Features

- EE Programmable 65,536 x 1-, 131,072 x 1-, 262,144 x 1-, 524,288 x 1-, 1,048,576 x 1-, 2,097,152 x 1-, and 4,194,304 x 1-bit Serial Memories Designed to Store Configuration Programs for Field Programmable Gate Arrays (FPGAs)
- Supports both 3.3V and 5.0V Operating Voltage Applications
- In-System Programmable (ISP) via Two-Wire Bus
- Simple Interface to SRAM FPGAs
- Compatible with Atmel AT6000, AT40K and AT94K Devices, Altera® FLEX®, APEX™
 Devices, ORCA®, Xilinx® XC3000, XC4000, XC5200, Spartan®, Virtex® FPGAs
- Cascadable Read-back to Support Additional Configurations or Higher-density Arrays
- Very Low-power CMOS EEPROM Process
- Programmable Reset Polarity
- Available in 6 mm x 6 mm x 1 mm 8-lead LAP (Pin-compatible with 8-lead SOIC/VOIC Packages), 8-lead PDIP, 8-lead SOIC, 20-lead PLCC, 20-lead SOIC and 44-lead TQFP Packages
- Emulation of Atmel's AT24CXXX Serial EEPROMs
- Low-power Standby Mode
- · High-reliability
 - Endurance: 100,000 Write Cycles
 - Data Retention: 90 Years for Industrial Parts (at 85° C) and 190 Years for Commercial Parts (at 70° C)
- Green (Pb/Halide-free/RoHS Compliant) Package Options Available

1. Description

The AT17LV series FPGA Configuration EEPROMs (Configurators) provide an easy-to-use, cost-effective configuration memory for Field Programmable Gate Arrays. The AT17LV series device is packaged in the 8-lead LAP, 8-lead PDIP, 8-lead SOIC, 20-lead PLCC, 20-lead SOIC and 44-lead TQFP, see Table 1-1. The AT17LV series Configurators uses a simple serial-access procedure to configure one or more FPGA devices. The user can select the polarity of the reset function by programming four EEPROM bytes. These devices also support a write-protection mechanism within its programming mode.

The AT17LV series configurators can be programmed with industry-standard programmers, Atmel's ATDH2200E Programming Kit or Atmel's ATDH2225 ISP Cable.

FPGA Configuration EEPROM Memory

AT17LV65 AT17LV128 AT17LV256 AT17LV512 AT17LV010 AT17LV002 AT17LV040

3.3V and 5V System Support

 Table 1-1.
 AT17LV Series Packages

Package	AT17LV65/ AT17LV128/ AT17LV256	AT17LV512/ AT17LV010	AT17LV002	AT17LV040
8-lead LAP	Yes	Yes	Yes	(3)
8-lead PDIP	Yes	Yes	_	_
8-lead SOIC	Yes	Use 8-lead LAP ⁽¹⁾	Use 8-lead LAP ⁽¹⁾	(3)
20-lead PLCC	Yes	Yes	Yes	_
20-lead SOIC	Yes ⁽²⁾	Yes ⁽²⁾	Yes ⁽²⁾	_
44-lead TQFP	_	_	Yes	Yes

Notes:

- The 8-lead LAP package has the same footprint as the 8-lead SOIC. Since an 8-lead SOIC package is not available for the AT17LV512/010/002 devices, it is possible to use an 8-lead LAP package instead.
- 2. The pinout for the AT17LV65/128/256 devices is not pin-for-pin compatible with the AT17LV512/010/002 devices.
- 3. Refer to the AT17Fxxx datasheet, available on the Atmel web site.

2. Pin Configuration

Figure 2-1. 8-lead LAP

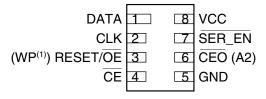


Figure 2-2. 8-lead SOIC

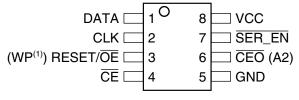
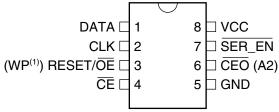
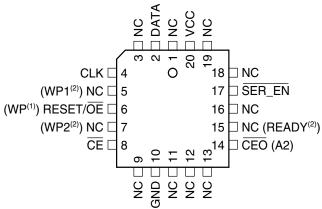
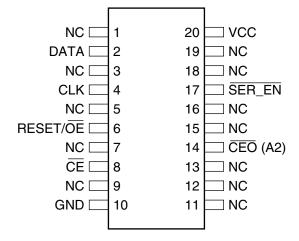


Figure 2-3. 8-lead PDIP

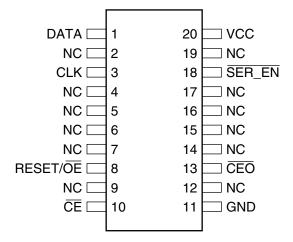




Figure 2-4. 20-lead PLCC

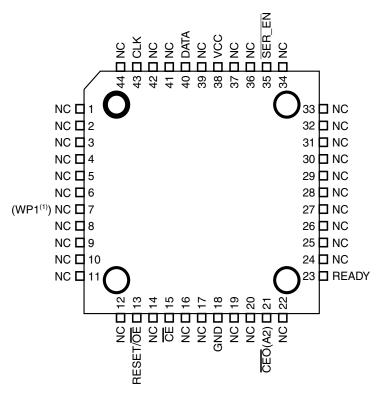
Notes: 1. This pin is only available on AT17LV65/128/256 devices.

- 2. This pin is only available on AT17LV512/010/002 devices.
- 3. The CEO feature is not available on the AT17LV65 device.

Figure 2-5. 20-lead SOIC⁽¹⁾



Note: 1. This pinout only applies to AT17LV65/128/256 devices.


Figure 2-6. 20-lead SOIC⁽¹⁾

Notes: 1. This pinout only applies to AT17LV512/010/002 devices.

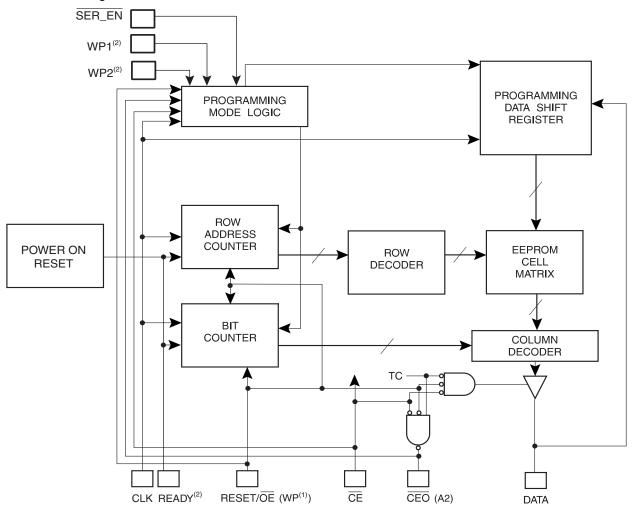

2. The CEO feature is not available on the AT17LV65 device.

Figure 2-7. 44 TQFP

Note: 1. This pin is only available on AT17LV002 devices.

Figure 2-8. Block Diagram

Notes: 1. This pin is only available on AT17LV65/128/256 devices.

- 2. This pin is only available on AT17LV512/010/002 devices.
- 3. The CEO feature is not available on the AT17LV65 device.

3. Device Description

The control signals for the configuration EEPROM ($\overline{\text{CE}}$, RESET/ $\overline{\text{OE}}$ and CCLK) interface directly with the FPGA device control signals. All FPGA devices can control the entire configuration process and retrieve data from the configuration EEPROM without requiring an external intelligent controller.

The configuration EEPROM RESET/ \overline{OE} and \overline{CE} pins control the tri-state buffer on the DATA output pin and enable the address counter. When RESET/ \overline{OE} is driven High, the configuration EEPROM resets its address counter and tri-states its DATA pin. The \overline{CE} pin also controls the output of the AT17LV series configurator. If \overline{CE} is held High after the RESET/ \overline{OE} reset pulse, the counter is disabled and the DATA output pin is tri-stated. When \overline{OE} is subsequently driven Low, the counter and the DATA output pin are enabled. When RESET/ \overline{OE} is driven High again, the address counter is reset and the DATA output pin is tri-stated, regardless of the state of \overline{CE} .

When the configurator has driven out all of its data and $\overline{\text{CEO}}$ is driven Low, the device tri-states the DATA pin to avoid contention with other configurators. Upon power-up, the address counter is automatically reset.

This is the default setting for the device. Since almost all FPGAs use RESET Low and OE High, this document will describe RESET/OE.

4. Pin Description

			AT17LV65/ AT17LV128/ AT17LV256	1		AT17LV512 AT17LV010			AT17	LV002		AT17LV040
Name	I/O	8 DIP/ LAP/ SOIC	20 PLCC	20 SOIC	8 DIP/ LAP	20 PLCC	20 SOIC	8 DIP/ LAP/ SOIC	20 PLCC	20 SOIC	44 TQFP	44 TQFP
DATA	I/O	1	2	2	1	2	1	1	2	1	40	40
CLK	I	2	4	4	2	4	3	2	4	3	43	43
WP1	I	_	_	_	_	5	-	_	5	-	_	-
RESET/OE	I	3	6	6	3	6	8	3	6	8	13	13
WP2	I				-	7	-	-	7	-	-	-
CE	I	4	8	8	4	8	10	4	8	10	15	15
GND		5	10	10	5	10	11	5	10	11	18	18
CEO	0		4.4	4.4		4.4	13		4.4	13	0.1	0.1
A2	I	6	14	14	6	14	_	6	14	_	21	21
READY	0	_	_	_	_	15	_	_	15	_	23	23
SER_EN	I	7	17	17	7	17	18	7	17	18	35	35
V _{CC}		8	20	20	8	20	20	8	20	20	38	38

Note: 1. The CEO feature is not available on the AT17LV65 device.

AT17LV65/128/256/512/010/002/040

4.1 DATA

Three-state DATA output for configuration. Open-collector bi-directional pin for programming.

4.2 CLK

Clock input. Used to increment the internal address and bit counter for reading and programming.

4.3 WP1

WRITE PROTECT (1). Used to protect portions of memory during programming. Disabled by default due to internal pull-down resistor. This input pin is not used during FPGA loading operations. This pin is only available on AT17LV512/010/002 devices.

4.4 RESET/OE

Output Enable (active High) and RESET (active Low) when SER_EN is High. A Low level on RESET/OE resets both the address and bit counters. A High level (with CE Low) enables the data output driver. The logic polarity of this input is programmable as either RESET/OE or RESET/OE. For most applications, RESET should be programmed active Low. This document describes the pin as RESET/OE.

4.5 WP

Write protect (WP) input (when \overline{CE} is Low) during programming only (\overline{SER}_{EN} Low). When WP is Low, the entire memory can be written. When WP is enabled (High), the lowest block of the memory cannot be written. This pin is only available on AT17LV65/128/256 devices.

4.6 WP2

WRITE PROTECT (2). Used to protect portions of memory during programming. Disabled by default due to internal pull-down resistor. This input pin is not used during FPGA loading operations. This pin is only available on AT17LV512/010 devices.

4.7 CE

Chip Enable input (active Low). A Low level (with OE High) allows CLK to increment the address counter and enables the data output driver. A High level on $\overline{\text{CE}}$ disables both the address and bit counters and forces the device into a low-power standby mode. Note that this pin will *not* enable/disable the device in the Two-Wire Serial Programming mode ($\overline{\text{SER EN}}$ Low).

4.8 **GND**

Ground pin. A 0.2 μF decoupling capacitor between V_{CC} and GND is recommended.

4.9 CEO

Chip Enable Output (active Low). This output goes Low when the address counter has reached its maximum value. In a daisy chain of AT17LV series devices, the $\overline{\text{CEO}}$ pin of one device must be connected to the $\overline{\text{CE}}$ input of the next device in the chain. It will stay Low as long as $\overline{\text{CE}}$ is Low and OE is High. It will then follow CE until OE goes Low; thereafter, $\overline{\text{CEO}}$ will stay High until the entire EEPROM is read again. This $\overline{\text{CEO}}$ feature is not available on the AT17LV65 device.

4.10 A2

Device selection input, A2. This is used to enable (or select) the device during programming (i.e., when SER_EN is Low). A2 has an internal pull-down resistor.

4.11 READY

Open collector reset state indicator. Driven Low during power-up reset, released when power-up is complete. It is recommended to use a 4.7 k Ω pull-up resistor when this pin is used.

4.12 **SER EN**

Serial enable must be held High during FPGA loading operations. Bringing \overline{SER}_{EN} Low enables the Two-Wire Serial Programming Mode. For non-ISP applications, \overline{SER}_{EN} should be tied to V_{CC} .

4.13 V_{CC}

3.3V (±10%) and 5.0V (±5% Commercial, ±10% Industrial) power supply pin.

5. FPGA Master Serial Mode Summary

The I/O and logic functions of any SRAM-based FPGA are established by a configuration program. The program is loaded either automatically upon power-up, or on command, depending on the state of the FPGA mode pins. In Master mode, the FPGA automatically loads the configuration program from an external memory. The AT17LV Serial Configuration EEPROM has been designed for compatibility with the Master Serial mode.

This document discusses the Atmel AT40K, AT40KAL and AT94KAL applications as well as Xilinx applications.

6. Control of Configuration

Most connections between the FPGA device and the AT17LV Serial EEPROM are simple and self-explanatory.

- The DATA output of the AT17LV series configurator drives DIN of the FPGA devices.
- The master FPGA CCLK output drives the CLK input of the AT17LV series configurator.
- The CEO output of any AT17LV series configurator drives the CE input of the next configurator in a cascaded chain of EEPROMs.
- SER_EN must be connected to V_{CC} (except during ISP).
- The READY⁽¹⁾ pin is available as an open-collector indicator of the device's reset status; it is driven Low while the device is in its power-on reset cycle and released (tri-stated) when the cycle is complete.

Note: 1. This pin is not available for the AT17LV65/128/256 devices.

7. Cascading Serial Configuration EEPROMs

For multiple FPGAs configured as a daisy-chain, or for FPGAs requiring larger configuration memories, cascaded configurators provide additional memory.

After the last bit from the first configurator is read, the clock signal to the configurator asserts its $\overline{\text{CEO}}$ output Low and disables its DATA line driver. The second configurator recognizes the Low level on its $\overline{\text{CE}}$ input and enables its DATA output.

After configuration is complete, the address counters of all cascaded configurators are reset if the RESET/OE on each configurator is driven to its active (Low) level.

If the address counters are not to be reset upon completion, then the RESET/OE input can be tied to its inactive (High) level.

The AT17LV65 devices do not have the CEO feature to perform cascaded configurations.

8. AT17LV Series Reset Polarity

The AT17LV series configurator allows the user to program the reset polarity as either RESET/OE or RESET/OE. This feature is supported by industry-standard programmer algorithms.

9. Programming Mode

The programming mode is entered by bringing \overline{SER} Low. In this mode the chip can be programmed by the Two-Wire serial bus. The programming is done at V_{CC} supply only. Programming super voltages are generated inside the chip.

10. Standby Mode

The AT17LV series configurators enter a low-power standby mode whenever $\overline{\text{CE}}$ is asserted High. In this mode, the AT17LV65/128/256 configurator consumes less than 50 μA of current at 3.3V (100 μA for the AT17LV512/010 and 200 μA for the AT17LV002/040). The output remains in a high-impedance state regardless of the state of the $\overline{\text{OE}}$ input.

11. Absolute Maximum Ratings*

Operating Temperature40° C to +85° C
Storage Temperature65° C to +150° C
Voltage on Any Pin with Respect to Ground0.1V to V _{CC} +0.5V
Supply Voltage (V _{CC})0.5V to +7.0V
Maximum Soldering Temp. (10 sec. @ 1/16 in.) 260° C
ESD (R _{ZAP} = 1.5K, C _{ZAP} = 100 pF)2000V

*NOTICE:

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those listed under operating conditions is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability.

12. Operating Conditions

			3.	3V	5	5V	
Symbol	Description		Min	Max	Min	Max	Units
V	Commercial	Supply voltage relative to GND -0°C to +70°C	3.0	3.6	4.75	5.25	V
V _{cc}	Industrial	Supply voltage relative to GND -40°C to +85°C	3.0	3.6	4.5	5.5	V

13. DC Characteristics

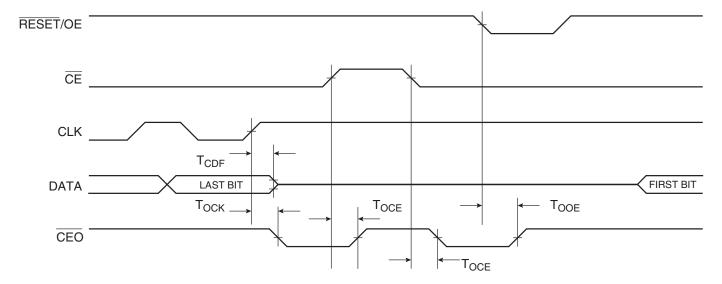
 $V_{CC} = 3.3V \pm 10\%$

			AT17	'LV65/ LV128/ LV256		LV512/ LV010		LV002/ LV040	
Symbol	Description		Min	Max	Min	Max	Min	Max	Units
V _{IH}	High-level Input Voltage		2.0	V _{CC}	2.0	V _{CC}	2.0	V _{CC}	V
V_{IL}	Low-level Input Voltage		0	0.8	0	0.8	0	0.8	V
V _{OH}	High-level Output Voltage (I _{OH} = -2.5 mA)	O a manage in l	2.4		2.4		2.4		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Commercial		0.4		0.4		0.4	V
V _{OH}	High-level Output Voltage (I _{OH} = -2 mA)	La alca data I	2.4		2.4		2.4		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Industrial		0.4		0.4		0.4	V
I _{CCA}	Supply Current, Active Mode			5		5		5	mA
IL	Input or Output Leakage Current ($V_{IN} = V_{CC}$	or GND)	-10	10	-10	10	-10	10	μΑ
	Overally Comment Character Manda	Commercial		50		100		150	μΑ
I _{CCS}	Supply Current, Standby Mode	Industrial		100		100		150	μΑ

14. DC Characteristics


 V_{CC} = 5V ± 5% Commercial; V_{CC} = 5V ± 10% Industrial

			AT17	'LV65/ LV128/ LV256		LV512/ LV010		LV002/ LV040	
Symbol	Description		Min	Max	Min	Max	Min	Max	Units
V _{IH}	High-level Input Voltage		2.0	V _{CC}	2.0	V _{CC}	2.0	V _{CC}	V
V _{IL}	Low-level Input Voltage		0	0.8	0	0.8	0	0.8	V
V_{OH}	High-level Output Voltage (I _{OH} = -2.5 mA)	0	3.7		3.86		3.86		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Commercial		0.32		0.32		0.32	V
V _{OH}	High-level Output Voltage (I _{OH} = -2 mA)		3.6		3.76		3.76		V
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Industrial		0.37		0.37		0.37	V
I _{CCA}	Supply Current, Active Mode			10		10		10	mA
IL	Input or Output Leakage Current (V _{IN} = V _{CC}	or GND)	-10	10	-10	10	-10	10	μΑ
		Commercial		75		200		350	μA
I _{CCS}	Supply Current, Standby Mode	Industrial		150		200		350	μA



15. AC Waveforms

16. AC Waveforms when Cascading

17. AC Characteristics

 $V_{CC} = 3.3V \pm 10\%$

			AT17LV6	5/128/256	6	AT	17LV512	010/002/	040	
		Commercial		Industrial		Commercial		Industrial		
Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
T _{OE} ⁽¹⁾	OE to Data Delay		50		55		50		55	ns
T _{CE} ⁽¹⁾	CE to Data Delay		60		60		55		60	ns
T _{CAC} ⁽¹⁾	CLK to Data Delay		75		80		55		60	ns
T _{OH}	Data Hold from $\overline{\text{CE}}$, OE, or CLK	0		0		0		0		ns
T _{DF} ⁽²⁾	CE or OE to Data Float Delay		55		55		50		50	ns
T _{LC}	CLK Low Time	25		25		25		25		ns
T _{HC}	CLK High Time	25		25		25		25		ns
T _{SCE}	CE Setup Time to CLK (to guarantee proper counting)	35		60		30		35		ns
T _{HCE}	CE Hold Time from CLK (to guarantee proper counting)	0		0		0		0		ns
T _{HOE}	OE High Time (guarantees counter is reset)	25		25		25		25		ns
F _{MAX}	Maximum Clock Frequency		10		10		15		10	MHz

Notes: 1. AC test lead = 50 pF.

2. Float delays are measured with 5 pF AC loads. Transition is measured \pm 200 mV from steady-state active levels.

18. AC Characteristics when Cascading

 $V_{CC} = 3.3V \pm 10\%$

			AT17LV65/128/256				17LV512/	010/002/0	040	
		Comn	nercial	Indu	strial	Comm	nercial	Indu	strial	
Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
T _{CDF} ⁽²⁾	CLK to Data Float Delay		60		60		50		50	ns
T _{OCK} ⁽¹⁾	CLK to CEO Delay		55		60		50		55	ns
T _{OCE} ⁽¹⁾	CE to CEO Delay		55		60		35		40	ns
T _{OOE} ⁽¹⁾	RESET/OE to CEO Delay		40		45		35		35	ns
F _{MAX}	Maximum Clock Frequency		8		8		12.5		10	MHz

Notes: 1. AC test lead = 50 pF.

2. Float delays are measured with 5 pF AC loads. Transition is measured ± 200 mV from steady-state active levels.

19. AC Characteristics

 V_{CC} = 5V ± 5% Commercial; V_{CC} = 5V ± 10% Industrial

			AT17LV6	5/128/256	6	AT	17LV512	/010/002/	040	
		Commercial		Industrial		Commercial		Industrial		
Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
T _{OE} ⁽¹⁾	OE to Data Delay		30		35		30		35	ns
T _{CE} ⁽¹⁾	CE to Data Delay		45		45		45		45	ns
T _{CAC} ⁽¹⁾	CLK to Data Delay		50		55		50		50	ns
T _{OH}	Data Hold from $\overline{\text{CE}}$, OE, or CLK	0		0		0		0		ns
$T_{DF}^{(2)}$	CE or OE to Data Float Delay		50		50		50		50	ns
T_LC	CLK Low Time	20		20		20		20		ns
T _{HC}	CLK High Time	20		20		20		20		ns
T _{SCE}	CE Setup Time to CLK (to guarantee proper counting)	35		40		20		25		ns
T _{HCE}	CE Hold Time from CLK (to guarantee proper counting)	0		0		0		0		ns
T _{HOE}	OE High Time (guarantees counter is reset)	20		20		20		20		ns
F _{MAX}	Maximum Clock Frequency		12.5		12.5		15		15	MHz

Notes: 1. AC test lead = 50 pF.

2. Float delays are measured with 5 pF AC loads. Transition is measured \pm 200 mV from steady-state active levels.

20. AC Characteristics when Cascading

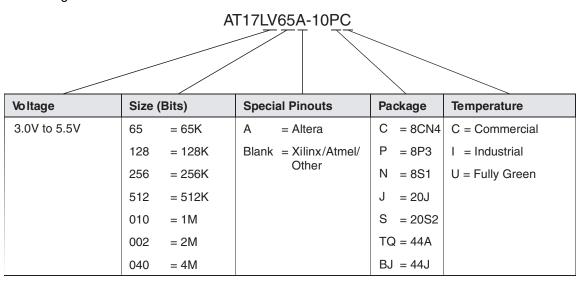
 V_{CC} = 5V ± 5% Commercial; V_{CC} = 5V ± 10% Industrial

			AT17LV6	5/128/256	6	AT				
		Comn	nercial	Indu	strial	Comm	nercial	Indu	strial	
Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
T _{CDF} ⁽²⁾	CLK to Data Float Delay		50		50		50		50	ns
T _{OCK} ⁽¹⁾	CLK to CEO Delay		35		40		35		40	ns
T _{OCE} ⁽¹⁾	CE to CEO Delay		35		35		35		35	ns
T _{OOE} ⁽¹⁾	RESET/OE to CEO Delay		30		35		30		30	ns
F _{MAX}	Maximum Clock Frequency		10		10		12.5		12.5	MHz

Notes: 1. AC test lead = 50 pF.

2. Float delays are measured with 5 pF AC loads. Transition is measured ± 200 mV from steady-state active levels.

21. Thermal Resistance Coefficients⁽¹⁾


Packag	ne Type		AT17LV65/ AT17LV128/ AT17LV256	AT17LV512/ AT17LV010	AT17LV002	AT17LV040
	,	θ _{JC} [° C/W]	45	45	45	_
8CN 4	Leadless Array Package (LAP)	θ _{JA} [° C/W] ⁽²⁾	115.71	135.71	159.60	-
	Diagric Dual Inline Deckare	θ _{JC} [° C/W]	37	37	_	_
8P3	Plastic Dual Inline Package (PDIP)	θ _{JA} [°C/W] ⁽²⁾	107	107	_	_
	Plactic Cull Wing Small Outline	θ _{JC} [° C/W]	45	_	_	_
8S1	Plastic Gull Wing Small Outline (SOIC)	$^{ heta_{JA}}$ [° C/W] $^{(2)}$	150	-	_	_
	Plantia Landad Chia Carrior	θ _{JC} [° C/W]	35	35	35	_
20J	Plastic Leaded Chip Carrier (PLCC)	θ _{JA} [°C/W] ⁽²⁾	90	90	90	_
	Dia atia Cull Minar Casall Cuttina	θ _{JC} [° C/W]				_
20S2	Plastic Gull Wing Small Outline (SOIC)	θ _{JA} [°C/W] ⁽²⁾				_
	Thin Plastic Quad Flat	θ _{JC} [° C/W]			17	17
44A	Package (TQFP)	θ _{JA} [°C/W] ⁽²⁾	_	_	62	62

- Notes: 1. For more information refer to the "Thermal Characteristics of Atmel's Packages", available on the Atmel web site.
 - 2. Airflow = 0 ft/min.

Figure 21-1. Ordering Code

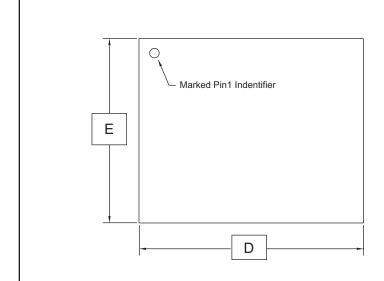
	Package Type
8CN4	8-lead, 6 mm x 6 mm x 1 mm, Leadless Array Package (LAP) – Pin-compatible with 8-lead SOIC/VOID Packages
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S1	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)
20J	20-lead, Plastic J-leaded Chip Carrier (PLCC)
20S2	20-lead, 0.300" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)
44 A	44-lead, Thin (1.0 mm) Plastic Quad Flat Package Carrier (TQFP)

22. Ordering Information

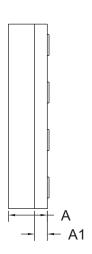
22.1 **Standard Package Options**

Memory Size	Ordering Code	Package ⁽²⁾⁽³⁾	Operation Range
64-Kbit ⁽¹⁾	AT17LV65-10PC	8P3	Commercial
	AT17LV65-10NC	8S1	(0°C to 70°C)
	AT17LV65-10JC	20J	(0 0 10 10 0)
04-Noit	AT17LV65-10PI	8P3	Industrial
	AT17LV65-10NI	8S1	Industrial (-40° C to 85° C)
	AT17LV65-10JI	20J	(40 0 10 00 0)
	AT17LV128-10PC	8P3	
	AT17LV128-10NC	8S1	Commercial
	AT17LV128-10JC	20J	(0°C to 70°C)
128-Kbit ⁽¹⁾	AT17LV128-10SC	20S2	
120-NUIL	AT17LV128-10PI	8P3	
	AT17LV128-10NI	8S1	Industrial
	AT17LV128-10JI	20J	(-40° C to 85° C)
	AT17LV128-10SI	20S2	_
	AT17LV256-10PC	8P3	
	AT17LV256-10NC	8S1	Commercial
	AT17LV256-10JC	20J	(0°C to 70°C)
256-Kbit ⁽¹⁾	AT17LV256-10SC	20S2	
256-KDII. 7	AT17LV256-10PI	8P3	
	AT17LV256-10NI	8S1	Industrial
	AT17LV256-10JI	20J	(-40° C to 85° C)
	AT17LV256-10SI	20S2	
	AT17LV512-10PC	8P3	Commercial
512-Kbit ⁽¹⁾	AT17LV512-10JC	20J	(0°C to 70°C)
512-KDII(**)	AT17LV512-10PI	8P3	Industrial
	AT17LV512-10JI	20J	(-40° C to 85° C)
	AT17LV010-10PC	8P3	Commercial
1-Mbit ⁽¹⁾	AT17LV010-10JC	20J	(0° C to 70° C)
I-IVIDIT(**)	AT17LV010-10PI	8P3	Industrial
	AT17LV010-10JI	20J	(-40° C to 85° C)
2-Mbit ⁽¹⁾	AT17LV002-10JC	20J	Commercial (0° C to 70° C)
2-MDIt**/	AT17LV002-10JI	20J	Industrial (-40° C to 85° C)

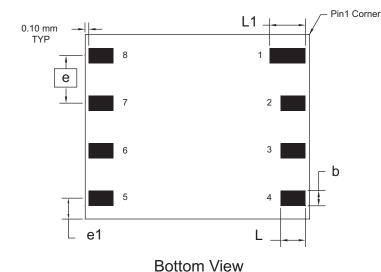
- Notes: 1. For operating 5V operating voltage, please refer to the corresponding AC and DC Characteristics.
 - 2. For the -10SC and -10SI packages, customers may migrate to the AT17LVXXX-10SU.
 - 3. For the -10TQC and -10TQI packages, customers may migrate to the AT17LVXXX-10TQU.


22.2 Green Package Options (Pb/Halide-free/RoHS Compliant)

Memory Size	Ordering Code	Package	Operation Range
	AT17LV256-10CU	8CN4	
	AT17LV256-10JU	20J	
256-Kbit ⁽¹⁾	AT17LV256-10NU	8S1	
	AT17LV256-10PU	8P3	
	AT17LV256-10SU	20S2	
512-Kbit ⁽¹⁾	AT17LV512-10CU	8CN4	
512-NDIL	AT17LV512-10JU	20J	
	AT17LV010-10CU	8CN4	Industrial (-40° C to 85° C)
1-Mbit ⁽¹⁾	AT17LV010-10JU	20J	(10 0 10 00 0)
	AT17LV010-10PU	8P3	
	AT17LV002-10CU	8CN4	
2-Mbit ⁽¹⁾	AT17LV002-10JU	20J	
Z-IVIDIT ^(*)	AT17LV002-10SU	20S2	
	AT17LV002-10TQU	44A	
4-Mbit ⁽¹⁾	AT17LV040-10TQU	44A	


Note: 1. For operating 5V operating voltage, please refer to the corresponding AC and DC Characteristics.

23. Packaging Information


23.1 8CN4 - LAP

Top View

Side View

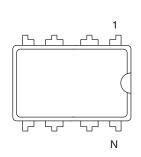
COMMON DIMENSIONS (Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
А	0.94	1.04	1.14	
A1	0.30	0.34	0.38	
b	0.45	0.50	0.55	1
D	5.89	5.99	6.09	
E	5.89	5.99	6.09	
е		1.27 BSC		
e1	1.10 REF			
L	0.95	1.00	1.05	1
L1	1.25	1.30	1.35	1

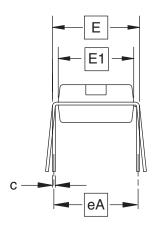
Note: 1. Metal Pad Dimensions.

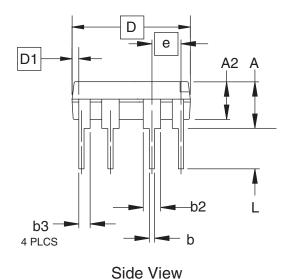
All exposed metal area shall have the following finished platings.
 Ni: 0.0005 to 0.015 mm
 Au: 0.0005 to 0.001 mm

2/15/08


TITLE
8CN4 , 8-lead (6 x 6 x 1.04 mm Body),
Lead Pitch 1.27mm,
Leadless Array Package (LAP)

GPC	DRAWING NO.	REV.
DMH	8CN4	D




23.2 8P3 - PDIP

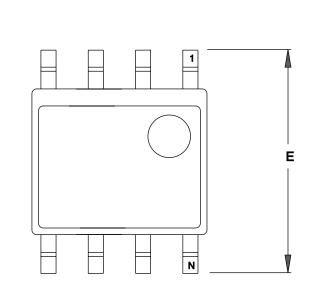
Top View

End View

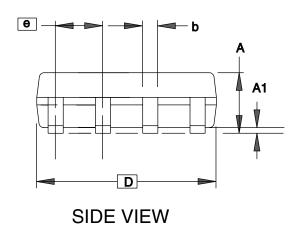
COMMON DIMENSIONS

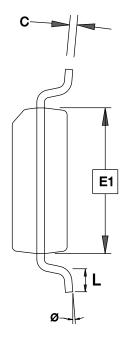
(Unit of Measure = inches)

SYMBOL	MIN	NOM	MAX	NOTE
Α			0.210	2
A2	0.115	0.130	0.195	
b	0.014	0.018	0.022	5
b2	0.045	0.060	0.070	6
b3	0.030	0.039	0.045	6
С	0.008	0.010	0.014	
D	0.355	0.365	0.400	3
D1	0.005			3
Е	0.300	0.310	0.325	4
E1	0.240	0.250	0.280	3
е	0.100 BSC			
eA	0.300 BSC			4
L	0.115	0.130	0.150	2


Notes

- 1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA for additional information.
- 2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3.
- 3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch.
- ${\bf 4.}~{\bf E}$ and eA measured with the leads constrained to be perpendicular to datum.
- 5. Pointed or rounded lead tips are preferred to ease insertion.
- 6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm).


01/09/02


l		TITLE	DRAWING NO.	REV.
<u>Alm</u>	2325 Orchard Parkway San Jose, CA 95131	8P3, 8-lead, 0.300" Wide Body, Plastic Dual In-line Package (PDIP)	8P3	В

23.3 8S1 - SOIC

TOP VIEW

END VIEW

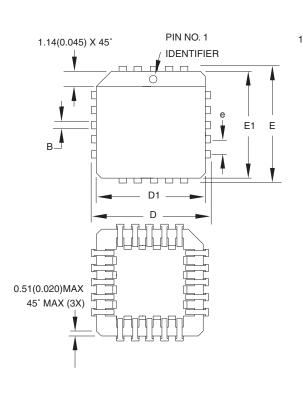
COMMON DIMENSIONS

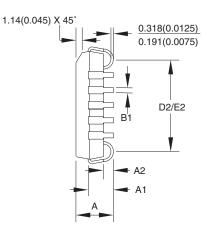
(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	1.35	_	1.75	
A1	0.10	_	0.25	
b	0.31	_	0.51	
С	0.17	_	0.25	
D	4.80	_	5.05	
E1	3.81	-	3.99	
Е	5.79	_	6.20	
е	1.27 BSC			
L	0.40	_	1.27	
θ	0°	_	8°	

Note: These drawings are for general information only. Refer to JEDEC Drawing MS-012, Variation AA for proper dimensions, tolerances, datums, etc.

3/17/05


1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 **TITLE 8S1**, 8-lead (0.150" Wide Body), Plastic Gull Wing Small Outline (JEDEC SOIC)


BS1 C

23.4 20J - PLCC

COMMON DIMENSIONS

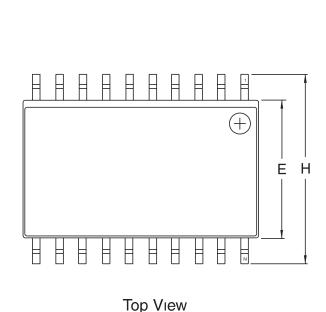
(Unit of Measure = mm)

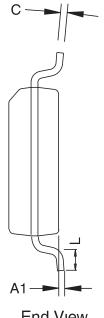
	`			
SYMBOL	MIN	NOM	MAX	NOTE
Α	4.191	_	4.572	
A1	2.286	_	3.048	
A2	0.508	_	_	
D	9.779	_	10.033	
D1	8.890	_	9.042	Note 2
Е	9.779	_	10.033	
E1	8.890	_	9.042	Note 2
D2/E2	7.366	_	8.382	
В	0.660	_	0.813	
B1	0.330	_	0.533	
е		1.270 TYF)	

Notes:

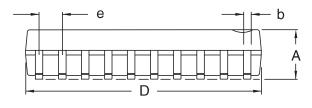
- 1. This package conforms to JEDEC reference MS-018, Variation AA.
- 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is .010"(0.254 mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line.
- 3. Lead coplanarity is 0.004" (0.102 mm) maximum.

10/04/01


REV.


В

2325 Orchard Parkway San Jose, CA 95131


TITLE	DRAWING NO.
20J, 20-lead, Plastic J-leaded Chip Carrier (PLCC)	20J

23.5 20S2 - SOIC

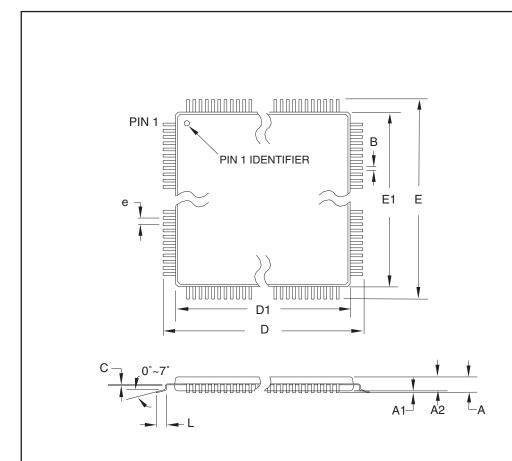
End View

Side View

COMMON DIMENSIONS (Unit of Measure - mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	2.35		2.65	
A1	0.10		0.30	
b	0.33		0.51	4
С	0.23		0.32	
D	12.60		13.00	1
Е	7.40		7.60	2
Н	10.00		10.65	
L	0.40		1.27	3
е		1.27 BS	С	

Notes. 1. This drawing is for general information only; refer to JEDEC Drawing MS-013, Variation AC for additional information.


- 2. Dimension 'D' does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusions and gate burrs shall not exceed 0.15 mm (0.006') per side.
- 3. Dimension 'E' does not include inter-lead Flash or protrusion. Inter-lead Flash and protrusions shall not exceed 0.25 mm (0.010') per side.
- 4. 'L' is the length of the terminal for soldering to a substrate.
- 4. 'L' is the length of the terminal for soldering to a substrate.
 5. The lead width 'b', as measured 0.36 mm (0.014') or greater above the seating plane, shall not exceed a maximum value of 0.61 mm 11/6/06 (0.024') per side.

23.6 44A - TQFP

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	1.20	
A1	0.05	_	0.15	
A2	0.95	1.00	1.05	
D	11.75	12.00	12.25	
D1	9.90	10.00	10.10	Note 2
E	11.75	12.00	12.25	
E1	9.90	10.00	10.10	Note 2
В	0.30	_	0.45	
С	0.09	_	0.20	
L	0.45	_	0.75	
е		0.80 TYP		

10/5/2001

Notes:

- 1. This package conforms to JEDEC reference MS-026, Variation ACB.
- 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Lead coplanarity is 0.10 mm maximum.

TITLE
44A, 44-lead, 10 x 10 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

DRAWING NO.	REV.
44A	В

24. Revision History

Revision Level – Release Date	History	
H – March 2006	Added last-time buy for AT17LVXXX-10CC and AT17LVXXX-10Cl.	
I – February 2008	Removed -10SC, 10SI, -10TQC, -10TQI, -10BJC and -10BJI devices from ordering information.	

Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778

Fax: (852) 2722-1369

Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Europe

France

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com Technical Support configurator@atmel.com

Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.