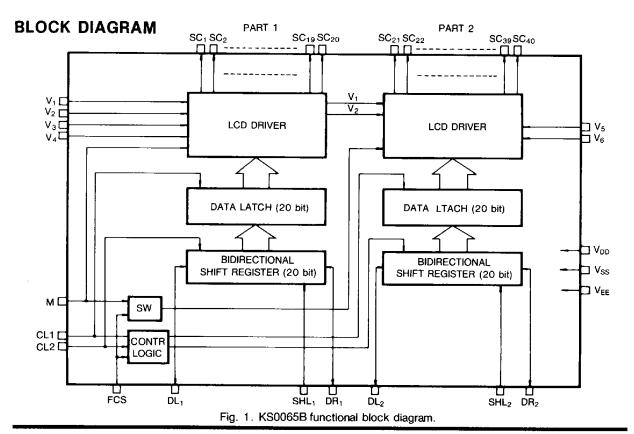
60 QFP

40-CHANNEL SEGMENT/COMMON DRIVER FOR DOT MATRIX LCD

The KS0065B is a LCD driver LSI which is fabricated by low power CMOS technology. Bascially this LSI consists of 20 x 2bit bidrectional shift register, 20 x 2bit data latch ad 20 x 2 bit driver. (refer to Fig 1) This LSI can be used a common or segment driver.

FUNCTION


- · Dot matrix LCD driver with 40 channel output.
- Selectable function to use common/segment drivers simultaneously.
- Input/Output signal
 - output; 20 × 2 channel waveform for LCD driving
 - input; Serial display data and control pulse from the controller LSI.
 - Bias voltage (V₁-V₆)

FEATURES

- · Display driving bias; static-1/5
- Power supply voltage; +5V ±10%
- Supply voltage for display: 0~-5V(VEE)
- interface

driver (cascade connection)	controller			
Other KS0065B, KS0063	KS0066			

- CMOS Process
- · 60QFP and bare chip available

35

PIN CONFIGURATION

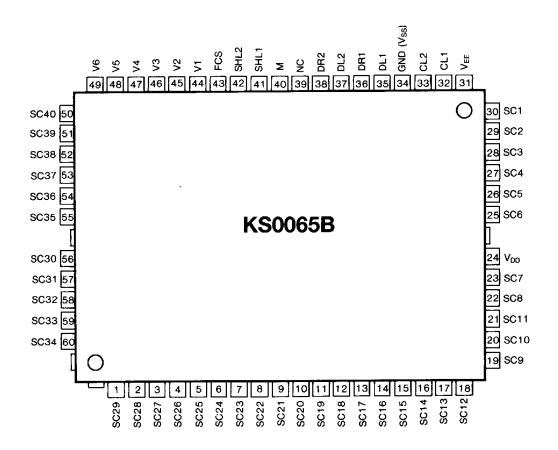


Fig. 2. 60 QFP Top View

PIN(No.)	INPUT/ OUTPUT	N.	AME	DESCRIPTION	INTERFACE			
V _{DD} (24)				For logical circuit (+5V±10%)				
GND(34)		Powe	r Supply	OV (GND)	Power			
V _{EE} (31)				For LCD driver circuit (-5V)	Supply			
V ₁ V ₂ (44, 45)	Input	Bia	Bias Vtg Bias voltage level for LCD drive (select level)					
SC ₁ ~SC ₂₀	Output		LCD driver	LCD driver output	LCD			
V ₃ V ₄ (46, 47)	Input	Part 1	Bias Vtg	Bias voltage level for LCD drive (nonselect level)	power			
SHL1 (41)	Input	raiti	Data interface	Selection of the shift direction of Part 1 shift register SHL1 DL1 DR1	V _{DD} or V _{SS}			
DL1, DR1 (35, 36)	Input Output			Data input/output of Part 1 shift register	Controller or KS0065B			
SC ₂₁ ∼SC ₄₀	Output		LCD driver	LCD driver output	LCD			
V5 V6 (48, 49)	Input	Part 2	Bias Vtg	Bias Vtg Bias voltage level for LCD drive (non select level)				
SHL2 (42)	Input		Data Interface	Selection of the shift direction of Part 2 shift register SHL2 DL2 DR2	V _{DD} or V _{SS}			
DL2.DR2 (37, 38) M	Input Output Input	Alter	Data input/output of Part 2 shift register Alternated					
(40)		signal	for LCD	PART FCS CL1 CL2 M polarity	Controller			
CL1.CL2 (32, 33)	Input	Data /latch	output shift clock	1 VSS VDD latch clock shift clock M () VSS VSS VSS VSS VSS VSS VSS VSS VSS V				
FCS(43)	Input	Mode s	selection	Shift/latch clock of display data and polarity of M				
				signal are changed by FCS signal. By setting FCS to V_{DD} level, user can select the function that use Part 1 as segment driver and Part 2 as common driver simultaneously.				
NC (39)				No connection pin	N.C			

MAXIMUM ABSOLUTE LIMIT (Ta=25°C)

Characteristic	Symbol	Value	Unit	
Power supply voltage	V _{DD}	-0.3~+7.0	V	
Driver supply voltage	VLCD	V _{DD} −13.5~V _{DD} +0.3	V	
Input voltage 1	V _{IN1}	-0.3~V _{DD} +0.3	V	
Input voltage 2 (V ₁ -V ₆)	. V _{IN2}	V _{DD} +0.3∼V _{EE} −0.3		
Operating temperature	T _{opr}	-20~+75	°C	
Storage temperature	T _{stg}	-55~+125	°C	

^{*}Voltage greater than above may damage to the circuit

ELECTRICAL CHARACTERISTICS

DC characteristics (V_{DD} =+5 $V\pm10\%$, V_{EE} =-5 $V\pm10\%$, V_{SS} =0V, T_a =25°C)

Characteristic	Symbol	ymbol Test condition		Max	Unit	Applicable pin	
C	I _{DD}	f _{CL2} =400KHz		1	mA		
Supply current*	lEE	f _{CL1} =1kHz		10	μΑ		
	V _{IH}		0.7 V _{DD}	V _{DD}	v	CL1, CL2, DL1, DL2	
Input voltage	VIL			0.3 V _{DD}		DR1, DR2, SHL1, SHL2, M, FCS	
Input leakage current IIL		V _{IN} =0-V _{DD}	-5	5	μΑ		
	V _{OH}	I _{OH} = −0.4mA	V _{DD} -0.4	_		DL1, DL2, DR1, DR2	
Output Voltage	V _{OL}	I_{OL} =+0.4mA	I	0.4	v		
Walters descending	V _{d1}	I _{ON} =0.1mA for one of SC1-SC40		1.1	'	V(V ₁ -V ₆)-SC(SC1-SC40)	
Voltage descending	V _{d2}	I _{ON} =0.05mA for each SC1-SC40		1.5			
Leakage current	l _{v1}	V _{IN} =V _{DD} ~V _{EE}	-10	10	μА	V ₁ -V ₆	
Ü	_	(Output SC1-SC40: floating)					

AC CHARACTERISTICS (V_{DD} =+5V±10%, V_{EE} =-5V±10%, V_{SS} =0V, T_a =25°C)

Characteristic	Symbol	Test condition	Min	Max	Unit	Applicable pin
Data shift frequency	fcl.	_	. –	400	KHz	CL2
Clock high level width	tcwn	_	800	_		CL1, CL2
Clock low level width	towl	_	800	_		CL2
Clock set-up time	tsL	from CL2 to CL1	500	_	ns	
	tLS	from CL1 to CL2	500	_		CL1, CL2
Clock rise/fall time	tcT	_	_	200]	
Data set-up time	tsu	_	300	_		DL1, DL2, DR1, DR2, FLM
Data hold time	tрн	_	300	_		DET, DEE, DITT, DITE, I EN
Data delay time	teo	CL=15pF	_	500	1	DL1, DL2, DR1, DR2

^{*} Input/output current is excluded; When input is at the intermediate level with CMOS, excessive current flows through the input circuit to the power supply, To avoid this, input level must be fixed at "H" or "L".

^{*}V_{EE}: connect a protection resistor (220 Ω ±5%)

TIMING CHARACTERISTICS

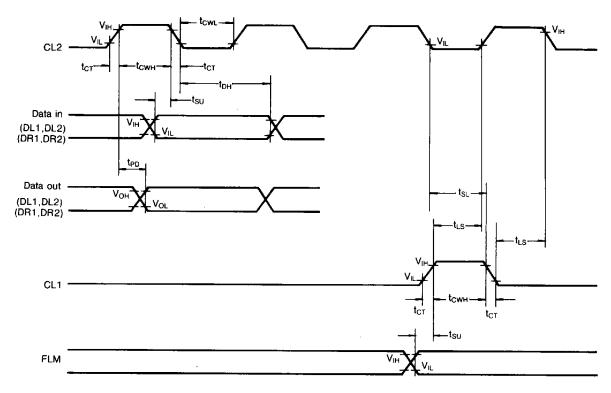


Fig. 3. AC characteristics

FUNCTIONAL DESCRIPTION

To drive segment type
 When the FCS is connected to Vss, KS0065B(SC1-SC40) is operated as segment driver.(refer to fig 4)

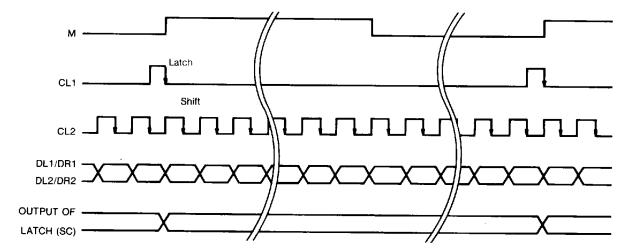


Fig. 4. Segment Data Waveforms

39

2) To drive common type

When the FCS is connected to VDD, only part2(SC21-SC40)of KS0065B is operated as common driver.(refer to Fig 5).

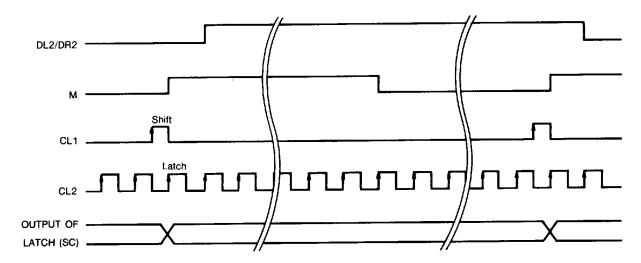
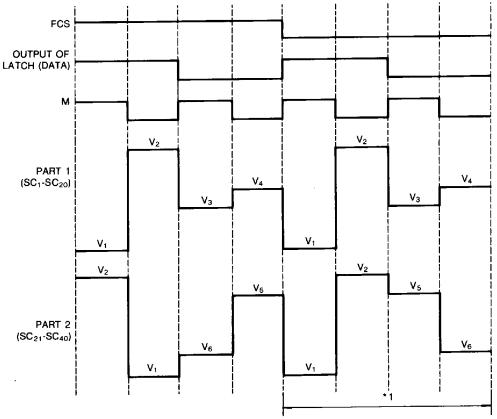
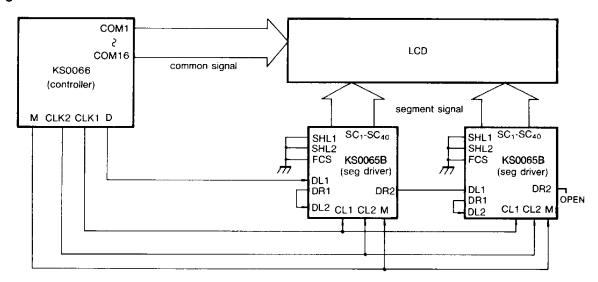


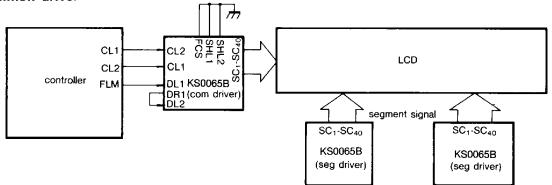
Fig. 5. Common Data Waveforms

LCD OUTPUT WAVEFORMS

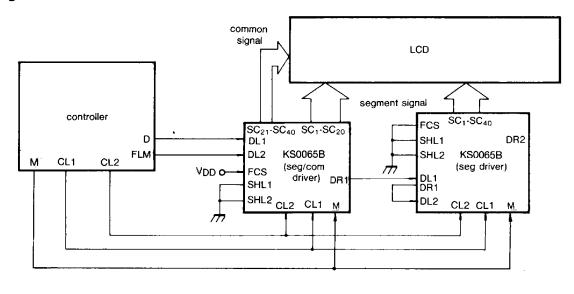



Fig. 6. Output waveform

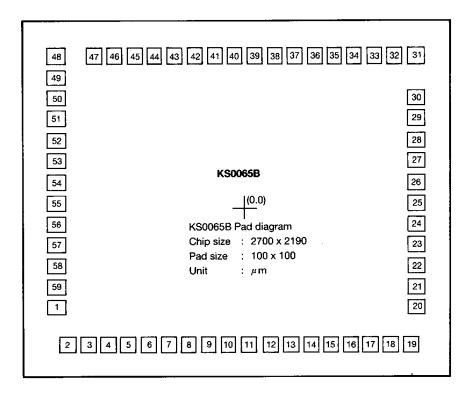
*1: To use for same function of part 1 and part 2, V3 and V5, V4 and V6 of power supply for LCD driver are short circuited respectively.



APPLICATION CIRCUIT


1) Segment driver

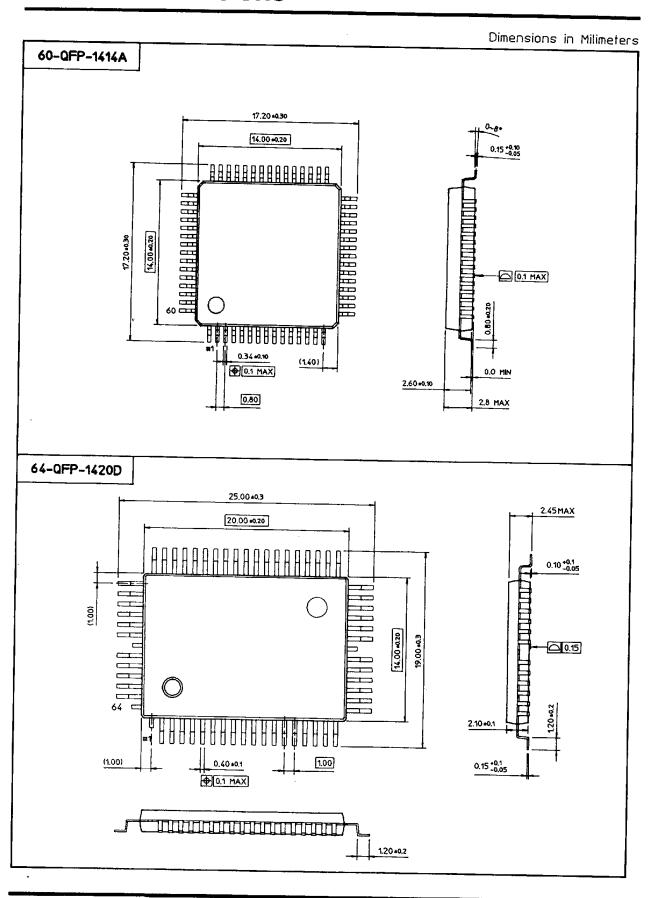
2) Common driver



3) Segment/common driver

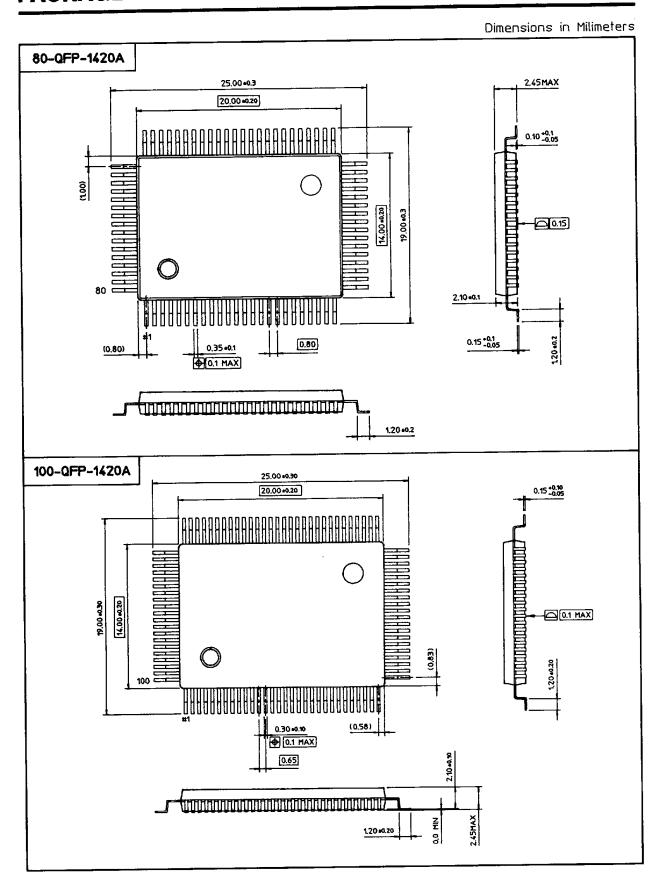
PAD DIAGRAM

PAD LOCATION

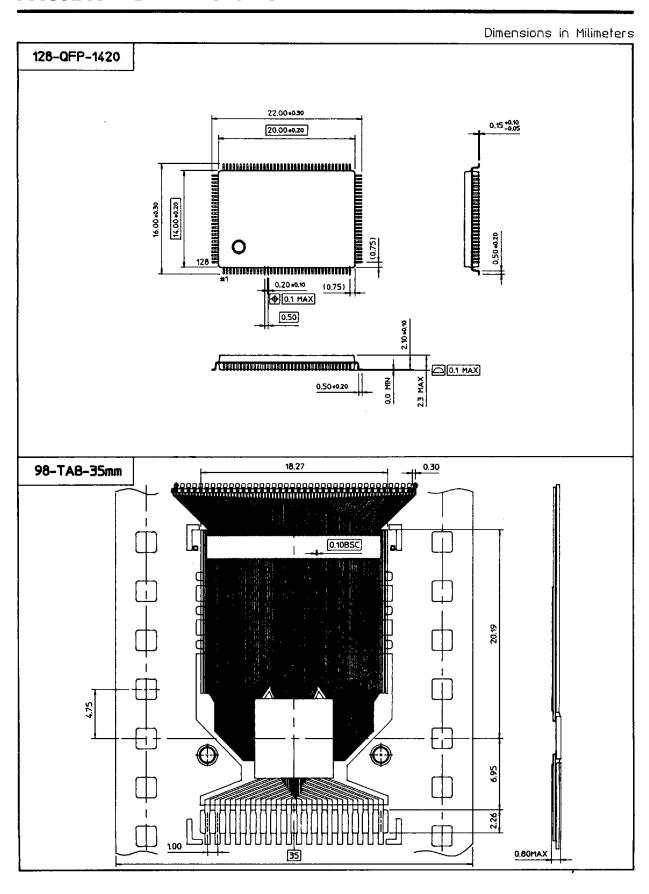

UNIT [um]

DAD NO	DAD MASSE	COOR	DINATE	DAD NO	PAD NAME	COORDINATE		
PAD NO.	PAD NAME	Х	Y	PAD NO.		X	Y	
1	VEE	-1120.2	-642.5	31	SC28	1117.5	865.2	
2	CL1	-1062.5	-865.2	32	SC27	992.5	865.2	
3	CL2	-937.5	-865.2	33	SC26	867.5	865.2	
4	Vss	-812.5	-865.2	34	SC25	742.5	865.2	
5	DL1	-687.5	-865.2	35	SC24	617.5	865.2	
6	DR ₁	-562.5	-865.2	36	SC23	492.5	865.2	
7	DL2	-437.5	-865.2	37	SC22	367.5	865.2	
8	DR ₂	-312.5	-865.2	38	SC21	242.5	865.2	
9	М	-187.5	-642.5	39	SC20	117.5	865.2	
10	SHL ₁	-62.5	-865.2	40	SC19	-7.5	865.2	
11	SHL2	62.5	-865.2	41	SC18	-132.5	865.2	
12	FCS	187.5	-865.2	42	SC17	-257.5	865.2	
13	V ₁	332.5	-865.2	43	SC16	-382.5	865.2	
14	V ₂	457.5	-865.2	44	SC15	-507.5	865.2	
15	V 3	582.5	-865.2	45	SC14	-632.5	865.2	
16	V4	707.5	-865.2	46	SC13	-757.5	865.2	
17	V 5	832.5	-865.2	47	SC12	-882.5	865.2	
18	V6	957.5	-865.2	48	SC9	-1120.2	857.5	
19	SC40	1082.5	-865.2	49	SC10	-1120.2	732.5	
20	SC39	1120.2	-627.5	50	SC11	-1120.2	607.5	
21	SC38	1120.2	-502.5	51	SC8	-1120.2	482.5	
22	SC37	1120.2	-377.5	52	SC7	-1120.2	357.5	
23	SC36	1120.2	-252.5	53	VDD	-1120.2	232.5	
24	SC35	1120.2	-127.5	54	SC6	-1120.2	107.5	
25	SC30	1120.2	-2.5	55	SC5	-1120.2	-17.5	
26	SC31	1120.2	122.5	56	SC4	-1120.2	-142.5	
27	SC32	1120.2	247.5	57	SC3	-1120.2	-267.5	
28	SC33	1120.2	372.5	58	SC2	-1120.2	-392.5	
29	SC34	1120.2	497.5	59	SC1	-1120.2	-517.5	
30	SC29	1120.2	622.5					
	·		<u> </u>		1			

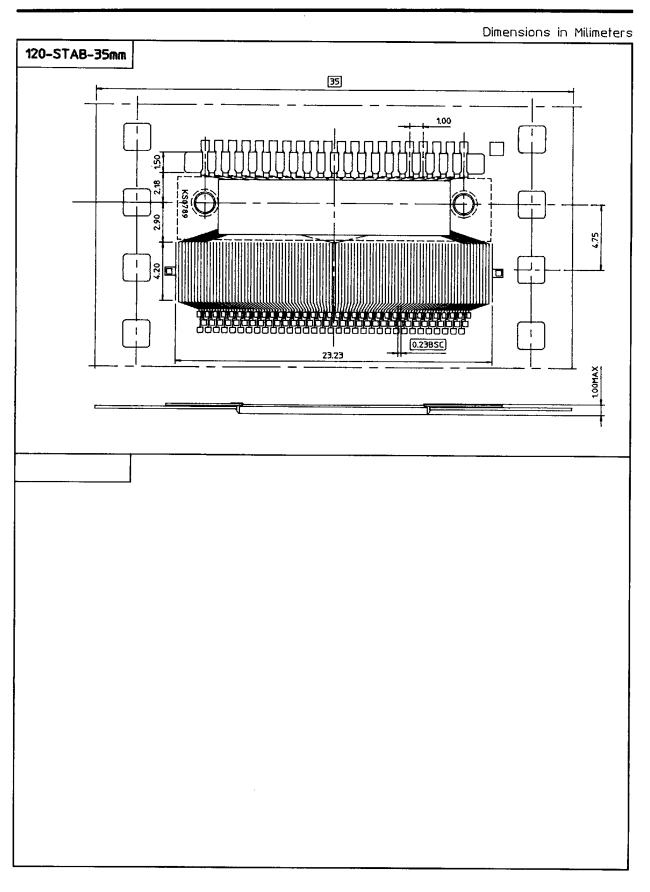
Note: (0.0) is center in the chip



43



PACKAGE DIMENSIONS



PACKAGE DIMENSIONS

Dimensions in Milimeters 98-STAB-35mm 35 99-TAB-35mm 35 0.80MAX 5.50 7.95

