## $256 \mathrm{~K} \times 16$ Static RAM

## Features

- Pin equivalent to CY7C1041BV33
- High speed
$-t_{A A}=10 \mathrm{~ns}$
- Low active power
- 324 mW (max.)
- 2.0 V data retention
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE and $\overline{\mathrm{OE}}$ features


## Functional Description ${ }^{[1]}$

The CY7C1041CV33 is a high-performance CMOS Static RAM organized as 262,144 words by 16 bits.

Writing to the device is accomplished by taking Chip Enable ( $\overline{\mathrm{CE}}$ ) and Write Enable ( WE ) inputs LOW. If Byte LOW Enable (BLE) is LOW, then data from $\mathrm{I} / \mathrm{O}$ pins $\left(\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}\right)$, is written into the location specified on the address pins $\left(\mathrm{A}_{0}-\mathrm{A}_{17}\right)$. If Byte

HIGH Enable ( $\overline{\mathrm{BHE})}$ is LOW, then data from I/O pins ( $\mathrm{I} / \mathrm{O}_{8}-\mathrm{l} / \mathrm{O}_{15}$ ) is written into the location specified on the address pins $\left(\mathrm{A}_{0}-\mathrm{A}_{17}\right)$.
Reading from the device is accomplished by taking Chip Enable ( $\overline{\mathrm{CE}}$ ) and Output Enable ( $\overline{\mathrm{OE})}$ LOW while forcing the Write Enable (WE) HIGH. If Byte LOW Enable ( $\overline{\mathrm{BLE}})$ is LOW, then data from the memory location specified by the address pins will appear on $\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$. If Byte HIGH Enable ( $\overline{\mathrm{BHE}}$ ) is LOW, then data from memory will appear on $I / O_{8}$ to $I / O_{15}$. See the truth table at the back of this data sheet for a complete description of Read and Write modes.

The input/output pins $\left(1 / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{15}\right)$ are placed in a high-impedance state when the device is deselected $\overline{\mathrm{CE}}$ HIGH), the outputs are disabled ( $\overline{\mathrm{OE}} \mathrm{HIGH}$ ), the $\overline{\mathrm{BHE}}$ and $\overline{\mathrm{BLE}}$ are disabled (BHE, BLE HIGH), or during a Write operation ( $\overline{\mathrm{CE}}$ LOW, and $\overline{\mathrm{WE}}$ LOW).
The CY7C1041CV33 is available in a standard 44-pin 400 -mil-wide body width SOJ and 44-pin TSOP II package with center power and ground (revolutionary) pinout, as well as a 48-ball fine-pitch ball grid array (FBGA) package.


Pin Configuration
SOJ TSOP II Top View


## Selection Guide

|  |  | $\mathbf{- 8}$ | $\mathbf{- 1 0}$ | $\mathbf{- 1 2}$ | $\mathbf{- 1 5}$ | $\mathbf{- 2 0}$ | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum Access Time |  | 8 | 10 | 12 | 15 | 20 | ns |
| Maximum Operating Current | Commercial | 100 | 90 | 85 | 80 | 75 | mA |
|  | Industrial | 110 | 100 | 95 | 90 | 85 | mA |
| Maximum CMOS Standby Current | Commercial/ <br> Industrial | 10 | 10 | 10 | 10 | 10 | mA |

Shaded areas contain advance information.
Note:

1. For guidelines on SRAM system design, please refer to the "System Design Guidelines" Cypress application note, available on the internet at www.cypress.com.

## Pin Configurations



## Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\qquad$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $\qquad$ .$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on $\mathrm{V}_{\mathrm{CC}}$ to Relative $\mathrm{GND}^{[2]} \ldots .-0.5 \mathrm{~V}$ to +4.6 V DC Voltage Applied to Outputs in High-Z State ${ }^{[2]}$ ${ }^{2]}$.. $\qquad$
$\qquad$ -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Current into Outputs (LOW)
20 mA
Operating Range

|  Ambient <br> Ramperature V $_{\text {CC }}$ |  |  |
| :--- | :---: | :---: |
| Commercial | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ |
| Industrial | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |

DC Electrical Characteristics Over the Operating Range

| Parameter | Description | Test Conditions |  | -8 |  | -10 |  | -12 |  | -15 |  | -20 |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min. | Max. |  |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \end{aligned}$ |  | 2.4 |  | 2.4 |  | 2.4 |  | 2.4 |  | 2.4 |  | V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$ |  |  | 0.4 |  | 0.4 |  | 0.4 |  | 0.4 |  | 0.4 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage |  |  | 2.0 | $\begin{gathered} \mathrm{V}_{\mathrm{cc}} \\ +0.3 \end{gathered}$ | 2.0 | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \end{aligned}$ | 2.0 | $\begin{array}{\|l\|} \hline V_{C C} \\ +0.3 \end{array}$ | 2.0 | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \end{aligned}$ | 2.0 | $\begin{array}{\|c\|} \hline V_{C C} \\ +0.3 \end{array}$ | V |
| $\mathrm{V}_{\mathrm{IL}}{ }^{\text {[2] }}$ | Input LOW Voltage |  |  | -0.3 | 0.8 | -0.3 | 0.8 | -0.3 | 0.8 | -0.3 | 0.8 | -0.3 | 0.8 | V |
| IX | Input Load Current | $\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$ |  | -1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | $\mu \mathrm{A}$ |
| loz | Output Leakage Current | $\mathrm{GND} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled |  | -1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 | +1 | $\mu \mathrm{A}$ |
| ${ }^{\text {ICC }}$ | $V_{C C}$ Operating Supply Current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}= \\ & 1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$ | Comm'l |  | 100 |  | 90 |  | 85 |  | 80 |  | 75 | mA |
|  |  |  | Indus. |  | 110 |  | 100 |  | 95 |  | 90 |  | 85 | mA |
| ${ }^{\text {SB1 }}$ | Automatic CE <br> Power-down Current <br> -TTL Inputs | $\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, f=f_{\mathrm{MAX}} \end{aligned}$ |  |  | 40 |  | 40 |  | 40 |  | 40 |  | 40 | mA |
| ${ }^{\text {SB2 }}$ | Automatic CE Power-down Current -CMOS Inputs | $\begin{aligned} & \text { Max. } V_{C C}, \\ & C E \geq V_{C C}-0.3 V, \\ & V_{I N} \geq V_{C C}-0.3 V \\ & \text { or } V_{I N} \leq 0.3 V, f=0 \end{aligned}$ | Comm'I Indus. |  | 10 |  | 10 |  | 10 |  | 10 |  | 10 | mA |

Shaded areas contain advance information.
Capacitance ${ }^{[3]}$

| Parameter | Description | Test Conditions | Max. | Unit |
| :--- | :--- | :--- | :---: | :---: |
| $\mathrm{C}_{\mathrm{IN}}$ | Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ | 8 | pF |
| $\mathrm{C}_{\mathrm{OUT}}$ |  |  | 8 | pF |

## Notes:

2. Minimum voltage is-2.0V for pulse durations of less than 20 ns .
3. Tested initially and after any design or process changes that may affect these parameters.

AC Switching Characteristics ${ }^{[4]}$ Over the Operating Range

| Parameter | Description | -8 |  | -10 |  | -12 |  | -15 |  | -20 |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| Read Cycle |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{t}_{\text {power }}{ }^{\text {[5] }}$ | $\mathrm{V}_{\mathrm{CC}}$ (typical) to the first access | 1 |  | 1 |  | 1 |  | 1 |  | 1 |  | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\mathrm{RC}}$ | Read Cycle Time | 8 |  | 10 |  | 12 |  | 15 |  | 20 |  | ns |
| $\mathrm{t}_{\mathrm{AA}}$ | Address to Data Valid |  | 8 |  | 10 |  | 12 |  | 15 |  | 20 | ns |
| $\mathrm{t}^{\text {OHA }}$ | Data Hold from Address Change | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | ns |
| $\mathrm{t}_{\text {ACE }}$ | $\overline{\mathrm{CE}}$ LOW to Data Valid |  | 8 |  | 10 |  | 12 |  | 15 |  | 20 | ns |
| $\mathrm{t}_{\text {DOE }}$ | $\overline{\mathrm{OE}}$ LOW to Data Valid |  | 4 |  | 5 |  | 6 |  | 7 |  | 8 | ns |
| tizoe | $\overline{\text { OE LOW to Low-Z }}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |
| $\mathrm{t}_{\text {HZOE }}$ | $\overline{\mathrm{OE}}$ HIGH to High-Z ${ }^{[6,7]}$ |  | 4 |  | 5 |  | 6 |  | 7 |  | 8 | ns |
| tlzCE | $\overline{\mathrm{CE}}$ LOW to Low-Z ${ }^{[7]}$ | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | ns |
| $\mathrm{t}_{\text {HZCE }}$ | $\overline{\mathrm{CE}}$ HIGH to High-Z ${ }^{[6,7]}$ |  | 4 |  | 5 |  | 6 |  | 7 |  | 8 | ns |
| $\mathrm{t}_{\text {PU }}$ | $\overline{\mathrm{CE}}$ LOW to Power-Up | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |
| $\mathrm{t}_{\text {PD }}$ | $\overline{\mathrm{CE}}$ HIGH to Power-Down |  | 8 |  | 10 |  | 12 |  | 15 |  | 20 | ns |
| $\mathrm{t}_{\text {DBE }}$ | Byte Enable to Data Valid |  | 4 |  | 5 |  | 6 |  | 7 |  | 8 | ns |
| $t_{\text {LZBE }}$ | Byte Enable to Low-Z | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |
| $t_{\text {HZBE }}$ | Byte Disable to High-Z |  | 6 |  | 6 |  | 6 |  | 7 |  | 8 | ns |

## Write Cycle ${ }^{[8,9]}$

| $t_{\text {Wc }}$ | Write Cycle Time | 8 |  | 10 |  | 12 |  | 15 |  | 20 |  | ns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {SCE }}$ | $\overline{\mathrm{CE}}$ LOW to Write End | 6 |  | 7 |  | 8 |  | 10 |  | 10 |  | ns |
| $\mathrm{t}_{\text {AW }}$ | Address Set-Up to Write End | 6 |  | 7 |  | 8 |  | 10 |  | 10 |  | ns |
| $\mathrm{t}_{\mathrm{HA}}$ | Address Hold from Write End | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |
| $\mathrm{t}_{\text {SA }}$ | Address Set-Up to Write Start | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |
| $\mathrm{t}_{\text {PWE }}$ | $\overline{\text { WE Pulse Width }}$ | 6 |  | 7 |  | 8 |  | 10 |  | 10 |  | ns |
| ${ }_{\text {t }}^{\text {SD }}$ | Data Set-Up to Write End | 4 |  | 5 |  | 6 |  | 7 |  | 8 |  | ns |
| $\mathrm{t}_{\mathrm{HD}}$ | Data Hold from Write End | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |
| tlzWE | $\overline{\text { WE }}$ HIGH to Low-Z ${ }^{[7]}$ | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | ns |
| $\mathrm{t}_{\text {HZWE }}$ | $\overline{\text { WE L L }}$ LOW to High-Z ${ }^{[6,7]}$ |  | 4 |  | 5 |  | 6 |  | 7 |  | 8 | ns |
| $\mathrm{t}_{\mathrm{BW}}$ | Byte Enable to End of Write | 6 |  | 7 |  | 8 |  | 10 |  | 10 |  | ns |

Shaded areas contain advance information.

## Notes:

4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V .
5. $t_{\text {POWER }}$ gives the minimum amount of time that the power supply should be at typical $\mathrm{V}_{C C}$ values until the first memory access can be performed.
6. $t_{\text {HZOE }}, t_{\text {HZCE }}$, and $t_{\text {HZWE }}$ are specified with a load capacitance of 5 pF as in part (d) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
7. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{L Z C E}, t_{\text {HZOE }}$ is less than $t_{L Z}$, and $t_{\text {HZWE }}$ is less than $t_{L Z W E}$ for any given device.
8. The internal Write time of the memory is defined by the overlap of CE LOW, and WE LOW. $\overline{C E}$ and $\overline{W E}$ must be LOW to initiate a Write, and the transition of either of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the Write.
9. The minimum Write cycle time for Write Cycle No. 3 ( $\overline{\mathrm{WE}}$ controlled, $\overline{\mathrm{OE}} \mathrm{LOW}$ ) is the sum of $\mathrm{t}_{\mathrm{HZWE}}$ and $\mathrm{t}_{\mathrm{SD}}$.

## AC Test Loads and Waveforms ${ }^{[10]}$



## Switching Waveforms

Read Cycle No. $\boldsymbol{1}^{[11,12]}$


Read Cycle No. 2 ( $\overline{\mathrm{OE}}$ Controlled) [12, 13]


## Notes:

10. AC characteristics (except High-Z) for all 8-ns and 10-ns parts are tested using the load conditions shown in Figure (a). All other speeds are tested using the Thevenin load shown in Figure (b). High-Z characteristics are tested for all speeds using the test load shown in Figure (d).
Device is continuously selected. $\mathrm{OE}, \overline{\mathrm{CE}}, \overline{\mathrm{BHE}}$ and/or $\overline{\mathrm{BHE}}=\mathrm{V}_{\mathrm{IL}}$.
11. $\overline{W E}$ is HIGH for Read cycle.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

## Switching Waveforms (continued)

Write Cycle No. 1 ( $\overline{\mathrm{CE}}$ Controlled) ${ }^{14,15]}$


Write Cycle No. 2 ( $\overline{\mathrm{BLE}}$ or $\overline{\mathrm{BHE}}$ Controlled)


## Notes:

14. Data $\mathrm{I} / \mathrm{O}$ is high-impedance if $\overline{\mathrm{OE}}$ or $\overline{\mathrm{BHE}}$ and/or $\overline{\mathrm{BLE}}=\mathrm{V}_{\mathrm{IH}}$.
15. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ going HIGH, the output remains in a high-impedance state

Switching Waveforms (continued)
Write Cycle No. 3 ( $\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ LOW)


Truth Table

| $\overline{\mathrm{CE}}$ | $\overline{\mathrm{OE}}$ | WE | $\overline{\text { BLE }}$ | $\overline{\text { BHE }}$ | $\mathrm{I} / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$ | $\mathrm{I} / \mathrm{O}_{8}-\mathrm{I} / \mathrm{O}_{15}$ | Mode | Power |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | X | X | X | X | High-Z | High-Z | Power-down | Standby ( $\mathrm{I}_{\text {SB }}$ ) |
| L | L | H | L | L | Data Out | Data Out | Read All Bits | Active ( $\mathrm{ICC}^{\text {) }}$ |
| L | L | H | L | H | Data Out | High-Z | Read Lower Bits Only | Active ( $\mathrm{I}_{\mathrm{CC}}$ ) |
| L | L | H | H | L | High-Z | Data Out | Read Upper Bits Only | Active ( $\mathrm{I}_{\mathrm{CC}}$ ) |
| L | X | L | L | L | Data In | Data In | Write All Bits | Active ( $\mathrm{I}_{\mathrm{CC}}$ ) |
| L | X | L | L | H | Data In | High-Z | Write Lower Bits Only | Active ( $\mathrm{ICC}^{\text {) }}$ |
| L | X | L | H | L | High-Z | Data In | Write Upper Bits Only | Active ( $\mathrm{I}_{\mathrm{CC}}$ ) |
| L | H | H | X | X | High-Z | High-Z | Selected, Outputs Disabled | Active ( $\mathrm{ICC}^{\text {) }}$ |

## CY7C1041CV33

Ordering Information

| CY7C1041CV33 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Speed (ns) | Ordering Code | Package Name | Package Type | Operating Range |
| 10 | CY7C1041CV33-10BAC | BA48B | 48-ball Fine Pitch BGA | Commercial |
|  | CY7C1041CV33-10VC | V34 | 44-lead (400-mil) Molded SOJ |  |
|  | CY7C1041CV33-10ZC | Z44 | 44-pin TSOP II Z44 |  |
|  | CY7C1041CV33-10BAI | BA48B | 48-ball Fine Pitch BGA | Industrial |
|  | CY7C1041CV33-10VI | V34 | 44-lead (400-mil) Molded SOJ |  |
|  | CY7C1041CV33-10ZI | Z44 | 44-pin TSOP II Z44 |  |
| 12 | CY7C1041CV33-12BAC | BA48B | 48-ball Fine Pitch BGA | Commercial |
|  | CY7C1041CV33-12VC | V34 | 44-lead (400-mil) Molded SOJ |  |
|  | CY7C1041CV33-12ZC | Z44 | 44-pin TSOP II Z44 |  |
|  | CY7C1041CV33-12BAI | BA48B | 48-ball Fine Pitch BGA | Industrial |
|  | CY7C1041CV33-12VI | V34 | 44-lead (400-mil) Molded SOJ |  |
|  | CY7C1041CV33-12ZI | Z44 | 44-pin TSOP II Z44 |  |
| 15 | CY7C1041CV33-15BAC | BA48B | 48-ball Fine Pitch BGA | Commercial |
|  | CY7C1041CV33-15VC | V34 | 44-lead (400-mil) Molded SOJ |  |
|  | CY7C1041CV33-15ZC | Z44 | 44-pin TSOP II Z44 |  |
|  | CY7C1041CV33-15BAI | BA48B | 48-ball Fine Pitch BGA | Industrial |
|  | CY7C1041CV33-15VI | V34 | 44-lead (400-mil) Molded SOJ |  |
|  | CY7C1041CV33-15ZI | Z44 | 44-pin TSOP II Z44 |  |
| 20 | CY7C1041CV33-20BAC | BA48B | 48-ball Fine Pitch BGA | Commercial |
|  | CY7C1041CV33-20VC | V34 | 44-lead (400-mil) Molded SOJ |  |
|  | CY7C1041CV33-20ZC | Z44 | 44-pin TSOP II Z44 |  |
|  | CY7C1041CV33-20BAI | BA48B | 48-ball Fine Pitch BGA | Industrial |
|  | CY7C1041CV33-20VI | V34 | 44-lead (400-mil) Molded SOJ |  |
|  | CY7C1041CV33-20ZI | Z44 | 44-pin TSOP II Z44 |  |

## Package Diagrams



Package Diagrams (continued)

## 44-pin TSOP II Z44



All products and company names mentioned in this document may be the trademarks of their respective holders.

## Document History Page

| Document Title: CY7C1041CV33 256K x 16 Static RAM <br> Document Number: 38-05134 |  |  |  |  |
| :---: | :---: | :---: | :---: | :--- |
| REV. | ECN NO. | Issue <br> Date | Orig. of <br> Change | Description of Change |
| ${ }^{* *}$ | 109513 | $12 / 13 / 01$ | HGK | New Data Sheet |
| ${ }^{*}$ A | 112440 | $12 / 20 / 01$ | BSS | Updated 51-85106 from revision *A to *C |
| ${ }^{*} B$ | 112859 | $03 / 25 / 02$ | DFP | Added CY7C1042CV33 in BGA package <br> Removed 1042 BGA option pin ACC Final Data Sheet |
| ${ }^{*} \mathrm{C}$ | 116477 | $09 / 16 / 02$ | CEA | Add applications foot note to data sheet |
| ${ }^{*}$ D | 119797 | $10 / 21 / 02$ | DFP | Added 20-ns speed bin |

