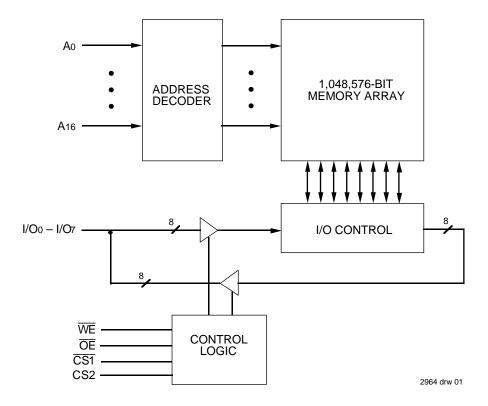


### CMOS STATIC RAM 1 MEG (128K x 8-BIT)

**IDT71024** 

#### **FEATURES:**

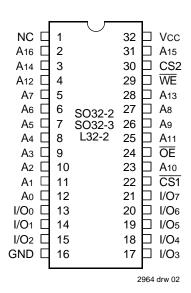
- 128K x 8 advanced high-speed CMOS static RAM
- Commercial (0° to 70°C), Industrial (-40° to 85°C) and Military (-55° to 125°C) temperature options
- Equal access and cycle times
  - Military: 15/17/20/25nsIndustrial: 15/20ns
  - Commercial: 12/15/17/20ns
- Two Chip Selects plus one Output Enable pin
- · Bidirectional inputs and outputs directly TTL-compatible
- · Low power consumption via chip deselect
- Available in 300 and 400 mil Plastic SOJ, and LCC packages
- Military product compliant to MIL-STD-883, Class B


#### **DESCRIPTION:**

The IDT71024 is a 1,048,576-bit high-speed static RAM organized as 128K x 8. It is fabricated using IDT's high-performance, high-reliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a cost-effective solution for high-speed memory needs.

The IDT71024 has an output enable pin which operates as fast as 6ns, with address access times as fast as 12ns available. All bidirectional inputs and outputs of the IDT71024 are TTL-compatible and operation is from a single 5V supply. Fully static asynchronous circuitry is used; no clocks or refreshes are required for operation.

The IDT71024 is packaged in 32-pin 300 mil Plastic SOJ, 32-pin 400 mil Plastic SOJ, and 32-pin 400 x 820 mil LCC packages.


#### **FUNCTIONAL BLOCK DIAGRAM**



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

**MAY 1997** 

#### **PIN CONFIGURATION**



SOJ/LCC TOP VIEW

### ABSOLUTE MAXIMUM RATINGS(1)

| Symbol               | Rating                              | Com'l, Ind'l | Mil.         | Unit |
|----------------------|-------------------------------------|--------------|--------------|------|
| VTERM <sup>(2)</sup> | Terminal Voltage<br>Relative to GND | -0.5 to +7.0 | -0.5 to +7.0 | >    |
| TBIAS                | Temperature<br>Under Bias           | -55 to +125  | -65 to +135  | ô    |
| Tstg                 | Storage<br>Temperature              | -55 to +125  | -65 to +150  | °C   |
| Рт                   | Power<br>Dissipation                | 1.25         | 1.25         | W    |
| lout                 | DC Output<br>Current                | 50           | 50           | mA   |

#### NOTES:

2964 tbl 02

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. VTERM must not exceed Vcc + 0.5V.

### TRUTH TABLE(1,2)

| INPUTS |                    |                    |    |         |                           |
|--------|--------------------|--------------------|----|---------|---------------------------|
| WE     | CS1                | CS2                | ŌĒ | I/O     | FUNCTION                  |
| Χ      | Н                  | Χ                  | Χ  | High-Z  | Deselected-Standby (ISB)  |
| Х      | VHC <sup>(3)</sup> | Χ                  | Χ  | High-Z  | Deselected-Standby (ISB1) |
| Х      | Х                  | L                  | Х  | High-Z  | Deselected-Standby (ISB)  |
| Х      | Х                  | VLC <sup>(3)</sup> | Х  | High-Z  | Deselected-Standby (ISB1) |
| Н      | L                  | Н                  | Н  | High-Z  | Outputs Disabled          |
| Н      | L                  | Н                  | L  | DATAOUT | Read Data                 |
| L      | L                  | Η                  | Х  | DATAIN  | Write Data                |

#### NOTES:

2964 tbl 01

- 1.  $H = V_{IH}$ ,  $L = V_{IL}$ , X = Don't care.
- 2. VLC = 0.2V, VHC = VCC -0.2V.
- 3. Other inputs  $\geq$ VHC or  $\leq$ VLC.

# RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

| Grade Temperature |                 | GND | Vcc             |
|-------------------|-----------------|-----|-----------------|
| Commercial        | 0°C to +70°C    | 0V  | $5.0V \pm 0.5V$ |
| Industrial        | -40°C to +85°C  | 0V  | $5.0V \pm 0.5V$ |
| Military          | -55°C to +125°C | 0V  | $5.0V \pm 0.5V$ |

2964 tbl 03

# RECOMMENDED DC OPERATING CONDITIONS

| Symbol | Parameter          | Min.         | Тур. | Max.    | Unit |
|--------|--------------------|--------------|------|---------|------|
| Vcc    | Supply Voltage     | 4.5          | 5.0  | 5.5     | V    |
| GND    | Supply Voltage     | 0            | 0    | 0       | V    |
| VIH    | Input High Voltage | 2.2          | _    | Vcc+0.5 | V    |
| VIL    | Input Low Voltage  | $-0.5^{(1)}$ | _    | 0.8     | V    |

NOTE:

2964 tbl 04

1.  $V_{IL}$  (min.) = -1.5V for pulse width less than 10ns, once per cycle.

#### DC ELECTRICAL CHARACTERISTICS

 $VCC = 5.0V \pm 10\%$ 

|        |                        |                                                                         | IDT71024 |      |      |
|--------|------------------------|-------------------------------------------------------------------------|----------|------|------|
| Symbol | Parameter              | Test Condition                                                          | Min.     | Max. | Unit |
| ILI    | Input Leakage Current  | Vcc = Max., Vin = GND to Vcc                                            | _        | 5    | μΑ   |
| ILO    | Output Leakage Current | Vcc = Max., $\overline{\text{CS1}}$ = ViH, CS2 = ViL, Vout = GND to Vcc | _        | 5    | μΑ   |
| Vol    | Output LOW Voltage     | IOL = 8mA, Vcc = Min.                                                   | _        | 0.4  | V    |
| Voн    | Output HIGH Voltage    | Iон = -4mA, Vcc = Min.                                                  | 2.4      | _    | V    |

2964 tbl 05

### DC ELECTRICAL CHARACTERISTICS(1)

 $(VCC = 5.0V \pm 10\%, VLC = 0.2V, VHC = VCC - 0.2V)$ 

|        |                                                                                                                                                                        | 71024S12 |      | 024S12 71024S15 |      | 71024\$17 |      | 71024S20 |      | 71024\$25 |      |      |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-----------------|------|-----------|------|----------|------|-----------|------|------|
| Symbol | Parameter                                                                                                                                                              | Com'l.   | Mil. | Com'l.          | Mil. | Com'l.    | Mil. | Com'l.   | Mil. | Com'l.    | Mil. | Unit |
| Icc    | Dynamic Operating Current, $CS2 \ge V_{IH}$ and $CS2 \ge V_{IH}$ and $\overline{CS1} \le V_{IL}$ , Outputs Open, $VCC = Max.$ , $f = f_{MAX}^{(2)}$                    | 160      |      | 155             | 180  | 150       | 170  | 140      | 160  | _         | 145  | mA   |
| ISB    |                                                                                                                                                                        | 35       | _    | 35              | 40   | 35        | 40   | 35       | 40   | _         | 35   | mA   |
| ISB1   | Full Standby Power Supply Current (CMOS Level) $\overline{CS1} \ge VHC$ , or CS2 $\le VLC$ Outputs Open, $VCC = Max.$ , $f = 0^{(2)}$ , $VIN \le VLC$ or $VIN \ge VHC$ | 10       | _    | 10              | 15   | 10        | 15   | 10       | 15   | _         | 15   | mA   |

NOTES:

2964 tbl 06

## DC ELECTRICAL CHARACTERISTICS(1)

 $(VCC = 5.0V \pm 10\%, V_{LC} = 0.2V, V_{HC} = V_{CC} - 0.2V)$ 

|        |                                                                                                                                                                         | 71024S15   | 71024S20   |      |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------|
| Symbol | Parameter                                                                                                                                                               | Industrial | Industrial | Unit |
| Icc    | Dynamic Operating Current, $CS2 \ge VIH$ and $CS2 \ge VIH$ and $CS2 \ge VIH$ and $CS1 \le VIL$ , Outputs Open, $VCC = Max.$ , $f = fMAX^{(2)}$                          | 180        | 160        | mA   |
| ISB    | Standby Power Supply Current (TTL Level) $\overline{\text{CS1}} \ge \text{VIH or CS2} \le \text{VIL, Outputs Open,}$ $\text{VCC} = \text{Max., } f = \text{fMAX}^{(2)}$ | 45         | 45         | mA   |
| ISB1   | Full Standby Power Supply Current (CMOS Level) $\overline{CS1} \ge VHC$ , or $CS2 \le VLC$ Outputs Open, $VCC = Max.$ , $f = 0^{(2)}$ , $VIN \le VLC$ or $VIN \ge VHC$  | 15         | 15         | mA   |

#### NOTES:

2964 tbl 07

#### **CAPACITANCE**

 $(TA = +25^{\circ}C, f = 1.0MHz, SOJ package)$ 

| Symbol | Parameter <sup>(1)</sup> | Conditions | Max. | Unit |
|--------|--------------------------|------------|------|------|
| CIN    | Input Capacitance        | VIN = 3dV  | 7    | pF   |
| CI/O   | I/O Capacitance          | Vout = 3dV | 8    | pF   |

NOTE

2964 tbl 08

 This parameter is guaranteed by device characterization, but is not production tested.

<sup>1.</sup> All values are maximum guaranteed values.

<sup>2.</sup> fMAX = 1/tRC (all address inputs are cycling at fMAX); f = 0 means no address input lines are changing.

<sup>1.</sup> All values are maximum guaranteed values.

<sup>2.</sup> fMAX = 1/trc (all address inputs are cycling at fMAX); f = 0 means no address input lines are changing.

### **AC TEST CONDITIONS**

| Input Pulse Levels            | GND to 3.0V         |
|-------------------------------|---------------------|
| Input Rise/Fall Times         | 3ns                 |
| Input Timing Reference Levels | 1.5V                |
| Output Reference Levels       | 1.5V                |
| AC Test Load                  | See Figures 1 and 2 |

2964 tbl 09

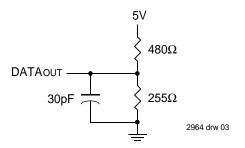
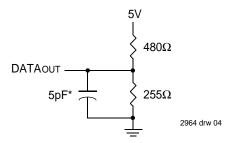




Figure 1. AC Test Load



\*Including jig and scope capacitance.

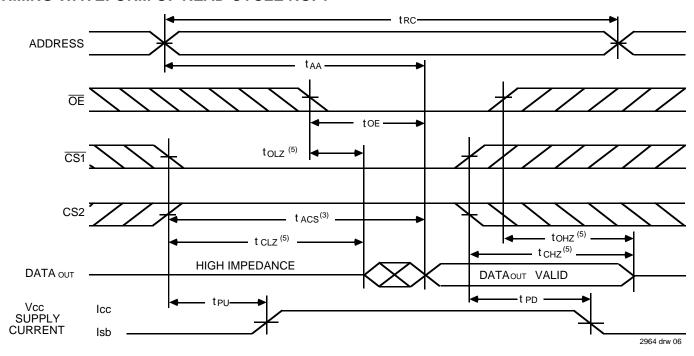
Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)

### AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

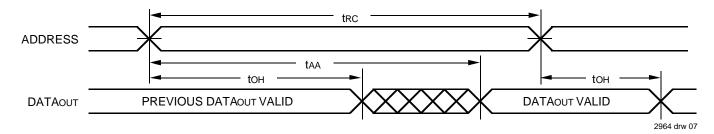
|                     |                                    | 71024 | S12 <sup>(1)</sup> | 7102 | 4S15 | 71024 | S17 <sup>(3)</sup> | 71024 | 4S20 | 71024 | S25 <sup>(2)</sup> |      |
|---------------------|------------------------------------|-------|--------------------|------|------|-------|--------------------|-------|------|-------|--------------------|------|
| Symbol              | Parameter                          | Min.  | Max.               | Min. | Max. | Min.  | Max.               | Min.  | Max. | Min.  | Max.               | Unit |
| Read Cy             | cle                                |       |                    |      |      |       |                    |       |      |       |                    |      |
| trc                 | Read Cycle Time                    | 12    | _                  | 15   | _    | 17    | _                  | 20    | _    | 25    | _                  | ns   |
| tAA                 | Address Access Time                | _     | 12                 | _    | 15   | _     | 17                 | _     | 20   | _     | 25                 | ns   |
| tacs                | Chip Select Access Time            | _     | 12                 | _    | 15   | _     | 17                 | _     | 20   | _     | 25                 | ns   |
| tcLZ <sup>(4)</sup> | Chip Select to Output in Low-Z     | 3     | _                  | 3    | _    | 3     | _                  | 3     | _    | 3     | _                  | ns   |
| tcHZ <sup>(4)</sup> | Chip Deselect to Output in High-Z  | 0     | 6                  | 0    | 7    | 0     | 8                  | 0     | 8    | 0     | 10                 | ns   |
| toe                 | Output Enable to Output Valid      | _     | 6                  | _    | 7    | _     | 8                  | _     | 8    | _     | 10                 | ns   |
| tolz <sup>(4)</sup> | Output Enable to Output in Low-Z   | 0     | _                  | 0    | _    | 0     | _                  | 0     | _    | 0     | _                  | ns   |
| toHZ <sup>(4)</sup> | Output Disable to Output in High-Z | 0     | 5                  | 0    | 5    | 0     | 6                  | 0     | 7    | 0     | 10                 | ns   |
| tон                 | Output Hold from Address Change    | 4     | _                  | 4    | _    | 4     | _                  | 4     | _    | 4     | _                  | ns   |
| tpu <sup>(4)</sup>  | Chip Select to Power-Up Time       | 0     | _                  | 0    | _    | 0     | _                  | 0     | _    | 0     | _                  | ns   |
| tPD <sup>(4)</sup>  | Chip Deselect to Power-Down Time   | _     | 12                 | _    | 15   | _     | 17                 | _     | 20   | _     | 25                 | ns   |
| Write Cy            | cle                                |       |                    |      |      |       |                    |       |      |       |                    |      |
| twc                 | Write Cycle Time                   | 12    | _                  | 15   | _    | 17    | _                  | 20    | _    | 25    | _                  | ns   |
| taw                 | Address Valid to End-of-Write      | 10    | _                  | 12   |      | 13    | _                  | 15    | _    | 15    | _                  | ns   |
| tcw                 | Chip Select to End-of-Write        | 10    | _                  | 12   | _    | 13    | _                  | 15    | _    | 15    | _                  | ns   |
| tas                 | Address Set-up Time                | 0     | _                  | 0    | _    | 0     | _                  | 0     | _    | 0     | _                  | ns   |
| twp                 | Write Pulse Width                  | 10    | _                  | 12   | _    | 13    | _                  | 15    | _    | 15    | _                  | ns   |
| twr                 | Write Recovery Time                | 0     | _                  | 0    | 1    | 0     |                    | 0     | _    | 0     | _                  | ns   |
| tow                 | Data Valid to End-of-Write         | 7     | _                  | 8    | _    | 9     | _                  | 9     | _    | 10    | _                  | ns   |
| tDH                 | Data Hold Time                     | 0     | _                  | 0    | _    | 0     | _                  | 0     | _    | 0     | _                  | ns   |
| tow <sup>(4)</sup>  | Output Active from End-of-Write    | 3     | _                  | 3    | _    | 3     | _                  | 4     | _    | 4     | _                  | ns   |
| twhz <sup>(4)</sup> | Write Enable to Output in High-Z   | 0     | 5                  | 0    | 5    | 0     | 7                  | 0     | 8    | 0     | 9                  | ns   |

#### NOTES:

1.  $0^{\circ}$ C to +70°C temperature range only.


2964 tbl 010

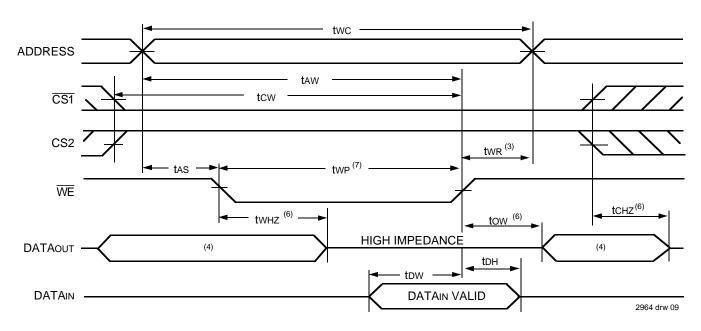
<sup>2. -55°</sup>C to +125°C temperature range only.


<sup>3.</sup>  $0^{\circ}$ C to +70°C and -55°C to +125°C temperature ranges only.

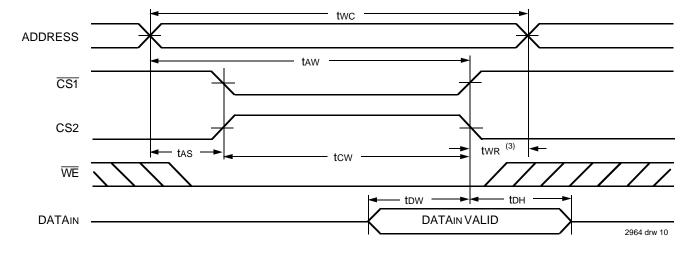
<sup>4.</sup> This parameter guaranteed with the AC load (Figure 2) by device characterization, but is not production tested.

# TIMING WAVEFORM OF READ CYCLE NO. 1<sup>(1)</sup>




# TIMING WAVEFORM OF READ CYCLE NO. 2<sup>(1, 2, 4)</sup>

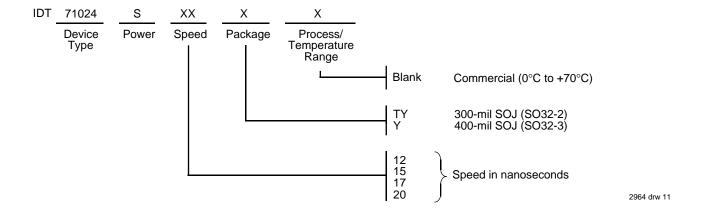


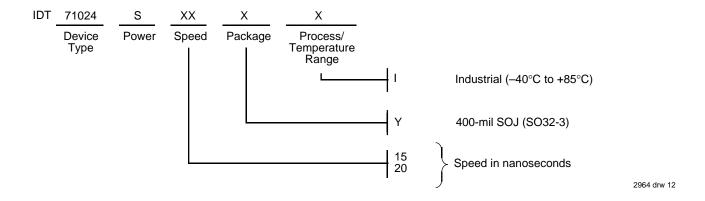

#### NOTES:

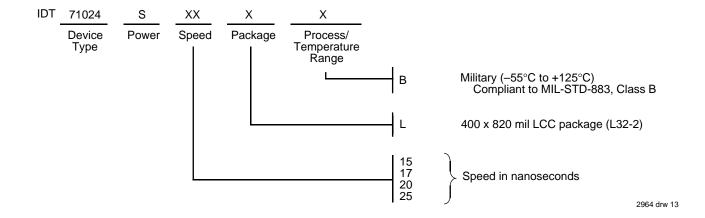
- 1. WE is HIGH for Read Cycle.
- 2. Device is continuously selected,  $\overline{\text{CS1}}$  is LOW, CS2 is HIGH.
- 3. Address must be valid prior to or coincident with the later of  $\overline{\text{CS1}}$  transition LOW and CS2 transition HIGH; otherwise tAA is the limiting parameter.
- 4.  $\overline{\mathsf{OF}}$  is LOW
- 5. Transition is measured ±200mV from steady state.

# TIMING WAVEFORM OF WRITE CYCLE NO. 1 ( $\overline{\text{WE}}$ CONTROLLED TIMING) $^{(1, 2, 5, 7)}$




# TIMING WAVEFORM OF WRITE CYCLE NO. 2 ( $\overline{\text{CS1}}$ AND CS2 CONTROLLED TIMING) $^{(1,\,2,\,5)}$





#### **NOTES**

- 1. WE must be HIGH, CS1 must be HIGH, or CS2 must be LOW during all address transitions.
- 2. A write occurs during the overlap of a LOW  $\overline{\text{CS1}}$ , HIGH CS2, and a LOW  $\overline{\text{WE}}$ .
- 3. twn is measured from the earlier of either CS1 or WE going HIGH or CS2 going LOW to the end of the write cycle.
- 4. During this period, I/O pins are in the output state, and input signals must not be applied.
- 5. If the CS1 LOW transition or the CS2 HIGH transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high impedance state. CS1 and CS2 must both be active during the tcw write period.
- 6. Transition is measured ±200mV from steady state.
- 7.  $\overline{OE}$  is continuously HIGH. During a  $\overline{WE}$  controlled write cycle with  $\overline{OE}$  LOW, twp must be greater than or equal to twHz + tbw to allow the I/O drivers to turn off and data to be placed on the bus for the required tbw. If  $\overline{OE}$  is HIGH during a  $\overline{WE}$  controlled write cycle, this requirement does not apply and the minimum write pulse is the specified twp.

#### ORDERING INFORMATION





