Dual Modulus Prescaler

These devices are two-modulus prescalers which will divide by 5 and 6,8 and 9 , and 10 and 11 , respectively. A MECL-to-MTTL translator is provided to interface directly with the MC12014 Counter Control Logic. In addition, there is a buffered clock input and MECL bias voltage source.

- MC12009 $480 \mathrm{MHz}(\div 5 / 6)$, MC12011 $550 \mathrm{MHz}(\div 8 / 9)$, MC12013
$550 \mathrm{MHz}(\div 10 / 11)$
- MECL to MTTL Translator on Chip
- MECL and MTTL Enable Inputs
- 5.0 or -5.2 V Operation*
- Buffered Clock Input - Series Input RC Typ, 20 Ohms and 4 pF
- VBB Reference Voltage
- 310 Milliwatts (Typ)
* When using a 5.0 V supply, apply 5.0 V to $\operatorname{Pin} 1\left(\mathrm{~V}_{\mathrm{CCO}}\right)$, Pin 6 (MTTL $V_{C C}$), Pin $16\left(\mathrm{~V}_{\mathrm{CC}}\right)$, and ground Pin $8\left(\mathrm{~V}_{\mathrm{EE}}\right)$. When using -5.2 V supply, ground Pin $1\left(\mathrm{~V}_{\mathrm{CCO}}\right)$, Pin 6 (MTTL V_{CC}), and Pin $16\left(\mathrm{~V}_{\mathrm{CC}}\right)$ and apply -5.2 V to Pin $8\left(\mathrm{~V}_{\mathrm{EE}}\right)$. If the translator is not required, Pin 6 may be left open to conserve dc power drain.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
(Ratings above which device life may be impaired)			
Power Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	V_{EE}	-8.0	Vdc
Input Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	$\mathrm{V}_{\text {in }}$	0 to V_{EE}	Vdc
Output Source Current Continuous Surge	Io	$\begin{aligned} & <50 \\ & <100 \end{aligned}$	mAdc
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +175	${ }^{\circ} \mathrm{C}$

(Recommended Maximum Ratings above which performance may be degraded)

Operating Temperature Range MC12009, MC12011, MC12013	T_{A}	-30 to +85	${ }^{\circ} \mathrm{C}$
DC Fan-Out (Note 1) (Gates and Flip-Flops)	n	70	-

NOTES: 1. AC fan-out is limited by desired system performance. 2. ESD data available upon request.

MECL PLL COMPONENTS

 DUAL MODULUS PRESCALER
SEMICONDUCTOR

 TECHNICAL DATA

PIN CONNECTIONS

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12009P		
MC12011P	$T_{A}=-35^{\circ}$ to $+85^{\circ} \mathrm{C}$	Plastic
MC12013P		

Figure 1. Logic Diagrams

MC12011

MC12013

Figure 2. Typical Frequency Synthesizer Application

MC12009 MC12011 MC12013

ELECTRICAL CHARACTERISTICS (Supply Voltage $=-5.2 \mathrm{~V}$, unless otherwise noted.)

Characteristic	Symbol	Pin Under Test	Test Limits						Unit
			$-30^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+85^{\circ} \mathrm{C}$		
			Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	ICC1	8	-88		-80		-80		mAdc
	ICC2	6		5.2		5.2		5.2	mAdc
Input Current	linH1	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$		$\begin{aligned} & 375 \\ & 375 \\ & 375 \\ & 375 \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	$\mu \mathrm{Adc}$
	$\mathrm{linH2}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.4 \end{aligned}$	mAdc
	$\mathrm{l}_{\text {inH3 }}$	5	0.7	3.0	1.0	3.0	1.0	3.6	
	$\mathrm{linH}^{\text {in }}$	$\begin{gathered} 9 \\ 10 \end{gathered}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\mu \mathrm{Adc}$
Leakage Current	linL1	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & -10 \\ & -10 \\ & -10 \\ & -10 \end{aligned}$		$\begin{aligned} & -10 \\ & -10 \\ & -10 \\ & -10 \end{aligned}$		$\begin{aligned} & -10 \\ & -10 \\ & -10 \\ & -10 \end{aligned}$		$\mu \mathrm{Adc}$
	$\mathrm{l}_{\text {inL2 }}$	9 10	$\begin{array}{r} -1.6 \\ -1.6 \end{array}$		$\begin{array}{r} -1.6 \\ -1.6 \end{array}$		$\begin{array}{r} -1.6 \\ -1.6 \end{array}$		mAdc
Reference Voltage	$V_{B B}$	14			-1.360	-1.160			Vdc
Logic '1' Output Voltage	$\begin{gathered} \mathrm{V}_{\mathrm{OH} 1} \\ (\text { Note 1) } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline-1.100 \\ & -1.100 \end{aligned}$	$\begin{aligned} & -0.890 \\ & -0.890 \end{aligned}$	$\begin{aligned} & \hline-1.000 \\ & -1.000 \end{aligned}$	$\begin{aligned} & -0.810 \\ & -0.810 \end{aligned}$	$\begin{aligned} & -0.930 \\ & -0.930 \end{aligned}$	$\begin{aligned} & -0.700 \\ & -0.700 \end{aligned}$	Vdc
	$\mathrm{V}_{\mathrm{OH} 2}$	7	-2.8		-2.6		-2.4		
Logic '0' Output Voltage	$\mathrm{V}_{\mathrm{OL} 1}$ (Note 1)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & -1.990 \\ & -1.990 \end{aligned}$	$\begin{aligned} & -1.675 \\ & -1.675 \end{aligned}$	$\begin{aligned} & -1.950 \\ & -1.950 \end{aligned}$	$\begin{aligned} & -1.650 \\ & -1.650 \end{aligned}$	$\begin{aligned} & -1.925 \\ & -1.925 \end{aligned}$	$\begin{aligned} & -1.615 \\ & -1.615 \end{aligned}$	Vdc
	VOL2	7		-4.26		-4.40		-4.48	
Logic '1' Threshold Voltage	VOHA (Note 2)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & -1.120 \\ & -1.120 \end{aligned}$		$\begin{aligned} & -1.020 \\ & -1.020 \end{aligned}$		$\begin{aligned} & -0.950 \\ & -0.950 \end{aligned}$		Vdc
Logic '0' Threshold Voltage	VOLA (Note 3)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & -1.655 \\ & -1.655 \end{aligned}$		$\begin{aligned} & -1.630 \\ & -1.630 \end{aligned}$		$\begin{aligned} & -1.595 \\ & -1.595 \end{aligned}$	Vdc
Short Circuit Current	IOS	7	-65	-20	-65	-20	-65	-20	mAdc
1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.									$\mathrm{V}_{\mathrm{IH} \text { max }}$ $\mathrm{V}_{\text {ILImin }}$

3. In addition to meeting the output levels specified, the device must divide by 6,9 or 11 during this test. The clock input is the waveform shown.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 V . Test procedures are shown for only one gate. The other gates are tested in the same manner.

ELECTRICAL CHARACTERISTICS (Supply Voltage $=-5.2 \mathrm{~V}$, unless otherwise noted.) (continued)

				TEST	LTAGE/C	RRENT VA			
					Vol				
	Test Tem	erature	$\mathrm{V}_{\text {IHmax }}$	$\mathrm{V}_{\text {ILImin }}$	$\mathrm{V}_{\text {IHAmin }}$	VILAmax	$\mathrm{V}_{\mathbf{I H}}$	VILH	
		$-30^{\circ} \mathrm{C}$	-0.890	-1.990	-1.205	-1.500	-2.8	-4.7	
		$+25^{\circ} \mathrm{C}$	-0.810	-1.950	-1.105	-1.475	-2.8	-4.7	
		$+85^{\circ} \mathrm{C}$	-0.700	-1.925	-1.035	-1.440	-2.8	-4.7	
		Pin		VOLTAG	APPLIED	O PINS LIS	D BE		
Characteristic	Symbol	Test	$\mathrm{V}_{\text {IHmax }}$	VILmin	$\mathrm{V}_{\text {IHAmin }}$	VILAmax	$\mathrm{V}_{\mathbf{I H}}$	$\mathrm{V}_{\text {IL }}$	Gnd
Power Supply Drain Current	ICC1	8							1,16
	ICC2	6	4	5					6
Input Current	$\mathrm{linH}^{\text {a }}$	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$						$\begin{aligned} & 1,16 \\ & 1,16 \\ & 1,16 \\ & 1,16 \end{aligned}$
	linH2	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$					6
	$\mathrm{linH3}^{\text {a }}$	5	4	5					6
	linH_{4}	$\begin{gathered} 9 \\ 10 \end{gathered}$					$\begin{gathered} 9 \\ 10 \end{gathered}$		$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Leakage Current	linL1	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$							$\begin{aligned} & 1,16 \\ & 1,16 \\ & 1,16 \\ & 1,16 \end{aligned}$
	linL2	$\begin{gathered} 9 \\ 10 \end{gathered}$						$\begin{gathered} 9 \\ 10 \end{gathered}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Reference Voltage	V_{BB}	14							1,16
Logic '1' Output Voltage	$\begin{gathered} \mathrm{VOH}_{\mathrm{OH}} \\ \text { (Note 1.) } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & 11,12,13 \\ & 11,12,13 \end{aligned}$				$\begin{aligned} & 9,10 \\ & 9,10 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
	$\mathrm{V}_{\mathrm{OH} 2}$	7	5	4					6
Logic '0' Output Voltage	$\begin{gathered} \mathrm{V}_{\mathrm{OL1}} \\ \text { (Note 1.) } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & 11,12,13 \\ & 11,12,13 \end{aligned}$				$\begin{aligned} & \hline 9,10 \\ & 9,10 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
	$\mathrm{V}_{\text {OL2 }}$	7	4	5					6
Logic '1' Threshold Voltage	$\mathrm{V}_{\mathrm{OHA}}$ (Note 2.)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{aligned} & 11,12,13 \\ & 11,12,13 \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Logic '0' Threshold Voltage	$\begin{gathered} \text { VOLA } \\ \text { (Note 3.) } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$				$\begin{aligned} & 11,12,13 \\ & 11,12,13 \end{aligned}$			$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Short Circuit Current	Ios	7	5	4				7	6

1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.
2. In addition to meeting the output levels specified, the device must divide by 5,8 or 10 during this test. The clock input is the waveform shown.
3. In addition to meeting the output levels specified, the device must divide by 6,9 or 11 during this test. The clock input is the waveform shown.

ELECTRICAL CHARACTERISTICS (Supply Voltage $=-5.2 \mathrm{~V}$, unless otherwise noted.) (continued)

				TES	TAGE/	RENT			
				Volts			mA		
	Test Tem	rature	$\mathrm{V}_{\mathrm{IHT}}$	VILT	VEE	IL	lOL	IOH	
		$-30^{\circ} \mathrm{C}$	-3.2	-4.4	-5.2	-0.25	16	-0.40	
		$+25^{\circ} \mathrm{C}$	-3.2	-4.4	-5.2	-0.25	16	-0.40	
		$+85^{\circ} \mathrm{C}$	-3.2	-4.4	-5.2	-0.25	16	-0.40	
		Pin		VOLTA	PPLIE	PINS	D BE		
Characteristic	Symbol	Test	$\mathrm{V}_{\mathrm{IHT}}$	VILT	VEE	IL	lOL	IOH	Gnd
Power Supply Drain Current	ICC1	8			8				1,16
	ICC2	6			8				6
Input Current	$\mathrm{linH}^{\text {a }}$	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 9,10 \\ & 9,10 \\ & 9,10 \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \\ & 1,16 \\ & 1,16 \end{aligned}$
	linH2	$\begin{aligned} & 4 \\ & 5 \end{aligned}$			$\begin{aligned} & 8 \\ & 8 \end{aligned}$				6
	$\mathrm{linH3}^{\text {a }}$	5			8				6
	linH 4	$\begin{gathered} 9 \\ 10 \end{gathered}$			8				$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Leakage Current	linL1	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$			$\begin{aligned} & 8,15 \\ & 8,11 \\ & 8,12 \\ & 8,13 \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \\ & 1,16 \\ & 1,16 \end{aligned}$
	linL2	$\begin{gathered} 9 \\ 10 \end{gathered}$			$\begin{aligned} & 8 \\ & 8 \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Reference Voltage	V_{BB}	14			8	14			1,16
Logic '1' Output Voltage	$\begin{gathered} \mathrm{VOH}_{\mathrm{OH}} \\ \text { (Note 1.) } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{aligned} & 8 \\ & 8 \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
	$\mathrm{V}_{\mathrm{OH} 2}$	7			8			7	6
Logic '0' Output Voltage	$\begin{gathered} \mathrm{V}_{\mathrm{OL1}} \\ \text { (Note 1.) } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{aligned} & 8 \\ & 8 \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
	$\mathrm{V}_{\text {OL2 }}$	7			8		7		6
Logic '1' Threshold Voltage	$\mathrm{V}_{\mathrm{OHA}}$ (Note 2.)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 9,10 \\ & 9,10 \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Logic '0' Threshold Voltage	$\begin{gathered} \text { VOLA } \\ \text { (Note 3.) } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & 9,10 \\ & 9,10 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Short Circuit Current	Ios	7			8				6

1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.
2. In addition to meeting the output levels specified, the device must divide by 5,8 or 10 during this test. The clock input is the waveform shown.
3. In addition to meeting the output levels specified, the device must divide by 6,9 or 11 during this test. The clock input is the waveform shown.

MC12009 MC12011 MC12013

ELECTRICAL CHARACTERISTICS (Supply Voltage $=5.0 \mathrm{~V}$, unless otherwise noted.)

Characteristic	Symbol	Pin Under Test	Test Limits						Unit
			$-30^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+85^{\circ} \mathrm{C}$		
			Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	ICC1	8	-88		-80		-80		mAdc
	ICC2	6		5.2		5.2		5.2	mAdc
Input Current	$\mathrm{linH1}$	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$		$\begin{aligned} & 375 \\ & 375 \\ & 375 \\ & 375 \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	$\mu \mathrm{Adc}$
	$\mathrm{linH}^{\text {a }}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.4 \end{aligned}$	mAdc
	linH3	5	0.7	3.0	1.0	3.0	1.0	3.6	
	$\mathrm{linH}^{\text {i }}$	$\begin{gathered} 9 \\ 10 \end{gathered}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\mu \mathrm{Adc}$
Leakage Current	$l_{\text {inL1 }}$	$\begin{aligned} & \hline 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & -10 \\ & -10 \\ & -10 \\ & -10 \end{aligned}$		$\begin{aligned} & -10 \\ & -10 \\ & -10 \\ & -10 \end{aligned}$		$\begin{aligned} & -10 \\ & -10 \\ & -10 \\ & -10 \end{aligned}$		$\mu \mathrm{Adc}$
	linL2	$\begin{gathered} 9 \\ 10 \end{gathered}$	$\begin{aligned} & \hline-1.6 \\ & -1.6 \end{aligned}$		$\begin{aligned} & \hline-1.6 \\ & -1.6 \end{aligned}$		$\begin{aligned} & \hline-1.6 \\ & -1.6 \end{aligned}$		mAdc
Reference Voltage	V_{BB}	14			3.67	3.87			Vdc
Logic '1' Output Voltage	$\begin{gathered} \mathrm{V}_{\mathrm{OH} 1} \\ \text { (Note 4.) } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 3.900 \\ & 3.900 \end{aligned}$	$\begin{aligned} & 4.110 \\ & 4.110 \end{aligned}$	$\begin{aligned} & 4.000 \\ & 4.000 \end{aligned}$	$\begin{aligned} & 4.190 \\ & 4.190 \end{aligned}$	$\begin{aligned} & 4.070 \\ & 4.070 \end{aligned}$	$\begin{aligned} & 4.300 \\ & 4.300 \end{aligned}$	Vdc
	$\mathrm{V}_{\mathrm{OH} 2}$	7	2.4		2.6		2.8		
Logic '0' Output Voltage	VOL1 (Note 4.)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 3.070 \\ & 3.070 \end{aligned}$	$\begin{aligned} & 3.385 \\ & 3.385 \end{aligned}$	$\begin{aligned} & 3.110 \\ & 3.110 \end{aligned}$	$\begin{aligned} & 3.410 \\ & 3.410 \end{aligned}$	$\begin{aligned} & 3.135 \\ & 3.135 \end{aligned}$	$\begin{aligned} & 3.445 \\ & 3.445 \end{aligned}$	Vdc
	$\mathrm{V}_{\text {OL2 }}$	7		0.94		0.80		0.72	
Logic '1' Threshold Voltage	$\begin{gathered} \mathrm{V}_{\mathrm{OHA}} \\ \text { (Note 5.) } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 3.880 \\ & 3.880 \end{aligned}$		$\begin{aligned} & 3.980 \\ & 3.980 \end{aligned}$		$\begin{aligned} & 4.050 \\ & 4.050 \end{aligned}$		Vdc
Logic '0' Threshold Voltage	$\begin{aligned} & \text { VOLA } \\ & \text { (Note 6.) } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & 3.405 \\ & 3.405 \end{aligned}$		$\begin{aligned} & 3.430 \\ & 3.430 \end{aligned}$		$\begin{aligned} & 3.465 \\ & 3.465 \end{aligned}$	Vdc
Short Circuit Current	IOS	7	-65	-20	-65	-20	-65	-20	mAdc
4. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.									$\mathrm{V}_{\mathrm{IH} \text { max }}$ VILmin

6. In addition to meeting the output levels specified, the device must divide by 6,9 or 11 during this test. The clock input is the waveform shown.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 V . Test procedures are shown for only one gate. The other gates are tested in the same manner.

ELECTRICAL CHARACTERISTICS (Supply Voltage $=5.0 \mathrm{~V}$, unless otherwise noted.) (continued)

@ Test Temperature			TEST VOLTAGE/CURRENT VALUES						$\begin{aligned} & \left(V_{E E}\right) \\ & \text { Gnd } \end{aligned}$
			Volts						
			$\mathrm{V}_{\text {IHmax }}$	$\mathrm{V}_{\text {IL min }}$	$\mathrm{V}_{\text {IHAmin }}$	VILAmax	V_{IH}	$\mathrm{V}_{\text {ILH }}$	
	$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$		+4.110	+3.070	+3.795	+3.500	+2.4	+0.5	
			+4.190	+3.110	+3.895	+3.525	+2.4	+0.5	
			+4.300	+3.135	+3.965	+3.560	+2.4	+0.5	
Characteristic	Symbol	Pin Under Test	TEST VOLTAGE APPLIED TO PINS LISTED BELOW						
			$\mathrm{V}_{\text {IHmax }}$	VILmin	$\mathrm{V}_{\text {IHAmin }}$	VILAmax	$\mathrm{V}_{\mathbf{I H}}$	VIL	
Power Supply Drain Current	ICC1	8							8
	ICC2	6	4	5					8
Input Current	linH_{1}	$\begin{aligned} & \hline 15 \\ & 11 \\ & 12 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 15 \\ & 11 \\ & 12 \\ & 13 \\ & \hline \end{aligned}$						$\begin{aligned} & \hline 8 \\ & 8 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$
	linH	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 4 \\ & 4 \end{aligned}$					$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$
	$\mathrm{linH}^{\text {in }}$	5	4	5					8
	$\mathrm{linH}^{\text {in }}$	$\begin{gathered} 9 \\ 10 \end{gathered}$					$\begin{gathered} 9 \\ 10 \end{gathered}$		$\begin{aligned} & 8 \\ & 8 \end{aligned}$
Leakage Current	l inL1	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \\ & \hline \end{aligned}$							$\begin{array}{\|l\|} \hline 8,15 \\ 8,11 \\ 8,12 \\ 8,13 \\ \hline \end{array}$
	$\mathrm{l}_{\text {inL2 }}$	$\begin{gathered} \hline 9 \\ 10 \end{gathered}$						$\begin{gathered} 9 \\ 10 \end{gathered}$	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$
Reference Voltage	V_{BB}	14							8
Logic '1' Output Voltage	$\mathrm{V}_{\mathrm{OH} 1}$ (Note 4.)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & 11,12,13 \\ & 11,12,13 \end{aligned}$				$\begin{aligned} & 9,10 \\ & 9,10 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$
	$\mathrm{V}_{\mathrm{OH} 2}$	7	5	4					8
Logic '0' Output Voltage	$\begin{gathered} \mathrm{V}_{\mathrm{OL} 1} \\ \text { (Note 4.) } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & 11,12,13 \\ & 11,12,13 \end{aligned}$				$\begin{aligned} & 9,10 \\ & 9,10 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$
	$\mathrm{V}_{\text {OL2 }}$	7	4	5					8
Logic '1' Threshold Voltage	$\begin{gathered} \text { VOHA } \\ \text { (Note 5.) } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{aligned} & 11,12,13 \\ & 11,12,13 \end{aligned}$				$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$
Logic '0' Threshold Voltage	VOLA (Note 6.)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$				$\begin{aligned} & 11,12,13 \\ & 11,12,13 \end{aligned}$			$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$
Short Circuit Current	Ios	7	5	4				7	8

4. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and Clock Input ground voltages must be maintained between tests. The clock input is the waveform shown.
5. In addition to meeting the output levels specified, the device must divide by 5,8 or 10 during this test. The clock input is the waveform shown.
6. In addition to meeting the output levels specified, the device must divide by 6,9 or 11 during this test. The clock input is the waveform shown.

ELECTRICAL CHARACTERISTICS (Supply Voltage $=5.0 \mathrm{~V}$, unless otherwise noted.) (continued)

				TEST	TAGE/	RENT			
				Volts			mA		
	Test Tem	erature	$\mathrm{V}_{\text {IHT }}$	$\mathrm{V}_{\text {ILT }}$	$\mathrm{V}_{\text {cc }}$	IL	lOL	IOH	
		$-30^{\circ} \mathrm{C}$	+2.0	+0.8	+5.0	-0.25	16	-0.40	
		$+25^{\circ} \mathrm{C}$	+2.0	+0.8	+5.0	-0.25	16	-0.40	
		$+85^{\circ} \mathrm{C}$	+2.0	+0.8	+5.0	-0.25	16	-0.40	
		Pin		VOLTA	PPLIED	PINS	D BE		
Characteristic	Symbol	Test	$\mathrm{V}_{\text {IHT }}$	VILT	$\mathrm{V}_{\text {cc }}$	IL	IOL	IOH	$\begin{aligned} & \left(V_{E E}\right) \\ & \text { Gnd } \end{aligned}$
Power Supply Drain Current	ICC1	8			1,16				8
	ICC2	6			6				8
Input Current	$\mathrm{linH}^{\text {i }}$	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 9,10 \\ & 9,10 \\ & 9,10 \end{aligned}$		$\begin{array}{r} 1,16 \\ 1,16 \\ 1,16 \\ 1,16 \\ \hline \end{array}$				8 8 8 8
	linH2	$\begin{aligned} & 4 \\ & 5 \end{aligned}$			$\begin{aligned} & \hline 6 \\ & 6 \end{aligned}$				$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$
	$\mathrm{linH3}^{\text {in }}$	5			6				8
	linH 4	$\begin{gathered} 9 \\ 10 \end{gathered}$			$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$				$\begin{aligned} & 8 \\ & 8 \end{aligned}$
Leakage Current	$l_{\text {inL1 }}$	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \\ & \hline \end{aligned}$			$\begin{aligned} & \hline 1,16 \\ & 1,16 \\ & 1,16 \\ & 1,16 \\ & \hline \end{aligned}$				$\begin{aligned} & 8,15 \\ & 8,11 \\ & 8,12 \\ & 8,13 \end{aligned}$
	$\mathrm{l}_{\text {inL2 }}$	$\begin{gathered} 9 \\ 10 \end{gathered}$			$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$				$\begin{aligned} & 8 \\ & 8 \end{aligned}$
Reference Voltage	V_{BB}	14			1,16	14			8
Logic '1' Output Voltage	$\mathrm{V}_{\mathrm{OH} 1}$ (Note 4.)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$				$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$
	$\mathrm{V}_{\mathrm{OH} 2}$	7			6			7	8
Logic '0' Output Voltage	$\begin{gathered} \text { VOL1 } \\ \text { (Note 4.) } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$				$\begin{aligned} & 8 \\ & 8 \end{aligned}$
	$\mathrm{V}_{\mathrm{OL} 2}$	7			6		7		8
Logic '1' Threshold Voltage	VOHA (Note 5.)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 9,10 \\ & 9,10 \end{aligned}$		$\begin{aligned} & \hline 1,16 \\ & 1,16 \\ & \hline \end{aligned}$				$\begin{aligned} & 8 \\ & 8 \end{aligned}$
Logic '0' Threshold Voltage	VOLA (Note 6.)	$\begin{aligned} & 2 \\ & 3 \\ & \hline \end{aligned}$		$\begin{aligned} & 9,10 \\ & 9,10 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$				$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$
Short Circuit Current	Ios	7			6				8

4. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.
5. In addition to meeting the output levels specified, the device must divide by 5,8 or 10 during this test. The clock input is the waveform shown.
$\square-\mathrm{V}_{\mathrm{IH} \max }^{\text {Clock Input }}$
6. In addition to meeting the output levels specified, the device must divide by 6,9 or 11 during this test. The clock input is the waveform shown.

SWITCHING CHARACTERISTICS

Characteristic	Symbol	$\begin{aligned} & \text { Pin } \\ & \text { Under } \\ & \text { Test } \end{aligned}$	MC12009，MC12011，MC12013									TEST VOLTAGES／WAVEFORMS APPLIED TO PINS LISTED BELOW：								
			$-30^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$						Unit	Pulse Gen． 1	Pulse Gen． 2	Pulse Gen． 3	$\mathrm{V}_{\text {IHmin }}$ \dagger	$\mathrm{V}_{\mathrm{IL} \min }$	$\begin{gathered} \mathrm{V}_{\mathrm{F}} \\ -3.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{EE}} \\ -3.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & +2.0 \end{aligned}$
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max									
Propagation Delay （See Figures 3 and 5）	$\begin{aligned} & t_{15+2+} \\ & t_{15+2-} \\ & t_{5+7+} \\ & t_{5-7-} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 7 \\ & 7 \end{aligned}$	－	－	$\begin{aligned} & 8.1 \\ & 7.5 \\ & 8.4 \\ & 6.5 \end{aligned}$	二	－	8.1 7.5 8.1 6.5	二	－	$\begin{aligned} & 8.9 \\ & 82 \\ & 8.9 \\ & 7.1 \end{aligned}$	$\stackrel{\mathrm{ns}}{\mathrm{n}}$	$\begin{aligned} & 15 \\ & 15 \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	二	－	二	11，12，13 11，12，13 $-$	$\begin{gathered} 9,10 \\ 9,10 \\ - \\ - \end{gathered}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,6,16 \\ & 1,6,16 \\ & 1,6,16 \\ & 1,6,16 \end{aligned}$
Setup Time （See Figures 4 and 5）	$\mathrm{t}_{\text {setup1 }}$ $\mathrm{t}_{\text {setup2 }}$	$\begin{gathered} 11 \\ 9 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	二	－	$\begin{array}{\|l\|} \hline 5.0 \\ 5.0 \end{array}$	二	－	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	二	－	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$		－	－	$11,12,13$	${ }_{*}^{9,10}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,6,16 \\ & 1,6,16 \end{aligned}$
Release Time （See Figures 4 and 5）	$\mathrm{t}_{\text {rel1 }}$ trel2	$\begin{gathered} 11 \\ 9 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	－	－	$\begin{aligned} & \hline 5.0 \\ & 5.0 \end{aligned}$	二	二	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	－	－	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \hline 15 \\ & 15 \end{aligned}$	＊	－	－	$11,12,13$	$\stackrel{9.10}{*}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,6,16 \\ & 1,6,16 \end{aligned}$
```Toggle Frequency (See Figure 6) MC12009 : 5/6 MC12011: 8/9 MC12013 : 10/11```	$\mathrm{f}_{\text {max }}$	2	440 500 500	－	－	480 550 550	－	－	440 500 500	二	二	MHz	－	－	－	11 11 11	－	－	8 8 8	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$

＊Test inputs sequentially，with Pulse Generator 2 or 3 as indicated connected to input under test，and the voltage indicated applied to the other input（s）of the same type（i．e．，MECL or MTTL）．

	$\mathbf{- 3 0}{ }^{\circ} \mathbf{C}$	$+\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$+\mathbf{8 5}{ }^{\circ} \mathbf{C}$	
	+1.03	+1.115	+1.20	
$+\mathrm{V}_{\mathbf{I H} \text { min }}$	+0.175	+0.200	+0.235	Vdc

Figure 3．AC Voltage Waveforms


Figure 4．Setup and Release Time Waveforms


## MC12009 MC12011 MC12013

Figure 5. AC Test Circuit


## MC12009 MC12011 MC12013

Figure 6. Maximum Frequency Test Circuit


Unused output connected to a $50 \Omega$ resistor to ground


DIVIDE BY 11


## MC12009 MC12011 MC12013

Figure 7. State Diagram

— —— Enable = 1
DIVIDE BY 8/9 (MC12011)

——— Enable $=1$.


## MC12009 MC12011 MC12013 <br> APPLICATIONS INFORMATION

The primary application of these devices is as a high-speed variable modulus prescaler in the divide by N section of a phase-locked loop synthesizer used as the local oscillator of two-way radios.

Proper VHF termination techniques should be followed when the clock is separated from the prescaler by any appreciable distance.

In their basic form, these devices will divide by $5 / 6,8 / 9$, or $10 / 11$. Division by 5,8 , or 10 occurs when any one or all
of the five gate inputs E1 through E5 are high. Division by 6 , 9, or 11 occurs when all inputs E1 through E5 are low. (Unconnected MTTL inputs are normally high, unconnected MECL inputs are normally low). With the addition of extra parts, many different division configurations may be obtained (20/21, 40/41, 50/51, 100/101, etc.) A few of the many configurations are shown below, only for the MC12013.

Figure 8. Divide By 10/11 (MC12013)


## MC12009 MC12011 MC12013

Figure 9. Divide By 20/21 (MC12013)



To obtain an MTTL output, connect Pins 5 and 4 to Pins 2 and 3 respectively. Termination resistors for the MECL outputs are not shown, but are required except for the flip-flop driving the translator section.
The $\div 20 / 21$ counter may also be built using an MTTL flip-flop by connecting Pins 5 and 4 to Pins 2 and 3 respectively, and driving the MTTL flip-flop with Pin 7. MC12013 inputs E4 and E5 are used rather than E1. With E1 + E2 + E3 $=0$, operation remains as shown.

Figure 10. Divide By 40/41 (MC12013)


For $\div 40: E 4+E 5=1$
For $\div 41: E 4+E 5=0$

[^0]
## OUTLINE DIMENSIONS

## P SUFFIX

PLASTIC PACKAGE
CASE 648-08
ISSUE R


1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH
3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.

DIM	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	0.740	0.770	18.80	19.55	
B	0.250	0.270	6.35	6.85	
C	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100		BSC	2.54 BSC	
H	0.050 BSC		1.27		
BSC					
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	$0^{\circ}$	$10^{\circ}$	$0^{\circ}$	$10^{\circ}$	
S	0.020	0.040	0.51	1.01	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and $(\mathbb{4})$ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

## How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141,

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

- US \& Canada ONLY 1-800-774-1848
-http://sps.motorola.com/mfax/

Mfax ${ }^{\text {TM }: ~ R M F A X 0 @ e m a i l . s p s . m o t . c o m ~-~ T O U C H T O N E ~ 1-602-244-6609 ~}$
Motorola Fax Back System
OME PAGE: http://motorola.com/sps/


[^0]:    Termination resistors for MECL outputs are not shown, but are required except for the flip-flop driving the translator section.

