2)<-\mathrm{PC}_{11-0} \\ & (\mathrm{SP}-3)<-\mathrm{MBE}, \mathrm{RBE}, \mathrm{PC}_{13}, 12 \\ & \mathrm{PC}_{13-0<-\mathrm{addr}, \mathrm{SP}<-\mathrm{SP}-4} \\ & \hline \hline(\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4)<-\mathrm{PC}_{11-0} \\ & (\mathrm{SP}-5)<-0,0, \mathrm{PC}_{13}, 12 \\ & (\mathrm{SP}-2)<-\mathrm{X}, \mathrm{X}, \mathrm{MBE}, \mathrm{RBE} \\ & \mathrm{PC}_{13-0<-\mathrm{addr}, \mathrm{SP}<-\mathrm{SP}-6} \\ & \hline \end{aligned}$	*6	
	CALLF ${ }^{\text {Note }}$!faddr	2	2	$\begin{aligned} & (\mathrm{SP}-4)(\mathrm{SP}-1)(\mathrm{SP}-2)<-\mathrm{PC}_{11-0} \\ & (\mathrm{SP}-3)<-\mathrm{MBE}, \mathrm{RBE}, \mathrm{PC}_{13}, 12 \\ & \mathrm{PC}_{13-0<-000+\text { faddr, } \mathrm{SP}_{2}-\mathrm{SP}-4} \\ & \hline \hline(\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4)<-\mathrm{PC}_{11-0} \\ & (\mathrm{SP}-5)<-0,0, \mathrm{PC}_{13}, 12 \\ & (\mathrm{SP}-2)<-\mathrm{X}, \mathrm{X}, \mathrm{MBE}, \mathrm{RBE} \\ & \mathrm{PC}_{13-0<-000+\text { faddr, } \mathrm{SP}<-\mathrm{SP}-6} \end{aligned}$	*9	
	RET ${ }^{\text {Note }}$		1	3	$\begin{aligned} & \mathrm{MBE}, \mathrm{RBE}, \mathrm{PC} 13,12<-(\mathrm{SP}+1) \\ & \mathrm{PC}_{11-0<-(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2)} \\ & \mathrm{SP}_{<-\mathrm{SP}+4} \\ & \hline \mathrm{X}, \mathrm{X}, \mathrm{MBE}, \mathrm{RBE}<-(\mathrm{SP}+4) \\ & \mathrm{PC} 11-0<-(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & 0,0, \mathrm{PC}_{13}, 12<-(\mathrm{SP}+1) \\ & \mathrm{SP}<-\mathrm{SP}+6 \end{aligned}$		
	RETS ${ }^{\text {Note }}$		1	$3+$ S	MBE, RBE, $\mathrm{PC}_{13}, 12<-(\mathrm{SP}+1)$ $\begin{aligned} & \mathrm{PC}_{11-0<-}(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{SP}<-\mathrm{SP}+4 \end{aligned}$ then skip unconditionally $\begin{array}{\|\|l} \mathrm{X}, \mathrm{X}, \mathrm{MBE}, \mathrm{RBE}<-(\mathrm{SP}+4) \\ \mathrm{PC} 11-0<-(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ 0,0, \mathrm{PC} 13,12<-(\mathrm{SP}+1) \\ \mathrm{SP}<-\mathrm{SP}+6 \end{array}$ then skip unconditionally		Unconditional
	RETINote		1	3	MBE, RBE, $\mathrm{PC}_{13}, 12<-(\mathrm{SP}+1)$ $\begin{aligned} & \mathrm{PC} 11-0<-(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{PSW}<-(\mathrm{SP}+4)(\mathrm{SP}+5), \mathrm{SP}<-\mathrm{SP}+6 \\ & \hline 0,0, \mathrm{PC} 13,12<-(\mathrm{SP}+1) \\ & \mathrm{PC} 11-0<-(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{PSW}<-(\mathrm{SP}+4)(\mathrm{SP}+5), \mathrm{SP}<-\mathrm{SP}+6 \\ & \hline \end{aligned}$		

Note The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

Instruction group	Mnemonic	Operand	No. of bytes	Machine cycle	Operation	Addressing area	$\begin{aligned} & \text { Skip } \\ & \text { condition } \end{aligned}$
Subroutine stack control	PUSH	rp	1	1	(SP-1)(SP-2)<-rp, $\mathrm{SP}^{\text {c- }}$ - $\mathrm{SP}-2$		
		BS	2	2	$(\mathrm{SP}-1)<-\mathrm{MBS},(\mathrm{SP}-2)<-\mathrm{RBS}, \mathrm{SP}<-\mathrm{SP}-2$		
	POP	rp	1	1	rp<-(SP+1)(SP), $\mathrm{SP}<-\mathrm{SP}+2$		
		BS	2	2	MBS<-(SP+1), RBS<-(SP), $\mathrm{SP}<-\mathrm{SP}+2$		
Interrupt control	El		2	2	IME(IPS.3)<-1		
		IEXXX	2	2	IEXXX<-1		
	DI		2	2	IME(IPS.3)<-0		
		IEXXX	2	2	IEXXX<-0		
I/O	INNote 1	A, PORTn	2	2	A<-PORTn ($n=0-8$)		
		XA, PORTn	2	2	XA<-PORTn+1, PORTn ($\mathrm{n}=4,6$)		
	OUT ${ }^{\text {Note } 1}$	PORTn, A	2	2	PORTn<-A $\quad(\mathrm{n}=2-8)$		
		PORTn, XA	2	2	PORTn+1, PORTn<-XA ($\mathrm{n}=4,6$)		
CPU control	HALT		2	2	Set HALT Mode(PCC.2<-1)		
	STOP		2	2	Set STOP Mode(PCC. $3<-1$)	*10	
	NOP		1	1	No Operation		
Special	SEL	RBn	2	2	RBS<-n ($n=0-3$)		
		MBn	2	2	MBS<-n ($\mathrm{n}=0-2,15$)		
	GETINote 2, 3	taddr	1	3	- When using TBR instruction PC13-0<-(taddr)5-0+(taddr+1) - When using TCALL instruction $\begin{aligned} & (\mathrm{SP}-4)(\mathrm{SP}-1)(\mathrm{SP}-2)<-\mathrm{PC}_{11-0} \\ & (\mathrm{SP}-3)<-\mathrm{MBE}, \mathrm{RBE}, \mathrm{PC}_{13}, 12 \\ & \mathrm{PC}_{13-0<-(t a d d r) 5-0+(\text { taddr}+1)} \\ & \mathrm{SP}_{<-\mathrm{SP}-4} \end{aligned}$ - When using instruction other than TBR or TCALL Execute (taddr)(taddr+1) instruction		Determined by referenced instruction
			1	4	- When using TBR instruction PC 13 -0<-(taddr)5-0+(taddr+1) - When using TCALL instruction (SP-6)(SP-3)(SP-4)<-PC11-0 (SP-5)<-MBE, RBE, PC 13,12 (SP-2)<-X, X, MBE, RBE PC $13-0<-$ (taddr) 5-0+(taddr+1) SP<-SP-6	*10	
				3	- When using instruction other than TBR or TCALL Execute (taddr)(taddr+1) instruction		Determined by referenced instruction

Notes 1. Before executing the IN or OUT instruction, set MBE to 0 or 1 and set MBS to 15.
2. TBR and TCALL instructions are assembler pseudo-instructions for the GETI instruction's table definitions.
3. The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

8. PROM (PROGRAM MEMORY) WRITE AND VERIFY

The μ PD75P3036 contains a 16384×8-bit PROM as a program memory. The pins listed in the table below are used for this PROM's write/verify operations. Clock input from the X1 pin is used instead of address input as a method for updating addresses.

Pin	Function
VPP	Pin where program voltage is applied during program memory write/verify (usually VDD potential)
X1, X2	Clock input pins for address updating during program memory write/verify. Input the X1 pin's inverted signal to the X2 pin.
MD0 to MD3	Operation mode selection pin for program memory write/verify
D0/P40 to D3/P43 (lower 4 bits) D4/P50 to D7/P53 (upper 4 bits)	8-bit data I/O pins for program memory write/verify
VDD	Pin where power supply voltage is applied. Applies 1.8 to 5.5 V in normal operation mode and +6 V for program memory write/verify.

Caution Pins not used for program memory write/verify should be connected to Vss.

8.1 Operation Modes for Program Memory Write/Verify

When +6 V is applied to the VDD pin and +12.5 V to the VPP pin, the μ PD75P3036 enters the program memory write/verify mode. The following operation modes can be specified by setting pins MD0 to MD3 as shown below

Operation mode specification						Operation mode
VPP	VDD	MD0	MD1	MD2	MD3	
+12.5 V	+6 V	H	L	H	L	Zero-clear program memory address
		L	H	H	H	Write mode
		L	L	H	H	Verify mode
		H	X	H	H	Program inhibit mode

X: L or H

8.2 Program Memory Write Procedure

Program memory can be written at high speed using the following procedure.
(1) Pull unused pins to Vss through resistors. Set the X 1 pin low.
(2) Supply 5 V to the Vdd and Vpp pins.
(3) Wait $10 \mu \mathrm{~s}$.
(4) Select the zero-clear program memory address mode.
(5) Supply 6 V to the V_{DD} and 12.5 V to the VPP pins.
(6) Write data in the 1 ms write mode.
(7) Select the verify mode. If the data is correct, go to step (8) and if not, repeat steps (6) and (7).
(8) (X : number of write operations from steps (6) and (7)) $\times 1 \mathrm{~ms}$ additional write.
(9) Apply four pulses to the X1 pin to increment the program memory address by one.
(10) Repeat steps (6) to (9) until the end address is reached.
(11) Select the zero-clear program memory address mode.
(12) Return the VDD and VPP pins back to 5 V .
(13) Turn off the power.

The following figure shows steps (2) to (9).

* 8.3 Program Memory Read Procedure

The μ PD75P3036 can read program memory contents using the following procedure.
(1) Pull unused pins to Vss through resistors. Set the X1 pin low.
(2) Supply 5 V to the Vdd and Vpp pins.
(3) Wait $10 \mu \mathrm{~s}$.
(4) Select the zero-clear program memory address mode.
(5) Supply 6 V to the V_{DD} and 12.5 V to the VPP pins.
(6) Select the verify mode. Apply four clock pulses to the X 1 pin. Every four clock pulses will output the data stored in one address.
(7) Select the zero-clear program memory address mode.
(8) Return the VDd and Vpp pins back to 5 V .
(9) Turn off the power.

The following figure shows steps (2) to (7).

MD1/P31

MD2/P32

MD3/P33

9. PROGRAM ERASURE (μ PD75P3036KK-T ONLY)

The μ PD75P3036KK-T is capable of erasing (FFH) the data written in a program memory and rewriting.
To erase the programmed data, expose the erasure window to light having a wavelength shorter than about 400 nm . Normally, irradiate ultraviolet rays of $254-\mathrm{nm}$ wavelength. The amount of exposure required to completely erase the programmed data is as follows:

- UV intensity x erasure time : $15 \mathrm{~W} \cdot \mathrm{~s} / \mathrm{cm}^{2}$ or more
- Erasure time : 15 to 20 minutes (when a UV lamp of $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ is used. However, a longer time may be needed because of deterioration in performance of the UV lamp, soiled erasure window, etc.)

When erasing the contents of data, set up the UV lamp within 2.5 cm from the erasure window. Further, if a filter is provided for a UV lamp, irrradiate the ultraviolet rays after removing the filter.

10. OPAQUE FILM ON ERASURE WINDOW (μ PD75P3036KK-T ONLY)

To protect from unintentional erasure by rays other than that of the lamp for erasing EPROM contents, and to protect internal circuit other than EPROM from misoperating due to light radiation, cover the erasure window with an opaque film when EPROM contents erasure is not performed.

11. ONE-TIME PROM SCREENING

Due to its structure, the one-time PROM versions (μ PD75P3036GC-3B9, μ PD75P3036GK-BE9) cannot be fully tested before shipment by NEC. Therefore, NEC recommends that after the required data is written and the PROM is stored under the temperature and time conditions shown below, the PROM should be verified via a screening.

Storage temperature	Storage time
$125^{\circ} \mathrm{C}$	24 hours

12. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions		Ratings	Unit
Supply voltage	VDD			-0.3 to +7.0	V
PROM supply voltage	VPP			-0.3 to +13.5	V
Input voltage	V_{11}	Other than ports 4, 5		-0.3 to $\mathrm{VDD}+0.3$	V
	V_{12}	Ports 4, 5	N-ch open drain	-0.3 to +14	V
Output voltage	Vo			-0.3 to $V_{\text {DD }}+0.3$	V
High-level output current	Іон	Per pin		-10	mA
		Total of all pins		-30	mA
Low-level output current	lot	Per pin		30	mA
		Total of all pins		200	mA
Operating ambient temperature	TA			-40 to $+85^{\text {Note }}$	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Note To drive LCD at $1.8 \mathrm{~V} \leq \mathrm{V} D \mathrm{CD}<2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-10$ to $+85^{\circ} \mathrm{C}$

Caution If the absolute maximum ratings of even one of the parameters is exceeded even momentarily, the quality of the product may be degraded. The absolute maximum ratings are therefore values which, when exceeded, can cause the product to be damaged. Be sure that these values are never exceeded when using the product.

Capacitance ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	CIn	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V			15	pF
Output capacitance	Cout				15	pF
I/O capacitance	Cıo				15	pF

Main System Clock Oscillation Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, VDD $=1.8$ to 5.5 V)

Resonator	Recommended Constants	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillation frequency (fx) Note 1		1.0		6.0 ${ }^{\text {Note } 2}$	MHz
		Oscillation stabilization time ${ }^{\text {Note } 3}$	After Vod has reached MIN. value of oscillation voltage range			4	ms
Crystal resonator		Oscillation frequency (fx) Note 1		1.0		$6.0^{\text {Note } 2}$	MHz
		Oscillation stabilization time ${ }^{\text {Note } 3}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V			10	ms
						30	
External clock		X1 input frequency (fx) Note 1		1.0		6.0 ${ }^{\text {Note } 2}$	MHz
		X1 input high-, low-level widths (txh, txL)		83.3		500	ns

Notes 1. The oscillation frequency and X 1 input frequency shown above indicate characteristics of the oscillation circuit only. For the instruction execution time, refer to $A C$ Characteristics.
2. If the oscillation frequency is $4.19 \mathrm{MHz}<\mathrm{fx} \leq 6.0 \mathrm{MHz}$ at $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$, do not select the processor clock control register $(\mathrm{PCC})=0011$. If $\mathrm{PCC}=0011$, one machine cycle time is less than $0.95 \mu \mathrm{~s}$, falling short of the rated value of $0.95 \mu \mathrm{~s}$.
3. The oscillation stabilization time is the time required for oscillation to be stabilized after Vdd has been applied or STOP mode has been released.

Caution When using the main system clock oscillation circuit, wire the portion enclosed in the dotted line in the above figure as follows to prevent adverse influence due to wiring capacitance:

- Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit at the same potential as Vdo.
- Do not ground to a power supply pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

Subsystem Clock Oscillation Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Resonator	Recommended Constants	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		Oscillation frequency (fxt) Note 1		32	32.768	35	kHz
		Oscillation stabilization time ${ }^{\text {Note } 2}$	$V_{D D}=4.5$ to 5.5 V		1.0	2	s
						10	
External clock		XT1 input frequency $\left(\mathrm{fXT}^{\prime}\right)^{\text {Note }} 1$		32	\square	100	kHz
	8	XT1 input high-, low-level widths (tхтн, tхть)		5		15	$\mu \mathrm{s}$

Notes 1. The oscillation frequency shown above indicate characteristics of the oscillation circuit only. For the instruction execution time, refer to AC Characteristics.
2. The oscillation stabilization time is the time required for oscillation to be stabilized after VDD has been applied.

Caution When using the subsystem clock oscillation circuit, wire the portion enclosed in the dotted line in the above figure as follows to prevent adverse influence due to wiring capacitance:

- Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit at the same potential as Vod.
- Do not ground to a power supply pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

The subsystem clock oscillation circuit has a low amplification factor to reduce current dissipation and is more susceptible to noise than the main system clock oscillation circuit. Therefore, exercise utmost care in wiring the subsystem clock oscillation circuit.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Low-level output current	IoL	Per pin					15	mA
		Total of all pins					120	mA
High-level input voltage	$\mathrm{V}_{\mathrm{H} 1}$	Ports 2, 3, P82, P83		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.7 VDD		Vdo	V
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.9 VDD		VDD	V
	$\mathrm{V}_{\mathbf{H} 2}$	Ports 0, 1, 6, 7, P80, P81, RESET		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.8 VDD		VDD	V
				$1.8 \mathrm{~V} \leq \mathrm{VDD}^{2} 2.7 \mathrm{~V}$	0.9 VDD		VDD	V
	Vוнз	Ports 4, 5	N -ch open drain	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	0.7 VDD		13	V
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.9 VDD		13	V
	VIH4	X1, XT1			VDD-0.1		Vdo	V
Low-level input voltage	VIL1	Ports 2, 3, 4, 5, P82, P83		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		0.3 VDD	V
				$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0		0.1 VDD	V
	VIL2	$\begin{aligned} & \text { Ports 0, 1, 6, 7, P80, P81, } \\ & \overline{\text { RESET }} \end{aligned}$		$2.7 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0		0.2 VDD	V
				$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0		0.1 VDD	V
	VІІ3	$\underline{\mathrm{X} 1, \mathrm{XT} 1}$			0		0.1	V
High-level output voltage	Vон	SCK, SO, ports 2, 3, 6, 7, 8, BP0 to BP7$\mathrm{IoH}=-1 \mathrm{~mA}$			VDD-0.5			V
Low-level output voltage	Vol1	SCK, SO, ports 2 to 8 , BP0 to BP7		$\begin{aligned} & \mathrm{loL}=15 \mathrm{~mA} \\ & \mathrm{VDD}=4.5 \mathrm{to} 5.5 \mathrm{~V} \end{aligned}$		0.2	2.0	V
				$\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V
	Vot2	SB0, SB1	N -ch open drain Pull-up resistor \geq				0.2 VDD	V
High-level input leakage current	ІІнн	$\mathrm{VIN}_{\text {I }}=\mathrm{V}_{\text {d }}$	Pins other than $\mathrm{X} 1, \mathrm{XT} 1$				3	$\mu \mathrm{A}$
	ІІнн2		$\mathrm{X} 1, \mathrm{XT} 1$				20	$\mu \mathrm{A}$
	ІІІнз	V IN $=13 \mathrm{~V}$	Ports 4, 5 (N-ch open drain)				20	$\mu \mathrm{A}$
Low-level input leakage current	LlLI 1	$\mathrm{VIN}=0 \mathrm{~V}$	Pins other than ports $4,5, \mathrm{X} 1, \mathrm{XT} 1$				-3	$\mu \mathrm{A}$
	ILIL2		$\mathrm{X} 1, \mathrm{XT} 1$				-20	$\mu \mathrm{A}$
			Ports 4, 5 (N -ch open drain) When input instruction is not executed				-3	$\mu \mathrm{A}$
	ILLI3		Ports 4, 5 (N-ch open drain) When input instruction is executed				-30	$\mu \mathrm{A}$
				$V_{D D}=5 \mathrm{~V}$		-10	-27	$\mu \mathrm{A}$
				$\mathrm{V} D \mathrm{D}=3 \mathrm{~V}$		-3	-8	$\mu \mathrm{A}$
High-level output leakage current	ILoh1	Vout $=$ VDD	SCK, SO/SB0, SB1, ports 2, 3, 6, 7, 8, BP0 to BP7				3	$\mu \mathrm{A}$
	ІІон2	Vout $=13 \mathrm{~V}$	Ports 4, 5 (N-ch open drain)				20	$\mu \mathrm{A}$
Low-level output leakage current	ILoL	Vout $=0 \mathrm{~V}$					-3	$\mu \mathrm{A}$
Internal pull-up resistor	RL1	$\mathrm{VIN}=0 \mathrm{~V}$	Ports 0 to 3, 6 to 8 (except pin P00)		50	100	200	k Ω

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
LCD drive voltage	V LCd	$V A C O=0$		-40 to +85	$85^{\circ} \mathrm{C}$	2.7		VDD	V
				-10 to $+85{ }^{\circ} \mathrm{C}$		2.2		VDD	V
		$V A C 0=1$				1.8		VDD	V
VAC current ${ }^{\text {Note } 1}$	Ivac	$V A C 0=1, V_{D D}=2.0 \mathrm{~V} \pm 10 \%$					1	4	$\mu \mathrm{A}$
LCD output voltage deviation ${ }^{\text {Note }} 2$ (common)	Vodc	$\mathrm{lo}= \pm 1.0 \mu \mathrm{~A}$	$\begin{aligned} & V_{L C D 0}=V_{L C D} \\ & V_{L C D 1}=V_{L C D} \times 2 / 3 \\ & V_{L C D 2}=V_{L C D} \times 1 / 3 \\ & 1.8 \mathrm{~V} \leq V_{\text {LCD }} \leq V_{D D} \text { Note } 1 \end{aligned}$			0		± 0.2	V
LCD output voltage deviation ${ }^{\text {Note }} 2$ (segment)	Vods	$\mathrm{lo}= \pm 0.5 \mu \mathrm{~A}$				0		± 0.2	V
Supply current ${ }^{\text {Notes 1, }} 3$	IdD1	$6.00 \mathrm{MHz}^{\text {Note } 4}$ crystal oscillation $\mathrm{C} 1=\mathrm{C} 2$ $=22 \mathrm{pF}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10$ \% Note 5				3.5	10.5	mA
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10$ \% Note 6				0.86	2.5	mA
	IdD2		HALT mode	$V_{D D}=5.0$	$\mathrm{V} \pm 10$ \%		0.9	2.7	mA
				$V_{\text {DD }}=3.0$	$\mathrm{V} \pm 10$ \%		0.5	1.0	mA
	IdD1	4.19 MHz ${ }^{\text {Note } 4}$ crystal oscillation $\begin{aligned} & \mathrm{C} 1=\mathrm{C} 2 \\ & =22 \mathrm{pF} \end{aligned}$	$V_{D D}=5.0 \mathrm{~V} \pm 10$ \%Note 5				2.7	8.1	mA
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10$ \% ${ }^{\text {Note }} 6$				0.33	1.0	mA
	IdD2		$\begin{aligned} & \text { HALT } \\ & \text { mode } \end{aligned}$	$V_{\text {DD }}=5.0$	$\mathrm{V} \pm 10$ \%		0.7	2.0	mA
				$V_{D D}=3.0$	$\mathrm{V} \pm 10$ \%		0.3	0.9	mA
	IdD3	32.768 $\mathrm{kHz}{ }^{\text {Note }} 7$ crystal oscillation	Lowvoltage mode ${ }^{\text {Note } 8}$	$V_{D D}=3.0$	$\mathrm{V} \pm 10$ \%		45	135	$\mu \mathrm{A}$
				$V_{D D}=2.0$	$\mathrm{V} \pm 10$ \%		22	66	$\mu \mathrm{A}$
				$V_{D D}=3.0$	$\mathrm{V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		45	90	$\mu \mathrm{A}$
			Low current dissipation mode ${ }^{\text {Note } 9}$	$V_{D D}=3.0$	$\mathrm{V} \pm 10$ \%		43	129	$\mu \mathrm{A}$
				$V_{\text {dD }}=3.0$	$\mathrm{V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		43	86	$\mu \mathrm{A}$
	IdD4		$\begin{aligned} & \text { HALT } \\ & \text { mode } \end{aligned}$	Lowvoltage \qquad Low current dissipation mode ${ }^{\text {Note } 9}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		8.5	25	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \pm 10$ \%		3.0	9.0	$\mu \mathrm{A}$
					$V_{D D}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8.5	17	$\mu \mathrm{A}$
					$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		4.6	13.8	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.6	9.2	$\mu \mathrm{A}$
	IdD5	$\begin{aligned} & \text { XT1 = } \\ & 0 V^{\text {Note } 10} \\ & \text { STOP mode } \end{aligned}$	$V_{D D}=5.0 \mathrm{~V} \pm 10$ \%				0.05	10	$\mu \mathrm{A}$
			$V_{D D}=3.0 \mathrm{~V} \pm 10$ \%				0.02	5.0	$\mu \mathrm{A}$
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.02	3.0	$\mu \mathrm{A}$

Notes 1. Clear VACO to 0 in the low current dissipation mode and STOP mode. When VACO is set to 1 , the current increases by about $1 \mu \mathrm{~A}$.
2. Voltage deviation is the difference between the ideal values (VLCDn; $\mathrm{n}=0,1,2$) of the segment and common outputs and the output voltage.
3. The current flowing through the internal pull-up resistor is not included.
4. Including the case when the subsystem clock oscillates.
5. When the device operates in high-speed mode with the processor clock control register (PCC) set to 0011.
6. When the device operates in low-speed mode with PCC set to 0000 .
7. When the device operates on the subsystem clock, with the system clock control register (SCC) set to 1001 and oscillation of the main system clock stopped.
8. When the sub-oscillation circuit control register (SOS) is set to 0000.
9. When SOS is set to 0010 .
10. When SOS is set to 00×1, and the feedback resistor of the sub-oscillation circuit is not used (\times : don't care).

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V)

Notes 1. The cycle time of the CPU clock (Φ) is determined by the oscillation frequency of the connected resonator (and external clock), the system clock control register (SCC), and processor clock control register (PCC).
The figure on the right shows the supply voltage VDD vs. cycle time tcy characteristics when the device operates with the main system clock.
2. 2 tcy or $128 / f x$ depending on the setting of the interrupt mode register (IMO).

Serial transfer operation

2-wire and 3-wire serial I/O modes ($\overline{\mathrm{SCK}} \ldots$ internal clock output): ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{dd}}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tксү1	V DD $=2.7$ to 5.5 V		1300			ns
				3800			ns
$\overline{\text { SCK }}$ high-, low-level widths	$\begin{aligned} & \text { tKL1, } \\ & \text { tKH1 } \end{aligned}$	$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V		tkcy/2-50			ns
				tkcy $/ 2-150$			ns
SINote 1 setup time (to $\overline{\mathrm{SCK}} \uparrow$)	tsıк1	$V_{D D}=2.7$ to 5.5 V		150			ns
				500			ns
SINote 1 hold time (from $\overline{\text { SCK }} \uparrow$)	tksII	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V		400			ns
				600			ns
$\overline{\text { SCK }} \downarrow \rightarrow$ SO ${ }^{\text {Note } 1} 1$ output delay time	tksor	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \text { Note }^{2} \\ & \mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V	0		250	ns
				0		1000	ns

Notes 1. Read as SB0 or SB1 when using the 2-wire serial I/O mode.
2. $R L$ and C_{L} respectively indicate the load resistance and load capacitance of the SO output line.

2-wire and 3-wire serial I/O modes (SCK \ldots external clock input): ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tkcy2	$V_{D D}=2.7$ to 5.5 V		800			ns
				3200			ns
$\overline{\text { SCK }}$ high-, low-level widths	tkL2, tkH2	$V_{D D}=2.7$ to 5.5 V		400			ns
				1600			ns
SINote 1 setup time (to $\overline{\text { SCK }} \uparrow$)	tsiк2	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V		100			ns
				150			ns
SI ${ }^{\text {Note }} 1$ hold time (from $\overline{\mathrm{SCK}} \uparrow$)	tks12	$V_{D D}=2.7$ to 5.5 V		400			ns
				600			ns
$\overline{\text { SCK }} \downarrow \rightarrow$ SO ${ }^{\text {Note } 1}$ output	tksoz	$\mathrm{RL}=1 \mathrm{k} \Omega$, Note 2	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V	0		300	ns
delay time		$\mathrm{CL}=100 \mathrm{pF}$		0		1000	ns

Notes 1. Read as SB0 or SB1 when using the 2-wire serial I/O mode.
2. RL and Cl respectively indicate the load resistance and load capacitance of the SO output line.

SBI mode ($\overline{\mathrm{SCK}} \cdots$ internal clock output (master)): $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tксү3	$V_{D D}=2.7$ to 5.5 V		1300			ns
				3800			ns
$\overline{\text { SCK }}$ high-, low-level widths	tкцз, tкнз			tкcy/2-50			ns
		$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V		tкcry/2-150			ns
SB0, 1 setup time (to $\overline{\text { SCK }} \uparrow$)	tsik3	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V		150			ns
				500			ns
SB0, 1 hold time (from $\overline{\text { SCK }} \uparrow$)	tкs ${ }^{\text {a }}$			tксуз/2			ns
$\overline{\text { SCK }} \downarrow \rightarrow$ SBO, 1 output	tkso3	$\mathrm{RL}=1 \mathrm{k} \Omega,$	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V	0		250	ns
delay time		$C \mathrm{~L}=100 \mathrm{pF}$		0		1000	ns
$\overline{\text { SCK }} \uparrow \rightarrow$ SB0, $1 \downarrow$	tкsb			tксуз			ns
SB0, $1 \downarrow \rightarrow \overline{\text { SCK }} \downarrow$	tsbk			tксүз			ns
SB0, 1 low-level width	tsbl			tксуз			ns
SB0, 1 high-level width	tsb			tксуз			ns

Note RL and CL respectively indicate the load resistance and load capacitance of the SB0, 1 output line.

SBI mode ($\overline{S C K} \cdots$ external clock input (slave)): $\left(T_{A}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK }}$ cycle time	tксү4	$V_{\text {DD }}=2.7$ to 5.5 V		800			ns
				3200			ns
$\overline{\text { SCK }}$ high-, low-level widths	tkı4,	$V_{D D}=2.7 \text { to } 5.5 \mathrm{~V}$		400			ns
				1600			ns
SB0, 1 setup time (to $\overline{\mathrm{SCK}} \uparrow$)	tsik4	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V		100			ns
				150			ns
SB0, 1 hold time (from $\overline{\text { SCK }} \uparrow$)	tks14			tкcy4/2			ns
$\overline{\mathrm{SCK}} \downarrow \rightarrow \mathrm{SBO}, 1$ output	tkso4	$\mathrm{RL}=1 \mathrm{k} \Omega, \quad \text { Note }$	$V_{D D}=2.7$ to 5.5 V	0		300	ns
delay time		$\mathrm{CL}=100 \mathrm{pF}$		0		1000	ns
	tksb			tkcy4			ns
SB0, $1 \downarrow \rightarrow \overline{\text { SCK }} \downarrow$	tsbk			tксү4			ns
SB0, 1 low-level width	tsbl			tксү4			ns
SB0, 1 high-level width	tssh			tксү4			ns

Note RL and CL respectively indicate the load resistance and load capacitance of the SB0, 1 output line.

A/D Converter Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to $\left.5.5 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{REF}} \leq \mathrm{V}_{\mathrm{DD}}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution				8	8	8	bit
Absolute accuracy ${ }^{\text {Note }} 1$		$V_{\text {di }}=A V_{\text {Ref }}$	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			1.5	LSB
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			3	LSB
		$\mathrm{V}_{\mathrm{DD}} \neq \mathrm{AV}_{\text {REF }}$				3	LSB
Conversion time	tconv	Note 2				168/fx	$\mu \mathrm{s}$
Sampling time	tsamp	Note 3				44/fx	$\mu \mathrm{s}$
Analog input voltage	Vian			AV ss		AVref	V
Analog input impedance	Ran				1000		$\mathrm{M} \Omega$
AV ${ }_{\text {reF }}$ current	Iref				0.25	2.0	mA

Notes 1. Absolute accuracy excluding quantization error ($\pm 1 / 2 \mathrm{LSB}$)
2. Time until end of conversion $(E O C=1)$ after execution of conversion start instruction $(40.1 \mu \mathrm{~s}$: $\mathrm{fx}=$ 4.19 MHz).
3. Time until end of sampling after execution of conversion start instruction ($10.5 \mu \mathrm{~s}: \mathrm{fx}=4.19 \mathrm{MHz}$).

AC timing test points (except X1 and XT1 inputs)

Clock timing

TIO, TI1, TI2 timing

TIO, TI1, TI2

Serial transfer timing

3-wire serial I/O mode

2-wire serial I/O mode

Serial transfer timing

Bus release signal transfer

Command signal transfer

Interrupt input timing

RESET input timing

Data retention characteristics of data memory in STOP mode and at low supply voltage
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Release signal setup time	tsrel		0			$\mu \mathrm{s}$
Oscillation stabilization wait time ${ }^{\text {Note }} 1$	twalt	Released by $\overline{\mathrm{RESET}}$		$2^{15 / f x}$		ms
		Released by interrupt request		Note 2		ms

Notes 1. The oscillation stabilization wait time is the time during which the CPU stops operating to prevent unstable operation when oscillation is started.
2. Set by the basic interval timer mode register (BTM). (Refer to the table below.)

BTM3	BTM2	BTM1	BTM0	Wait Time	
				$\mathrm{fx}=4.19 \mathrm{MHz}$	$\mathrm{fx}=6.0 \mathrm{MHz}$
-	0	0	0	$2^{20} / \mathrm{fx}$ (approx. 250 ms)	220/fx (approx. 175 ms)
-	0	1	1	2 ${ }^{17 / f x}$ (approx. 31.3 ms)	$2^{17} / \mathrm{fx}$ (approx. 21.8 ms)
-	1	0	1	$2^{15} / \mathrm{fx}$ (approx. 7.81 ms)	$2^{15} / \mathrm{fx}$ (approx. 5.46 ms)
-	1	1	1	213/fx (approx. 1.95 ms)	$2^{13 / f x}$ (approx. 1.37 ms)

Data retention timing (when STOP mode released by $\overline{\text { RESET }}$

Data retention timing (standby release signal: when STOP mode released by interrupt signal)

DC Programming Characteristics ($\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=12.5 \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-level input voltage	V_{1+1}	Except $\mathrm{X} 1, \mathrm{X} 2$	0.7 VDD		VDD	V
	$\mathrm{V}_{\mathbf{H} 2}$	X1, X2	Vod-0.5		VDD	V
Low-level input voltage	VIL1	Except $\mathrm{X} 1, \mathrm{X} 2$	0		0.3 VDD	V
	VIL2	X1, X2	0		0.4	V
Input leakage current	lıI	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$			10	$\mu \mathrm{A}$
High-level output voltage	Voh	$\mathrm{lOH}=-1 \mathrm{~mA}$	V $\mathrm{DD}-1.0$			V
Low-level output voltage	Vol	$\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V
Vod supply current	ldd				30	mA
VPP supply current	IPp	$\mathrm{MD0}=\mathrm{V}_{\mathrm{IL}}, \mathrm{MD} 1=\mathrm{V}_{\mathrm{IH}}$			30	mA

Cautions 1. Ensure that Vpp does not exceed +13.5 V including overshoot.
2. Vid must be applied before Vpp, and cut after Vpp.

AC Programming Characteristics ($\mathrm{T}_{\mathrm{A}}=25 \pm 5{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \pm 0.3 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Note 1	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time ${ }^{\text {Note } 2}$ (to MDO \downarrow)	tAs	tAS		2			$\mu \mathrm{s}$
MD1 setup time (to MD0 \downarrow)	tm1s	toes		2			$\mu \mathrm{s}$
Data setup time (to MDO \downarrow)	tos	tos		2			$\mu \mathrm{s}$
Address hold time ${ }^{\text {Note } 2}$ (from MD0 \uparrow)	tah	$\mathrm{taH}^{\text {H }}$		2			$\mu \mathrm{s}$
Data hold time (from MD0 \uparrow)	toh	tDH		2			$\mu \mathrm{s}$
MD0 $\uparrow \rightarrow$ Data output float delay time	tDF	tDF		0		130	ns
VPP setup time (to MD3 \uparrow)	tvps	tvps		2			$\mu \mathrm{s}$
Vod setup time (to MD3 \uparrow)	tvos	tvcs		2			$\mu \mathrm{s}$
Initial program pulse width	tpw	tpw		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD0 setup time (to MD1 \uparrow)	tmos	tces		2			$\mu \mathrm{s}$
MDO $\downarrow \rightarrow$ Data output delay time	tov	tov	$\mathrm{MD0}=\mathrm{MD1}=\mathrm{V}_{\mathrm{IL}}$			1	$\mu \mathrm{s}$
MD1 hold time (from MD0 \uparrow)	tm1 ${ }^{\text {r }}$	toen		2			$\mu \mathrm{s}$
MD1 recovery time (from MD0 \downarrow)	tm1R	tor		2			$\mu \mathrm{s}$
Program counter reset time	tPCR	-		10			$\mu \mathrm{s}$
X1 input high-, low-level widths	txh, txL	-		0.125			$\mu \mathrm{s}$
X1 input frequency	fx	-				4.19	MHz
Initial mode setting time	t	-		2			$\mu \mathrm{s}$
MD3 setup time (to MD1 \uparrow)	tm3s	-		2			$\mu \mathrm{s}$
MD3 hold time (from MD1 \downarrow)	tм3н	-		2			$\mu \mathrm{s}$
MD3 setup time (to MD0 \downarrow)	tM3SR	-	Program memory read	2			$\mu \mathrm{s}$
Data output delay time from address ${ }^{\text {Note } 2}$	tdad	tacc	Program memory read			2	$\mu \mathrm{s}$
Data output hold time from address ${ }^{\text {Note } 2}$	thad	tor	Program memory read	0		130	$\mu \mathrm{s}$
MD3 hold time (from MD0 \uparrow)	tмзнR	-	Program memory read	2			$\mu \mathrm{s}$
MD3 $\downarrow \rightarrow$ Data output float delay time	tbfr	-	Program memory read			2	$\mu \mathrm{s}$

Notes 1. Symbol of corresponding $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$
2. The internal address signal is incremented by 1 on the 4th rise of the $X 1$ input, and is not connected to a pin.

Program Memory Write Timing

Program Memory Read Timing

13. CHARACTERISTIC CURVES (FOR REFERENCE ONLY)

IdD vs. VDD (main system clock: 4.19-MHz crystal resonator)

14. PACKAGE DRAWINGS

80 PIN PLASTIC QFP (14×14)

note
Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	17.2 ± 0.4	0.677 ± 0.016
B	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	17.2 ± 0.4	0.677 ± 0.016
F	0.825	0.032
G	0.825	0.032
H	0.30 ± 0.10	$0.012_{-0.005}^{+0.004}$
I	0.13	0.005
J	$0.65($ T.P. $)$	$0.026($ T.P. $)$
K	1.6 ± 0.2	0.063 ± 0.008
L	0.8 ± 0.2	$0.031_{-0.009}^{+0.009}$
M	$0.15_{-0.05}^{+0.10}$	$0.006_{-0.004}^{+0.004}$
N	0.10	0.004
P	2.7	0.106
Q	0.1 ± 0.1	0.004 ± 0.004
R	$5^{\circ} \pm 5^{\circ}$	$5^{\circ} \pm 5^{\circ}$
S	3.0 MAX.	$0.119 \mathrm{MAX}$.
		S80GC-65-3B9-4

NOTE
Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	14.0 ± 0.2	$0.551{ }_{-0.008}^{+0.009}$
B	12.0 ± 0.2	$0.472{ }_{-0.008}^{+0.009}$
C	12.0 ± 0.2	$0.472{ }_{-0.008}^{+0.009}$
D	14.0 ± 0.2	$0.551{ }_{-0.008}^{+0.009}$
F	1.25	0.049
G	1.25	0.049
H	$0.22+{ }_{-0.04}^{+0.05}$	0.009 ± 0.002
1	0.10	0.004
J	0.5 (T.P.)	0.020 (T.P.)
K	1.0 ± 0.2	$0.039{ }_{-0.008}^{+0.009}$
L	0.5 ± 0.2	$0.020{ }_{-0.008}^{+0.008}$
M	$0.145{ }_{-0.045}^{+0.055}$	0.006 ± 0.002
N	0.10	0.004
P	1.05	0.041
Q	0.05 ± 0.05	0.002 ± 0.002
R	$5^{\circ} \pm 5^{\circ}$	$5^{\circ} \pm 5^{\circ}$
S	1.27 MAX.	0.050 MAX .
P80GK-50-BE9-4		

NOTE
Each lead centerline is located within 0.06 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

ITEM		MILLIMETERS

15. RECOMMENDED SOLDERING CONDITIONS

Solder the μ PD75P3036 under the following recommended conditions.
For the details on the recommended soldering conditions, refer to Information Document Semiconductor Device Mounting Technology Manual (C10535E).
For the soldering methods and conditions other than those recommended, consult NEC.

Table 15-1. Soldering Conditions of Surface Mount Type
(1) μ PD75P3036GC-3B9: 80-pin plastic QFP ($14 \times 14 \mathrm{~mm}$)

Soldering Method		Soldering Conditions
Infrared reflow	Package peak temperature: $235{ }^{\circ} \mathrm{C}$, Reflow time: 30 seconds or below $\left(210{ }^{\circ} \mathrm{C}\right.$ or higher), Number of reflow processes: 3 max.	IR35-00-3
VPS	Package peak temperature: $215{ }^{\circ} \mathrm{C}$, Reflow time: 40 seconds or below $\left(200{ }^{\circ} \mathrm{C}\right.$ or higher), Number of reflow processes: 3 max.	VP15-00-3
Wave soldering	Solder temperature: $260{ }^{\circ} \mathrm{C}$ or below, Flow time: 10 seconds or below, Number of flow processes: 1 Preheating temperature: $120{ }^{\circ} \mathrm{C}$ or below (package surface temperature)	WS60-00-1
Pin partial heating	Pin temperature: $300{ }^{\circ} \mathrm{C}$ or below, Time: 3 seconds or below (per side of device)	

Caution Do not use two or more soldering methods in combination (except the pin partial heating method).
(2) μ PD75P3036GK-BE9: 80-pin plastic TQFP (fine pitch) $(12 \times 12 \mathrm{~mm})$

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Reflow time: 30 seconds or below $\left(210^{\circ} \mathrm{C}\right.$ or higher), Number of reflow processes: 3 max., Exposure limit: 7 days ${ }^{\text {Note }}$ (After that, prebaking is necessary at $125^{\circ} \mathrm{C}$ for 10 hours.)	IR35-107-3
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Reflow time: 40 seconds or below ($200^{\circ} \mathrm{C}$ or higher), Number of reflow processes: 3 max., Exposure limit: 7 days Note (After that, prebaking is necessary at $125^{\circ} \mathrm{C}$ for 10 hours.)	VP15-107-3
Wave soldering	Solder temperature: $260^{\circ} \mathrm{C}$ or below, Flow time: 10 seconds or below, Number of flow processes: 1 , Preheating temperature: $120^{\circ} \mathrm{C}$ or below (package surface temperature) Exposure limit: 7 days ${ }^{\text {Note }}$ (After that, prebaking is necessary at $125^{\circ} \mathrm{C}$ for 10 hours.)	WS60-107-1
Pin partial heating	Pin temperature: $300{ }^{\circ} \mathrm{C}$ or below, Time: 3 seconds or below (per side of device)	-

Note The number of days for storage after the dry pack has been opened. The storage conditions are $25{ }^{\circ} \mathrm{C}, 65 \% \mathrm{RH}$ max.

Caution Do not use two or more soldering methods in combination (except the pin partial heating method).

APPENDIX A. FUNCTION LIST OF μ PD75336, 753036, AND 75P3036

		μ PD75336	μ PD753036	μ PD75P3036
ROM (bytes)		$\begin{aligned} & 16256 \\ & \text { Mask ROM } \end{aligned}$	$\begin{aligned} & 16384 \\ & \text { Mask ROM } \end{aligned}$	16384 One-time PROM, EPROM
RAM (x 4 bits)		768		
Mk I, Mk II mode selection function		No	Yes	
Instruction set		75X High-End	75XL	
I/O ports	Total	44		
	CMOS input	8		
	CMOS I/O	20 (4 of which can directly drive LEDs)		
	CMOS output	8 (also used as segment pins)		
	N-ch open-drain I/O	8 (can directly drive LEDs, medium-voltage port)		
Mask options		Yes		No
Timers		4 channels: -8-bit timer/ event counter \qquad 2 chs - Basic interval timer1 ch - Watch timer \qquad 1 ch	5 channels: - 8 -bit timer/event counters \qquad 3 chs (16-bit timer/event counter, carrier generator, timer with gate) - Basic interval timer/watchdog timer \qquad 1 ch - Watch timer \qquad 1 ch	
Vectored interrupt		- External : 3 - Internal : 4	- External : 3 - Internal : 5	
Test input		- External :1 - Internal : 1	- External : 1 - Internal : 1	
Power supply voltage		$V_{D D}=2.7$ to 6.0 V	$\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V	
Instruction execution time	When main system clock is selected	$0.95,1.91,3.81$, or $15.3 \mu \mathrm{~s}$ (@ 4.19 MHz)	$\cdot 0.95,1.91,3.81$, or $15.3 \mu \mathrm{~s}$ (@ 4.19 MHz) - 0.67, 1.33, 2.67, or $10.7 \mu \mathrm{~s}$ (@ 6.0 MHz)	
	When subsystem clock is selected	122 ¢ (@32.768 kHz)		
Package		80-pin plastic QFP ($14 \times 14 \mathrm{~mm}$) 80 -pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$)		80-pin plastic QFP ($14 \times 14 \mathrm{~mm}$) 80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$) 80-pin ceramic WQFN

APPENDIX B. DEVELOPMENT TOOLS

The following development tools have been provided for system development using the μ PD75P3036. Use the common relocatable assembler for the series together with the device file according to the model.

RA75X relocatable assembler	Host machine			Part No. (name)
		OS	Supply medium	
	PC-9800 Series	$\begin{aligned} & \hline \text { MS-DOSTM } \\ & \binom{\text { Ver.3.30 to }}{\text { Ver.6.2 }} \\ & \hline \end{aligned}$	3.5-inch 2HD	μ S5A13RA75X
			5-inch 2HD	μ S5A10RA75X
	IBM PC/AT ${ }^{\text {TM }}$ or compatible	Refer to "OS for IBM PCs"	3.5-inch 2HC	μ S7B13RA75X
			5-inch 2HC	μ S7B10RA75X

Device file	Host machine			Part No. (name)
		OS	Supply medium	
	PC-9800 Series	$\begin{aligned} & \text { MS-DOS } \\ & \binom{\text { Ver.3.30 to }}{\text { Ver.6.2 }} \end{aligned}$	3.5-inch 2HD	μ S5A13DF753036
			5-inch 2HD	μ S5A10DF753036
	IBM PC/AT or compatible	Refer to "OS for IBM PCs"	3.5-inch 2HC	μ S7B13DF753036
			5-inch 2HC	μ S7B10DF753036

Note Ver. 5.00 or later includes a task swapping function, but this software is not able to use that function.

Remark Operations of the assembler and device file are guaranteed only when using the host machine and OS described above.

PROM Write Tools

Hardware	PG-1500	This is a PROM programmer that can program single-chip microcontroller with PROM in stand alone mode or under control of host machine when connected with supplied accessory board and optional programmer adapter. It can also program typical PROMs in capacities ranging from 256 K to 4 Mbits.			
	PA-75P328GC	This is a PROM programmer adapter for the μ PD75P3036GC used by connecting to a PG-1500.			
	PA-75P336GK	This is a PROM programmer adapter for the μ PD75P3036GKused by connecting to a PG-1500.			
	PA-75P3036KK-T ${ }^{\text {Note }} 1$	This is a PROM programmer adapter for the μ PD75P3036KK-T used by connecting to a PG1500.			
Software	PG-1500 controller	Connects PG-1500 to host machine with serial and parallel interface and controls PG-1500 on host machine.			
		Host machine			Part No. (name)
			OS	Supply medium	
		PC-9800 Series	$\begin{aligned} & \text { MS-DOS } \\ & \binom{\text { Ver.3.30 to }}{\text { Ver.6.2 }} \end{aligned}$	3.5-inch 2HD	$\mu \text { S5A10PG1500 }$
				5-inch 2HD	
		IBM PC/AT or compatible	Refer to "OS for IBM PCs"	3.5-inch 2HD	μ S7B13PG1500
				5-inch 2HC	μ S7B10PG1500

Notes 1. Under development
2. Ver. 5.00 or later includes a task swapping function, but this software is not able to use that function.

Remark Operation of the PG-1500 controller is guaranteed only when using the host machine and OS described above.

Debugging Tools

In-circuit emulators (IE-75000-R and IE-75001-R) are provided as program debugging tools for the μ PD75P3036. Various system configurations using these in-circuit emulators are listed below.

Hardware	IE-75000-R ${ }^{\text {Note }} 1$	The IE-75000-R is an in-circuit emulator to be used for hardware and software debugging during development of application systems using the 75X or 75XL Series products. For development of the μ PD75P3036, the IE-75000-R is used with optional emulation board (IE-75300-R-EM) and emulation probe (EP-753036GC-R or EP-753036GK-R). Highly efficient debugging can be performed when connected to host machine and PROM programmer. The IE-75000-R includes a connected emulation board (IE-75000-R-EM).		
	IE-75001-R	The IE-75001-R is an in-circuit emulator to be used for hardware and software debugging during development of application systems using the 75X or 75XL Series products. The IE-75001-R is used with optional emulation board (IE-75300-R-EM) and emulation probe (EP-753036GC-R or EP-753036GK-R). Highly efficient debugging can be performed when connected to host machine and PROM programmer.		
	IE-75300-R-EM ${ }^{\text {Note }} 2$	This is an emulation board for evaluating application systems using the μ PD75P3036. It is used in combination with the IE-75000-R or IE-75001-R.		
	$\begin{aligned} & \text { EP-75336GC-R } \\ & \text { EV-9200GC-80 } \end{aligned}$	This is an emulation probe for the μ PD75P3036GC. When being used, it is connected with the IE-75000-R or IE-75001-R and the IE-75300-R-EM. It includes an 80-pin conversion socket (EV-9200GC-80) to facilitate connections with target system.		
	EP-75336GK-R EV-9500GK-80	This is an emulation probe for the μ PD75P3036GK. When being used, it is connected with the IE-75000-R or IE-75001-R and the IE-75300-R-EM. It includes an 80-pin conversion adapter (EV-9500GK-80) to facilitate connections with target system.		
Software	IE control program	This program can control the IE-75000-R or IE-75001-R on a host machine when connected to the IE-75000-R or IE-75001-R via an RS-232-C and Centronics interface.		
		Host machine		Part No. (name)
		OS	Supply medium	
		PC-9800 Series	3.5-inch 2HD	μ S5A13IE75X
			5-inch 2HD	μ S5A10IE75X
		IBM PC/AT or compatible	3.5-inch 2HC	μ S7B13IE75X
			5-inch 2HC	μ S7B10IE75X

Notes 1. This is a maintenance product.
2. The IE-75300-R-EM is sold separately.
3. Ver. 5.00 or later includes a task swapping function, but this software is not able to use that function.

Remarks 1. Operation of the IE control program is guaranteed only when using the host machine and OS described above.
2. The μ PD753036 and 75P3036 are commonly referred to as the μ PD753036 Subseries.

OS for IBM PCs

The following operating systems for the IBM PC are supported.

OS	Version
PC DOS $^{\text {TM }}$	Ver.5.02 to Ver.6.3
	J6.1/V to J6.3/V
MS-DOS	Ver.5.0 to Ver.6.22
	$5.0 / \mathrm{V}$ to $6.2 / \mathrm{V}$
IBM DOS	

Caution Ver. 5.0 or later includes a task swapping function, but this software is not able to use that function.

APPENDIX C. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Device

Document	Document No.	
	Japanese	English
μ PD75P3036 Data Sheet	U11575J	U11575E (this document)
μ PD753036 Data Sheet	U11353J	Planned
μ PD753036 User's Manual	U10201J	U10201E
μ PD753036 Instruction Table	IEM-5063	-
75XL Series Selection Guide	U10453J	U10453E

Documents Related to Development Tools

Document			Document No.	
			Japanese	English
Hardware	IE-75000-R/IE-75001-R User's Manual		EEU-846	EEU-1416
	IE-75300-R-EM User's Manual		U11354J	EEU-1493
	EP-75336GC/GK-R User's Manual		U10644J	U10644E
	PG-1500 User's Manual		EEU-651	EEU-1335
Software	RA75X Assembler Package User's Manual	Operation	EEU-731	EEU-1346
		Language	EEU-730	EEU-1363
	PG-1500 Controller User's Manual	PC-9800 Series (MS-DOS) base	EEU-704	EEU-1291
		IBM PC Series (PC DOS) base	EEU-5008	U10540E

Other Related Documents

Document	Document No.	
	Japanese	English
IC Package Manual	C10943X	C10535E
Semiconductor Device Mounting Technology Manual	C10535J	C11531E
Quality Grades on NEC Semiconductor Devices	C11531J	C10983E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	-
Electrostatic Discharge (ESD) Test	MEM-539	MEI-1202
Guide to Quality Assurance for Semiconductor Devices	MEI-603	-
Microcomputer - Related Product Guide - Third Party Products -	MEI-604	-

Caution The related documents listed above are subject to change without notice. Be sure to use the latest documents for designing, etc.

NEC
[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd. Benelux Office Hong Kong
Eindhoven, The Netherlands Tel: 2886-9318
Tel: 040-2445845 Fax: 2886-9022/9044
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Hong Kong Ltd.

Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

Abstract

MS-DOS is a trademark of Microsoft Corporation. IBM DOS, PC DOS, and PC/AT are trademarks of International Business Machines Corporation. The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

