INTEGRATED CIRCUITS

DATA SHEET

TEA1083; TEA1083A Call progress monitor for line powered telephone sets

Product specification
File under Integrated circuits, IC03A

March 1994

Call progress monitor for line powered telephone sets

TEA1083; TEA1083A

FEATURES

- · Internal supply
 - Optimum current split-up
 - Low constant current (adjustable) in transmission IC
 - Nearly all line current available for monitoring
 - Stabilized supply voltage
- · Loudspeaker amplifier with a fixed gain of 35 dB
- · Volume controlled by potentiometer
- Power-down input (TEA1083A only)
- · Loudspeaker enable input.

GENERAL DESCRIPTION

The TEA1083/83A is a bipolar IC which has been designed for use in line powered telephone sets. It is intended to offer a monitoring facility of the line signal via

a loudspeaker during on-hook dialling. The TEA1083/83A is intended for use in conjunction with a transmission circuit of the TEA1060 family. The device uses a part of the available line current via the internal supply circuit. The loudspeaker amplifier, which consists of a preamplifier and a power amplifier, amplifies the received line signals from the transmission circuit when enabled via the LSE input. The loudspeaker amplifier can also be used to amplify dialling tones from the dialler IC. The power amplifier contains a push-pull output stage to drive the loudspeaker in a Single Ended Load (SEL) configuration. The internal voltage stabilizer can be used to supply external devices. By activating the power-down (PD) input of the TEA1083A, the current consumption of the circuit will be reduced, this enables pulse dialling or flash (register

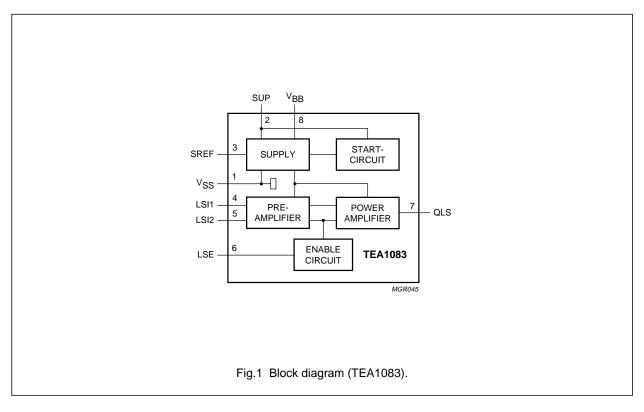
An internal start circuit ensures normal start-up of the transmission IC.

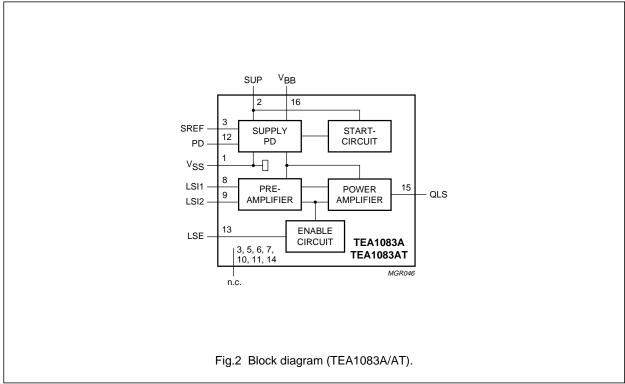
QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{SUP}	input current range		3.0	_	120	mA
V_{BB}	stabilized supply current		_	2.95	_	V
I _{SUP}	current consumption	PD = HIGH; TEA1083A only	_	50	_	μΑ
G _v	voltage gain of loudspeaker amplifier		_	35	_	dB
I _{SUP}	minimum input current	$P_O = 10 \text{ mW (typ) into } 50 \Omega$	_	10	_	mA
T _{amb}	operating ambient temperature range		-25	_	+75	°C

ORDERING INFORMATION

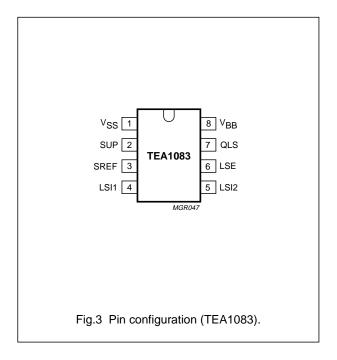
EXTENDED TYPE		P	ACKAGE	
NUMBER	PINS	PIN POSITION	MATERIAL	CODE
TEA1083	8	DIL	PLASTIC	SOT97D ⁽¹⁾
TEA1083A	16	DIL	PLASTIC	SOT38 ⁽²⁾
TEA1083AT	16	SOL	PLASTIC	SOT162AG ⁽³⁾

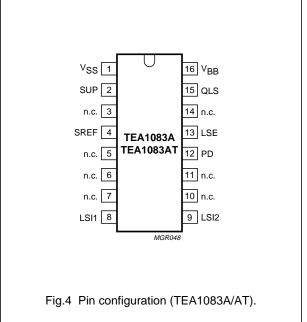

Notes


SOT97-1; 1998 Jun 18.
 SOT38-1; 1998 Jun 18.

3. SOT162-1; 1998 Jun 18.

Call progress monitor for line powered telephone sets


TEA1083; TEA1083A



Call progress monitor for line powered telephone sets

TEA1083; TEA1083A

PINNING

SYMBOL	PIN DIL16	PIN DIL8	DESCRIPTION			
V _{SS}	1	1	negative supply terminal			
SUP	2	2	positive supply terminal			
n.c.	3	-	not connected			
SREF	4	3	supply reference input			
n.c.	5	-	not connected			
n.c.	6	-	not connected			
n.c.	7	-	not connected			
LSI1	8	4	loudspeaker amplifier input 1			
LSI2	9	5	loudspeaker amplifier input 2			
n.c.	10	-	not connected			
n.c.	11	-	not connected			
PD	12	-	power-down input			
LSE	13	6	loudspeaker enable input			
n.c.	14	-	not connected			
QLS	15	7	loudspeaker amplifier output			
V _{BB}	16	8	stabilized supply voltage			

Call progress monitor for line powered telephone sets

TEA1083; TEA1083A

Table 1 Comparison of the TEA108X family.

PRODUCT	CONDITIONS	TEA1083	TEA1083A	TEA1085/85A
Application area	note 1	call progress monitoring		listening-in
PD facility		_	X	Х
MUTE or LSE facility	note 2	X	X	Х
Dynamic limiter		_	_	Х
Howling limiter		_	_	X
V _{BB} setting		_	_	Х
SEL	note 3	X	X	Х
BTL	note 3	_	_	X
Number of pins	note 4	8	16	24

Notes

 A call progress monitor is recommended by the European Telecommunications Standards Institute (ETSI) for telephone sets with automatic on-hook dialling facilities so that audible, or visual, progress of a call attempt can be monitored. In accordance with the ETSI (at a frequency of 440 Hz and a line level of 20 dBm (600 Ω)), a minimum level of 50 dBA shall be guaranteed at a distance of 50 cm from the set. This corresponds to a minimum level of approximately 100 mV (RMS) (P_O ≥ 0.2 mW) across a loudspeaker; Philips type AD2071/Z50.

A listening-in set has to offer the user more facilities e.g. howling limiting to reduce annoying loudspeaker and line signals. Dynamic limiting of the loudspeaker signal, with respect to supply conditions, can also be required. Acoustic output levels for listening-in sets are approximately 70 to 75 dBA. This corresponds to a loudspeaker level of approximately 1 mV (RMS) ($P_O \approx 20$ mW).

- The MUTE function of the TEA1085A has a logic input; the MUTE function of the TEA1085 has a toggle input.
- SEL: loudspeaker connected in a single-ended-load configuration
 BTL: loudspeaker connected in a bridge-tied-load
- Consult the product specification for the package outline/s.

FUNCTIONAL DESCRIPTION

The TEA1083/83A is normally used in conjunction with a transmission circuit of the TEA1060 family. The circuit must be connected between the positive line terminal (pin 2) and pin SLPE of the transmission IC. The transmission characteristics (impedance, gain settings, etc.) are not affected.

An interconnection between the TEA1083/83A and a member of the TEA1060 family is illustrated in Fig.5.

Supplies SUP, SREF, V_{BB} and V_{SS}

In Fig.6 the line current is divided into I_{TR} for the transmission IC and I_{SUP} for the monitoring circuit TEA1083/83A.

ITR is constant:

 $I_{TR} = V_{int} / R20$

$$I_{SUP} = I_{line} - I_{CC} - I_{TR}$$

Where:

- V_{int} is an internal temperature compensated reference voltage of 500 mV (typ) between pins SUP and SREF
- · R20 is a resistor connected between SUP and SREF
- I_{CC} is the internal current consumption of the TEA106X (approximately 1 mA).

A practical value for resistor R20 is 150 Ω ; this produces a current of approximately 3.3 mA (typ) for I_{TR} and I_{SUP} is approximately equal to I_{line} - 4.3 mA.

March 1994 5

configuration

Call progress monitor for line powered telephone sets

TEA1083; TEA1083A

The circuit stabilizes its own supply voltage at V_{BB} . Transistor TR1 provides the supplies for the internal circuits. Transistor TR2 is used to minimize signal distortion on the line by momentarily diverting the input current to V_{SS} whenever the instantaneous value of the voltage at V_{SUP} drops below the supply voltage V_{BB} . V_{BB} is fixed to a typical value of 2.95 V.

The supply at V_{BB} is decoupled with respect to V_{SS} by a 220 μF capacitor (C20).

The DC voltage ($V_{SUP} - V_{SS}$) is determined by the transmission IC and V_{int} ; thus

 $V_{SUP} - V_{SS} = V_{LN-SLPE} + V_{int}$.

The reference voltage of the transmission IC has to be adjusted to a level where $V_{SUP} - V_{BB \, (max)}$ is greater than 400 mV. The minimum voltage space between SUP and V_{BB} (400 mV) is required to maintain a 'high' efficiency of the internal supply for mean speech levels. $V_{BB \, (max)}$ is the specified maximum level.

The internal current consumption of the TEA1083/83A (I_{SUP0}) is typically 2.5 mA (where $V_{SUP}-V_{SS}=3.6$ V). The current I_{SUP0} consists of currents I_{BIAS} (approximately 0.4 mA) for the circuitry connected to SUP and I_{BB0} (approximately 2.1 mA) for the internal circuitry connected to V_{BB} (see Fig.6).

LOUDSPEAKER AMPLIFIER (LSI1/LSI2 and QLS)

The TEA1083/83A has symmetrical inputs at LSI1 and LSI2. The input signal is normally taken from the earpiece output of the transmission circuit (see Fig.5) and/or from the signal output of the DTMF generator via a resistive attenuator.

The attenuation factor must be chosen in accordance with the output levels from the transmission IC and/or DTMF generator and, in accordance with the required output power and permitted signal distortion from the loudspeaker signal.

The output QLS drives the loudspeaker as a single-ended load. The output stage has been optimized for use with a 50 Ω loudspeaker (e.g. Philips type AD2071). The loudspeaker amplifier is enabled when the LSE input goes HIGH. The gain of the amplifier is fixed at 35 dB.

Volume control of the loudspeaker signal can be obtained by using a level control at the input (see Fig.5). The maximum voltage swing at the QLS output is $V_{O(p-p)}=2.5~V$ (typical with 50 Ω load). The input level V_{LSI} is approximately 16 mV(rms) and the supply current $I_{SUP}>11$ mA. In this condition the signal is limited by the available voltage space (V_{BB}). Higher input levels and/or lower supply currents will result in an increase of the harmonic distortion due to signal clipping.

With a limit of 2.5 V (p-p), the maximum output swing is dependent on the supply current and loudspeaker impedance. It can be approximated, for low distortions, by the following equation:

$$V_{O(p-p)} = 2 \times (I_{SUP} - I_{SUPO}) \times \pi \times R_{LS}$$

Where:

- $V_{O(p-p)}$ = the peak-to-peak level of the loudspeaker
- R_{LS} = the loudspeaker impedance
- $I_{SUPO} = 2.5 \text{ mA (typ.)}$

POWER-DOWN INPUT (PD)

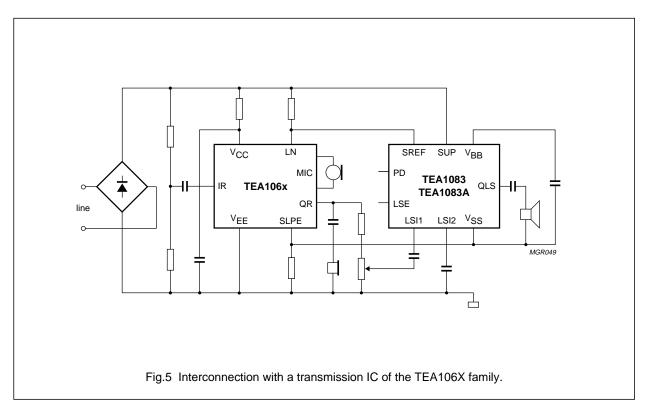
During pulse dialling or register recall (timed loop break) the telephone line is interrupted, thereby breaking the supply current to the transmission IC. The capacitor connected to V_{BB} provides the supply for the TEA1083/83A during the supply breaks.

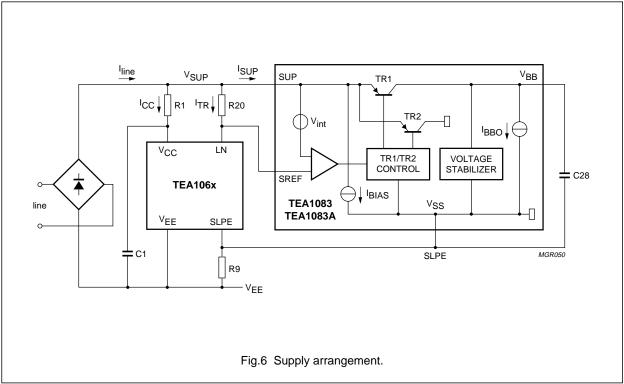
By making the PD input HIGH during the loop break, the requirement on the capacitor is eased and, consequently, the internal current consumption I_{BB0} (see Fig.5) is reduced from 2.1 mA to 400 μA typically. Transistors TR1 and TR2 are inhibited during power-down and the bias current is reduced from approximately 400 μA to approximately 50 μA with $V_{SUP}=3.6$ V in the following equation:

 $I_{SUP(PD)} = I_{BIAS(PD)} = (V_{SUP} - 2V_d)/Ra$

Where
$$3.6 < V_{SUP} < V_{BB} + 3 V$$

 $2\mbox{\ensuremath{V_d}}$ is the voltage drop across 2 internal diodes (approximately 1.3 V)


Ra is an internal resistor (typical 50 k Ω)


LOUDSPEAKER ENABLE INPUT (LSE)

The LSE input has a pull-down structure. It switches the loudspeaker amplifier, in the monitoring condition, by applying a HIGH level at the input. The amplifier is in the standby condition when LSE is LOW (input open-circuit or connected to V_{SS}).

Call progress monitor for line powered telephone sets

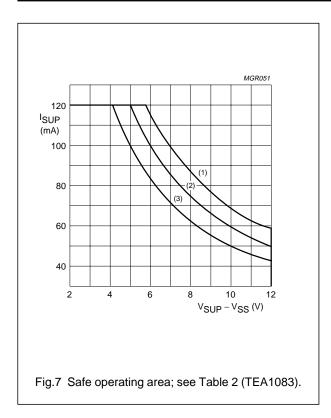
TEA1083; TEA1083A

Call progress monitor for line powered telephone sets

TEA1083; TEA1083A

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC134)


SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{SUP}	Supply voltage				
	continuous		_	12	V
	during switch-on or line interruption		_	13.2	V
V _{SUP}	Repetitive supply voltage from 1 ms to 5 s with 12 Ω current limiting resistor in series with supply		-	28	V
V _{SREF}	Supply reference voltage		V _{SS} - 0.5	V _{SUP} + 0.5	V
V	Voltage on all other pins		V _{SS} - 0.5	V _{BB} + 0.5	V
I _{SUP}	Supply current	see Fig.6	_	120	mA
P _{tot}	Total power dissipation	$T_{amb} = 75 ^{\circ}C; T_{j} = 125 ^{\circ}C$			
	TEA1083		_	500	mW
	TEA1083A		_	769	mW
	TEA1083AT		_	555	mW
T _{stg}	Storage temperature range		-40	+125	°C
T _{amb}	Operating ambient temperature range		-25	+75	°C
Tj	Junction temperature		_	+125	°C

THERMAL RESISTANCE

SYMBOL	PARAMETER	THERMAL RESISTANCE
R _{th j-a}	from junction to ambient in free air (TEA1083)	100 K/W
	from junction to ambient in free air (TEA1083A)	65 K/W
	from junction to ambient in free air (TEA1083AT)	90 K/W

Call progress monitor for line powered telephone sets

TEA1083; TEA1083A

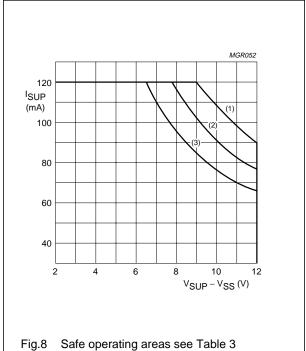


Fig.8 Safe operating areas see Table 3 (TEA1083A).

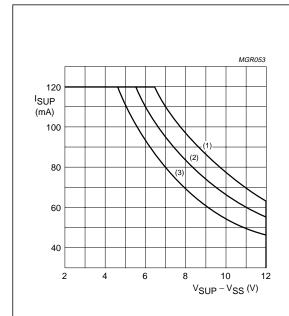


Fig.9 Safe operating area; see Table 4 (TEA1083AT).

Table 2

CURVE	T _{amb}	P _{tot}
1	55 °C	700 mW
2	65 °C	600 mW
3	75 °C	500 mW

Table 3

CURVE	T _{amb}	P _{tot}
1	55 °C	1077 mW
2	65 °C	923 mW
3	75 °C	769 mW

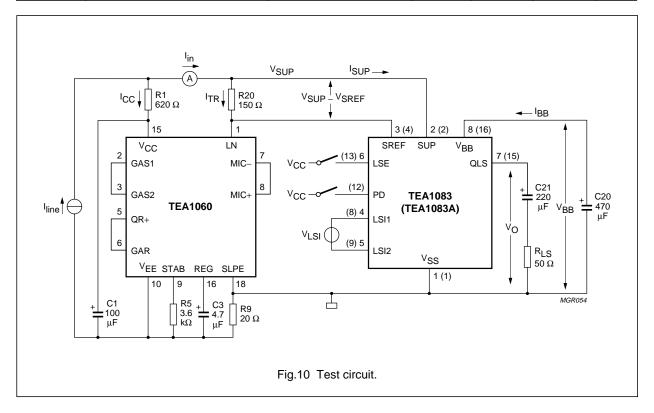
Table 4

CURVE	T _{amb}	P _{tot}
1	55 °C	777 mW
2	65 °C	666 mW
3	75 °C	555 mW

Call progress monitor for line powered telephone sets

TEA1083; TEA1083A

CHARACTERISTICS


 $V_{SUP} = 3.6 \text{ V}; V_{SS} = 0 \text{ V}; I_{SUP} = 15 \text{ mA}; V_{SUP} = 0 \text{ V (RMS)}; f = 800 \text{ Hz}; T_{amb} = 25 ^{\circ}\text{C}; PD = LOW; LSE = HIGH; loudspeaker amplifier load = 50 Ω; all measurements taken in test circuit Fig.10; unless otherwise specified.$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply			•	•	•	
V _{SUP}	Minimum DC input voltage		_	V _{BB} + 0.6	_	V
V _{SUP-SREF}	Internal reference voltage		400	500	600	mV
V _{BB}	Stabilized supply voltage	I _{SUP} = 15 mA	2.75	2.95	3.15	V
ΔV_{BB}	Variation of supply voltage	from I _{SUP} = 15 to 120 mA	-	15	-	mV
$\Delta V_{BB}/\Delta T$	Variation of supply voltage with temperature, referred to 25 °C	$T_{amb} = -25 \text{ to } +75 ^{\circ}\text{C};$ $I_{sup} = 15 \text{ mA}$	-	±0.2	-	mV/K
I _{SUP}	Minimum operating current		_	2.5	4.0	mA
THD	Distortion of AC signal between SUP and V _{EE}	V _{SUP(RMS)} = 1 V	-	0.3	-	%
V _{no(RMS)}	Noise between SUP and V _{EE} (RMS value)	psophometrically weighted (P53 curve)	-	-71	-	dBmp
	Current consumption in power-down condition	PD = HIGH				
I _{SUP}	V _{SUP} = 3.6 V		_	50	75	μΑ
I_{BB}	V _{BB} = 2.95 V		_	400	550	μΑ
Loudspeak	cer amplifier inputs LSI1 and LSI2		•		-	
Z _i	input impedance (LSI1 and LSI2)	single ended	7.5	9.5	11.5	kΩ
		differential (LSI1 to LSI2)	15	19	23	kΩ
G _v	Voltage gain from LSI1/2 to QLS	I _{SUP} = 15 mA; V _i = 2 mV (RMS)	34	35	36	dB
ΔG_{v}	Total gain variation with input signal from 2 mV(RMS) to 10 mV(RMS)		-	0.2	_	dB
ΔG/ΔT	Total gain variation with temperature referred to 25 °C	$T_{amb} = -25 \text{ to } +75 ^{\circ}\text{C}$	_	±0.4	_	dB
Output cap	pabilities			•		
$V_{O(p-p)}$	Maximum output voltage (peak-to-peak value)	THD = 3%; 50 Ω load	2.0	2.5	-	V
V _{O(p-p)}	Output voltage (peak-to-peak value)	$V_i = 10 \text{ mV(RMS)};$ $I_{SUP} = 15 \text{ mA};$ $V_{SUP} - V_{EE} = 1 \text{ V (RMS)}$	_	1.6	_	V
V _{no(RMS)}	Noise output voltage (RMS value)	1 kΩ between inputs LSI1 and LSI2; psophometrically weighted (P53 curve)	_	250	_	μV
	n input (PD) (TEA1083A only)			_		
V_{IL}	LOW level input voltage		0	_	0.3	V
V_{IH}	HIGH level input voltage		1.5	_	V_{BB}	V
I _{PD}	Input current	PD = HIGH	_	2.3	2.8	μΑ

Call progress monitor for line powered telephone sets

TEA1083; TEA1083A

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
LSE input						
V _{IL}	LOW level input voltage		0	_	0.3	V
V _{IH}	HIGH level input voltage		1.5	_	V _{BB}	V
I	Input current	LSE = HIGH	_	5	10	μΑ
ΔG	Reduction of gain from LSI1/LSI2 to QLS	LSE = LOW	60	80	_	dB

Notes to figure 10

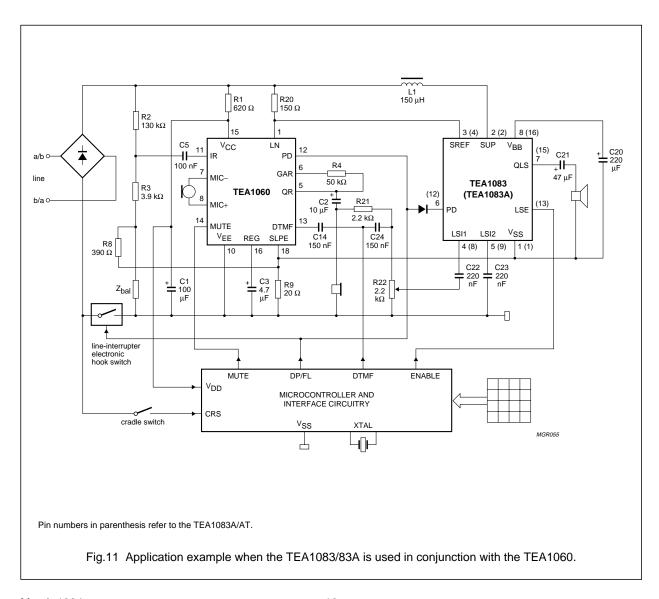
1.
$$I_{SUP} = I_{IN} - I_{TR}$$

$$2. \quad G_{_{\boldsymbol{V}}} = 20 \text{ log } \left| \frac{V_{_{\boldsymbol{O}}}}{V_{_{LSI}}} \right|$$

$$3. \quad I_{TR} = \frac{V_{SUP-SREF}}{R20}$$

- 4. The pin numbers in parenthesis refer to the TEA1083A/AT
- 5. LSE has to be HIGH to measure the voltage gain
- 6. PD has to be HIGH to measure in PD conditions
- 7. The pins not shown in the TEA1060 are left open-circuit
- 8. An impedance in series with pin SUP (e.g. an ammeter) should be avoided as it interferes with the values of I_{TR} and I_{SUP} .

Call progress monitor for line powered telephone sets

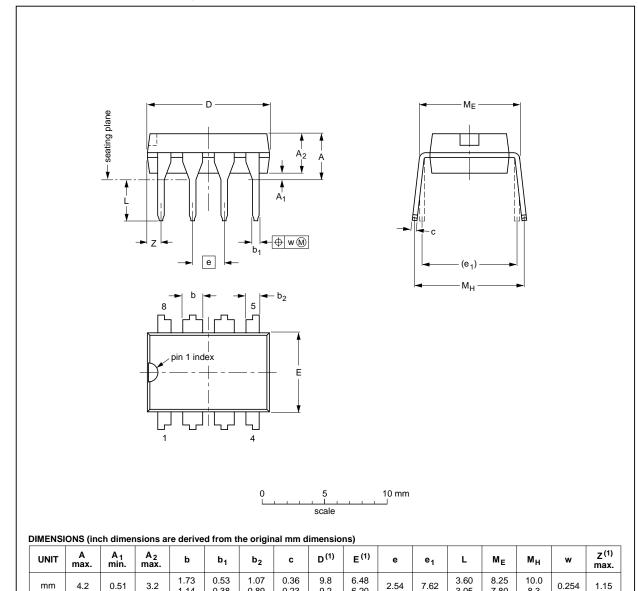

TEA1083; TEA1083A

APPLICATION INFORMATION

An application of the TEA1083/83A, in conjunction with a member of the TEA1060 family, is illustrated in figure 11. The TEA1083/83A is used for call progress monitoring during on-hook dialling. The dialling facilities are performed by a microcontroller (e.g. PCD3344, PCD3349).

Only the most important components have been shown. For detailed information refer to a data sheet of the TEA1060 family.

The electronic hook switch can be replaced by a mechanical system (hook switch) with a hold/release function which is intended for on-hook dialling.


Call progress monitor for line powered telephone sets

TEA1083; TEA1083A

PACKAGE OUTLINES

DIP8: plastic dual in-line package; 8 leads (300 mil)

SOT97-1

Note

inches

0.17

0.020

0.13

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

1.14 0.068

0.045

0.38

0.021

0.015

0.89

0.042

0.035

0.23

0.014

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT97-1	050G01	MO-001AN			92-11-17 95-02-04	

9.2

0.39

6.20

0.26

0.10

0.30

3.05

0.14

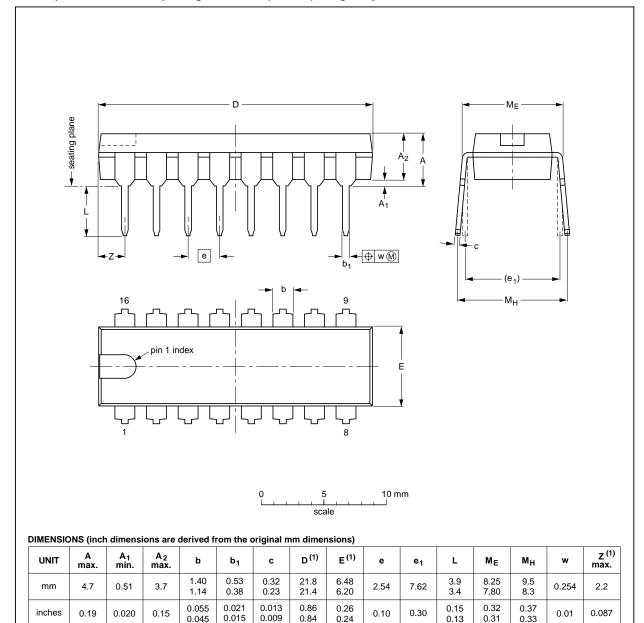
7.80

8.3

0.39

0.045

0.01


March 1994 13

Call progress monitor for line powered telephone sets

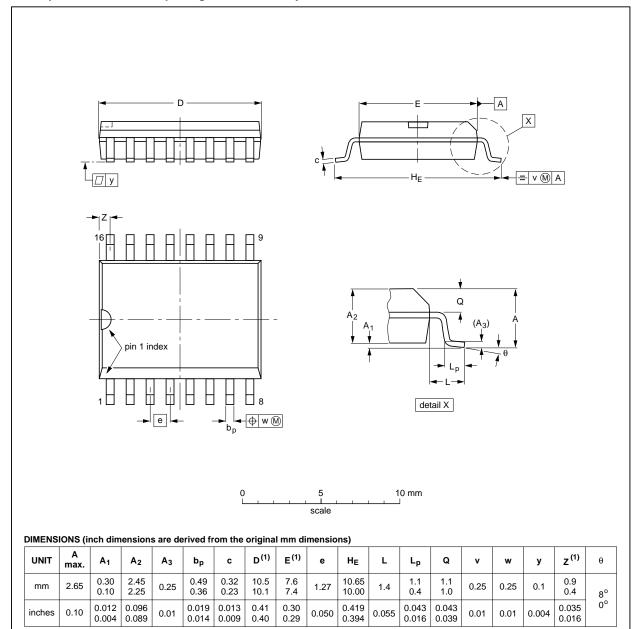
TEA1083; TEA1083A

DIP16: plastic dual in-line package; 16 leads (300 mil); long body

SOT38-1

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE	REFERENCES				EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	1550E DATE
SOT38-1	050G09	MO-001AE				92-10-02 95-01-19

Call progress monitor for line powered telephone sets

TEA1083; TEA1083A

SO16: plastic small outline package; 16 leads; body width 7.5 mm

SOT162-1

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE	REFERENCES				EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT162-1	075E03	MS-013AA				-95-01-24 97-05-22

Call progress monitor for line powered telephone sets

TEA1083; TEA1083A

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (order code 9398 652 90011).

DIP

SOLDERING BY DIPPING OR BY WAVE

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg\ max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

REPAIRING SOLDERED JOINTS

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 $^{\circ}$ C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 $^{\circ}$ C, contact may be up to 5 seconds.

so

REFLOW SOLDERING

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 $^{\circ}$ C.

WAVE SOLDERING

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

REPAIRING SOLDERED JOINTS

Fix the component by first soldering two diagonally-opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

Call progress monitor for line powered telephone sets

TEA1083; TEA1083A

DEFINITIONS

Data sheet status			
Objective specification	This data sheet contains target or goal specifications for product development.		
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published late		
Product specification	This data sheet contains final product specifications.		
Limitim museluses			

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Call progress monitor for line powered telephone sets

TEA1083; TEA1083A

NOTES

Call progress monitor for line powered telephone sets

TEA1083; TEA1083A

NOTES

Philips Semiconductors – a worldwide company

Argentina: see South America

Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,

Tel. +61 2 9805 4455, Fax. +61 2 9805 4466

Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,

Fax. +43 160 101 1210

Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773

Belgium: see The Netherlands **Brazil:** see South America

Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,

51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102

Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,

Tel. +1 800 234 7381

China/Hong Kong: 501 Hong Kong Industrial Technology Centre,

72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700

Colombia: see South America Czech Republic: see Austria

Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,

Tel. +45 32 88 2636, Fax. +45 31 57 0044 **Finland:** Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580920

France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,

Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427

Germany: Hammerbrookstraße 69, D-20097 HAMBURG,

Tel. +49 40 23 53 60, Fax. +49 40 23 536 300

Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,

Tel. +30 1 4894 339/239, Fax. +30 1 4814 240

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D. Dr. Annie Besant Road. Worli, MUMBAI 400 025.

Tel. +91 22 493 8541. Fax. +91 22 493 0966

Indonesia: PT Philips Development Corporation, Semiconductors Division,

Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080

Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200

Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007

Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557

Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 **Korea:** Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,

Tel. +82 2 709 1412, Fax. +82 2 709 1415

Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,

Tel. +60 3 750 5214, Fax. +60 3 757 4880

Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,

Tel. +9-5 800 234 7381

Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,

Tel. +31 40 27 82785, Fax. +31 40 27 88399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811

Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341

Pakistan: see Singapore

Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474

Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327

Portugal: see Spain Romania: see Italy

Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,

Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,

Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria Slovenia: see Italy

South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,

2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,

Tel. +27 11 470 5911, Fax. +27 11 470 5494 **South America:** Al. Vicente Pinzon, 173, 6th floor,

04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382

Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107

Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,

Tel. +46 8 5985 2000, Fax. +46 8 5985 2745

Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263

Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,

209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,

Tel. +66 2 745 4090, Fax. +66 2 398 0793

Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,

Tel. +90 212 279 2770, Fax. +90 212 282 6707

Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,

252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 **United Kingdom:** Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421

United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,

Tel. +1 800 234 7381 **Uruguay:** see South America

Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,

Tel. +381 11 625 344, Fax.+381 11 635 777

For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 Internet: http://www.semiconductors.philips.com

© Philips Electronics N.V. 1998

SCA60

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

415102/00/02/pp20

Date of release: March 1994

Document order number: 9397 750 nnnnn

Let's make things better.

Philips Semiconductors

