Document Title

512Kx8 bit Low Power and Low Voltage CMOS Static RAM

Revision History

Revision No	. <u>History</u>	Draft Data	<u>Remark</u>
0.0	Initial Draft	January 13, 1998	Advance
0.1	Revisied - Speed bin change KM68U4000C : 85/100ns \rightarrow 70/85/100ns - DC Characteristics change lcc : 5mA at read/write \rightarrow 4mA at read lcc1 : 3mA \rightarrow 4mA lcc2 : 35mA \rightarrow 30mA lsB : 0.5mA \rightarrow 0.3mA lsB1 : 10 μ A \rightarrow 15 μ A for commercial parts - Add 32-TSOP1-0820	June 12, 1998	Preliminary
0.11	Errata correct - 32-TSOP1-0813 products: T \rightarrow TG	November 7, 1998	
1.0	Finalize	January 15, 1999	Final

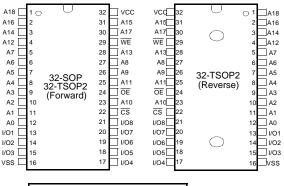
The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

512K×8 bit Low Power and Low Voltage CMOS Static RAM

FEATURES

- Process Technology: TFT
- Organization: 512K×8
- Power Supply Voltage K6T4008V1C Family: 3.0~3.6V
- K6T4008U1C Family: 2.7~3.3V
- Low Data Retention Voltage: 2V(Min)
- Three state output and TTL Compatible
- Package Type: 32-SOP-525, 32-TSOP2-400F/R 32-TSOP1-0820F, 32-TSOP1-0813.4F

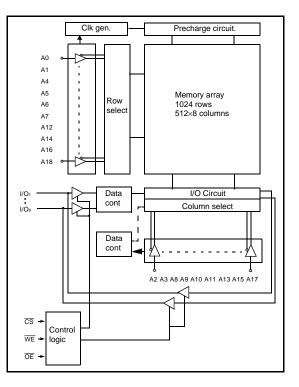
GENERAL DESCRIPTION


The K6T4008V1C and K6T4008U1C families are fabricated by SAMSUNG's advanced CMOS process technology. The families support various operating temperature range and have various package type for user flexibility of system design. The families also support low data retention voltage for battery back-up operation with low data retention current.

PRODUCT FAMILY

				Power Dis		
Product Family	Operating Temperature	Vcc Range	Speed	Standby (Isв1, Max)	Operating (Icc2, Max)	PKG Type
K6T4008V1C-B	Commercial(0~70°C)	3.0~3.6V	70 ¹⁾ /85ns	15uA		32-SOP
K6T4008U1C-B		2.7~3.3V	70 ¹⁾ /85/100ns	ΤομΑ	30mA	32-TSOP2-F/R
K6T4008V1C-F	Industrial(-40~85°C)	3.0~3.6V	70 ¹⁾ /85ns	20µA	Joint	32-TSOP1-F 32-sTSOP1-F
K6T4008U1C-F		2.7~3.3V	70 ¹⁾ /85/100ns	ΖυμΑ		32-51 30P I-P

1. The parametter is measured with 30pF test load.


PIN DESCRIPTION

Name	Function	Name	Function
A0~A18	Address Inputs	Vcc	Power
WE	Write Enable Input	Vss	Ground
CS	Chip Select Input	I/O1~I/O8	Data Inputs/Outputs
OE	Output Enable Input		

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Commercial	Temp Products(0~70°C)	Industrial Temp Products(-40~85°C)			
Part Name	Function	Part Name	Function		
K6T4008V1C-GB70	32-SOP, 70ns, 3.3V, LL	K6T4008V1C-GF70	32-SOP, 70ns, 3.3V, LL		
K6T4008V1C-GB85	32-SOP, 85ns, 3.3V, LL	K6T4008V1C-GF85	32-SOP, 85ns, 3.3V, LL		
K6T4008V1C-VB70	32-TSOP2-F, 70ns, 3.3V, LL	K6T4008V1C-VF70	32-TSOP2-F, 70ns, 3.3V, LL		
K6T4008V1C-VB85	32-TSOP2-F, 85ns, 3.3V, LL	K6T4008V1C-VF85	32-TSOP2-F, 85ns, 3.3V, LL		
K6T4008V1C-MB70	32-TSOP2-R, 70ns, 3.3V, LL	K6T4008V1C-MF70	32-TSOP2-R, 70ns, 3.3V, LL		
K6T4008V1C-MB85	32-TSOP2-R, 85ns, 3.3V, LL	K6T4008V1C-MF85	32-TSOP2-R, 85ns, 3.3V, LL		
K6T4008V1C-TB70	32-TSOP1-F, 70ns, 3.3V, LL	K6T4008V1C-TF70	32-TSOP1-F, 70ns, 3.3V, LL		
K6T4008V1C-TB85	32-TSOP1-F, 85ns, 3.3V, LL	K6T4008V1C-TF85	32-TSOP1-F, 85ns, 3.3V, LL		
K6T4008V1C-YB70	32-sTSOP1-F, 70ns, 3.3V, LL	K6T4008V1C-YF70	32-sTSOP1-F, 70ns, 3.3V, LL		
K6T4008V1C-YB85	32-sTSOP1-F, 85ns, 3.3V, LL	K6T4008V1C-YF85	32-sTSOP1-F, 85ns, 3.3V, LL		
K6T4008U1C-GB70	32-SOP, 70ns, 3.0V, LL	K6T4008U1C-GF70	32-SOP, 70ns, 3.0V, LL		
K6T4008U1C-GB85	32-SOP, 85ns, 3.0V, LL	K6T4008U1C-GF85	32-SOP, 85ns, 3.0V, LL		
K6T4008U1C-GB10	32-SOP, 100ns, 3.0V, LL	K6T4008U1C-GF10	32-SOP, 100ns, 3.0V, LL		
K6T4008U1C-VB70	32-TSOP2-F, 70ns, 3.0V, LL	K6T4008U1C-VF70	32-TSOP2-F, 70ns, 3.0V, LL		
K6T4008U1C-VB85	32-TSOP2-F, 85ns, 3.0V, LL	K6T4008U1C-VF85	32-TSOP2-F, 85ns, 3.0V, LL		
K6T4008U1C-VB10	32-TSOP2-F, 100ns, 3.0V, LL	K6T4008U1C-VF10	32-TSOP2-F, 100ns, 3.0V, LL		
K6T4008U1C-MB70	32-TSOP2-R, 70ns, 3.0V, LL	K6T4008U1C-MF70	32-TSOP2-R, 70ns, 3.0V, LL		
K6T4008U1C-MB85	32-TSOP2-R, 85ns, 3.0V, LL	K6T4008U1C-MF85	32-TSOP2-R, 85ns, 3.0V, LL		
K6T4008U1C-MB10	32-TSOP2-R, 100ns, 3.0V, LL	K6T4008U1C-MF10	32-TSOP2-R, 100ns, 3.0V, LL		
K6T4008U1C-TB70	32-TSOP1-F, 70ns, 3.0V, LL	K6T4008U1C-TF70	32-TSOP1-F, 70ns, 3.0V, LL		
K6T4008U1C-TB85	32-TSOP1-F, 85ns, 3.0V, LL	K6T4008U1C-TF85	32-TSOP1-F, 85ns, 3.0V, LL		
K6T4008U1C-TB10	32-TSOP1-F, 100ns, 3.0V, LL	K6T4008U1C-TF10	32-TSOP1-F, 100ns, 3.0V, LL		
K6T4008U1C-YB70	32-sTSOP1-F, 70ns, 3.0V, LL	K6T4008U1C-YF70	32-sTSOP1-F, 70ns, 3.0V, LL		
K6T4008U1C-YB85	32-sTSOP1-F, 85ns, 3.0V, LL	K6T4008U1C-YF85	32-sTSOP1-F, 85ns, 3.0V, LL		
K6T4008U1C-YB10	32-sTSOP1-F, 100ns, 3.0V, LL	K6T4008U1C-YF10	32-sTSOP1-F, 100ns, 3.0V, LL		

FUNCTIONAL DESCRIPTION

CS	OE	WE	I/O	Mode	Power
Н	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
L	Н	Н	High-Z	Output Disabled	Active
L	L	Н	Dout	Read	Active
L	X ¹⁾	L	Din	Write	Active

1. X means don't care (Must be in low or high state)

ABSOLUTE MAXIMUM RATINGS¹⁾

Item	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	Vin,Vout	-0.5 to Vcc+0.5	V	-
Voltage on Vcc supply relative to Vss	Vcc	-0.3 to 4.6	V	-
Power Dissipation	PD	1.0	W	-
Storage temperature	Тѕтс	-65 to 150	°C	-
Operating Temperature	Та	0 to 70	°C	K6T4008V1C-L, K6T4008U1C-L
		-40 to 85	°C	K6T4008V1C-P, K6T4008U1C-P

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS¹⁾

Item Symbol		Product	Min	Тур	Max	Unit
Supply voltage	Vcc	K6T4008V1C Family	3.0	3.3	3.6	V
		K6T4008U1C Family	2.7	3.0	3.3	
Ground	Vss	All Family	0	0	0	V
Input high voltage	Vін	K6T4008V1C, K6T4008U1C Family	2.2	-	Vcc+0.3 ²⁾	V
Input low voltage	VIL	K6T4008V1C, K6T4008U1C Family	-0.3 ³⁾	-	0.6	V

Note:

1. Commercial Product : TA=0 to 70°C, otherwise specified

Industrial Product : TA=-40 to 85°C, otherwise specified

2. Overshoot : Vcc+2.0V in case of pulse width ≤ 30ns

3. Undershoot : -2.0V in case of pulse width ≤ 30ns

4. Overshoot and undershoot are sampled, not 100% tested.

CAPACITANCE¹⁾ (f=1MHz, TA=25°C)

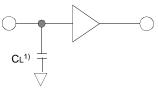
Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	8	pF
Input/Output capacitance	Сю	Vio=0V	-	10	pF

1. Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions	Min	Тур	Max	Unit
Input leakage current	Iц	VIN=Vss to Vcc	-1	-	1	μΑ
Output leakage current	Ilo	CS=VIH or OE=VIH or WE=VIL VIO=Vss to Vcc	-1	-	1	μΑ
Operating power supply current	Icc	IIO=0mA, CS=VIL, VIN=VIL or VIH, Read	-	-	4	mA
Average operating current	ICC1	Cycle time=1µs, 100% duty, lio=0mA CS≤0.2V,Viii≤0.2V or Viii≥Vcc-0.2V	-	-	4	mA
Average operating current	ILI VIN=Vss to Vcc ILO CS=VIH or OE=VIH or WE=VIL VIO=Vss to Vcc Icc IIO=0mA, CS=VIL, VIN=VIL or VIH, Read	-	-	30	mA	
Output low voltage	Vol	IoL=2.1mA	-	-	0.4	V
Output high voltage	Vон	IOH=-1.0mA	2.2	-	-	V
Standby Current(TTL)	lsв	CS=VIH, Other inputs = VIL or VIH	-	-	0.3	mA
Standby Current (CMOS)	ISB1	CS≥Vcc-0.2V, Other inputs=0~Vcc	-	-	15 ¹⁾	μΑ

1. Industrial product = 20µA



K6T4008V1C, K6T4008U1C Family

CMOS SRAM

AC OPERATING CONDITIONS

TEST CONDITIONS(Test Load and Input/Output Reference) Input pulse level: 0.4 to 2.2V Input rising and falling time: 5ns Input and output reference voltage:1.5V Output load(see right): CL=100pF+1TTL CL¹⁾=30pF+1TTL 1. 70ns product

1. Including scope and jig capacitance

AC CHARACTERISTICS (K6T4008V1C Family: Vcc=3.0~3.6V, K6T4008U1C Family: Vcc=2.7~3.3V Commercial product:: Ta=0 to 70°C, Industrial product: Ta=-40 to 85°C)

				Speed Bins					Units
Parameter List Read cycle time		Symbol	70ns		85ns		100ns		
			Min	Max	Min	Max	Min	Max	
	Read cycle time	tRC	70	-	85	-	100	-	ns
	Address access time	taa	-	70	-	85	-	100	ns
	Chip select to output	tco	-	70	-	85	-	100	ns
	Output enable to valid output	tOE	-	35	-	40	-	50	ns
Read	Chip select to low-Z output	tLZ	10	-	10	-	10	-	ns
	Output enable to low-Z output	toLz	5	-	5	-	5	-	ns
	Chip disable to high-Z output	tHZ	0	25	0	25	0	30	ns
	Output disable to high-Z output	tонz	0	25	0	25	0	30	ns
	Output hold from address change	tон	10	-	10	-	15	-	ns
	Write cycle time	twc	70	-	85	-	100	-	ns
	Chip select to end of write	tcw	60	-	70	-	80	-	ns
	Address set-up time	tas	0	-	0	-	0	-	ns
	Address valid to end of write	taw	60	-	70	-	80	-	ns
Write	Write pulse width	tWP	55	-	55	-	70	-	ns
white	Write recovery time	twR	0	-	0	-	0	-	ns
	Write to output high-Z	twнz	0	25	0	25	0	30	ns
	Data to write time overlap	tDW	30	-	35	-	40	-	ns
	Data hold from write time	tDH	0	-	0	-	0	-	ns
	End write to output low-Z	tow	5	-	5	-	5	-	ns

DATA RETENTION CHARACTERISTICS

ltem	Symbol	Test Condition	Min	Тур	Max	Unit
Vcc for data retention	Vdr	CS≥Vcc-0.2V	2.0	-	3.6	V
Data retention current	Idr	Vcc=3.0V, CS≥Vcc-0.2V	-	0.5	15 ¹⁾	μΑ
Data retention set-up time	tSDR	See data retention waveform	0	-	-	ms
Recovery time	trdr		5	-	-	1115

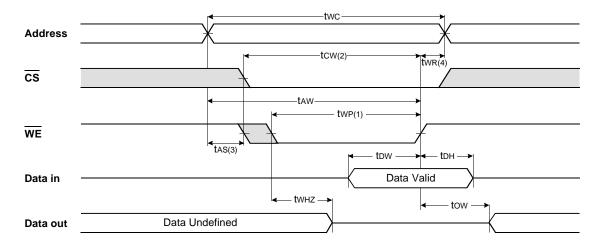
1. Industrial product = 20µA

TIMMING DIAGRAMS

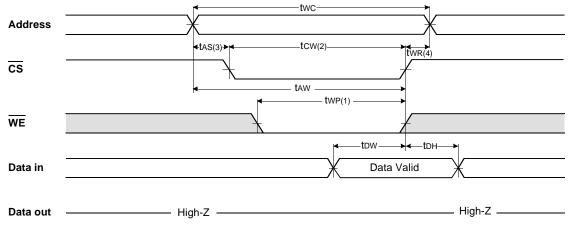
Address Address Data Out Previous Data Valid Data Valid Data Valid

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, CS=OE=VIL, WE=VIH)

TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)


NOTES (READ CYCLE)

1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.


2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE(2) (CS Controlled)

NOTES (WRITE CYCLE)

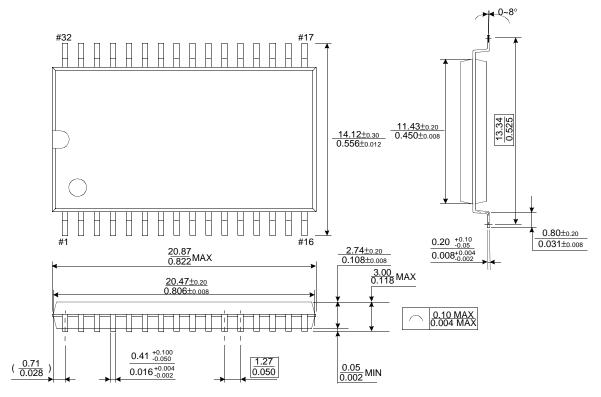

1. A write occurs during the overlap of a low \overline{CS} and a low \overline{WE} . A write begins at the latest transition among \overline{CS} going Low and \overline{WE} going low : A write end at the earliest transition among \overline{CS} going high and \overline{WE} going high, twp is measured from the begining of write to the end of write.

2. tcw is measured from the $\overline{\text{CS}}$ going low to end of write.

3. tAS is measured from the address valid to the beginning of write.

4. twe is measured from the end of write to the address change. twe applied in case a write ends as CS or WE going high.

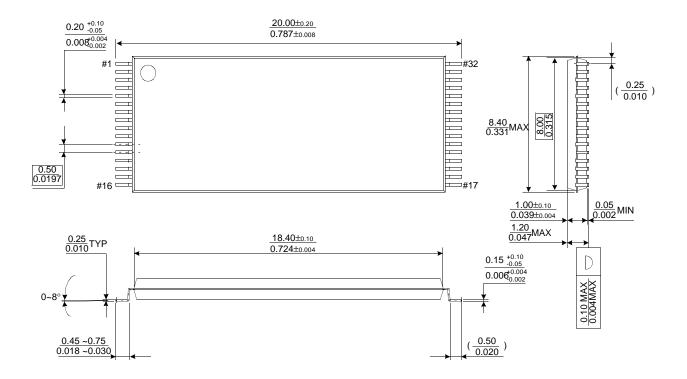
DATA RETENTION WAVE FORM



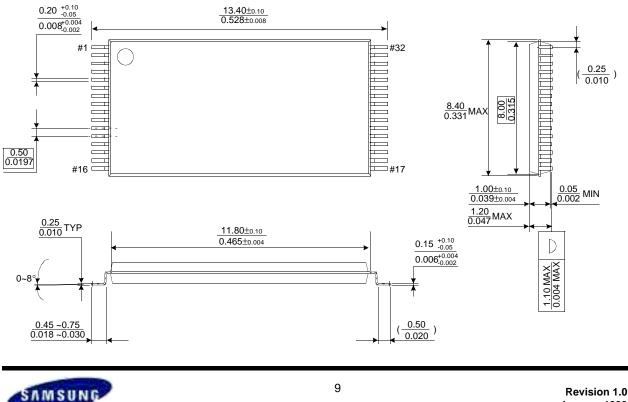
CMOS SRAM

PACKAGE DIMENSIONS

Units: millimeters(inches)


K6T4008V1C, K6T4008U1C Family

CMOS SRAM

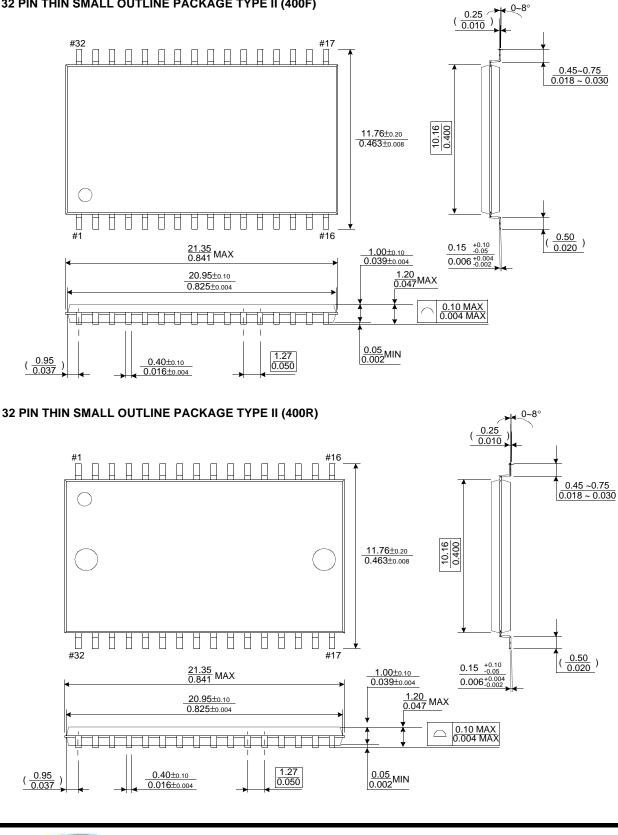

Units: millimeters(inches)

PACKAGE DIMENSIONS

32 PIN THIN SMALL OUTLINE PACKAGE TYPE I (0820F)

32 PIN SMALLER THIN SMALL OUTLINE PACKAGE TYPE I (0813.4F)

ELECTRONICS


K6T4008V1C, K6T4008U1C Family

CMOS SRAM

PACKAGE DIMENSIONS

32 PIN THIN SMALL OUTLINE PACKAGE TYPE II (400F)

Units: millimeters(inches)

