Advanced CRT Controller (ACRTC)

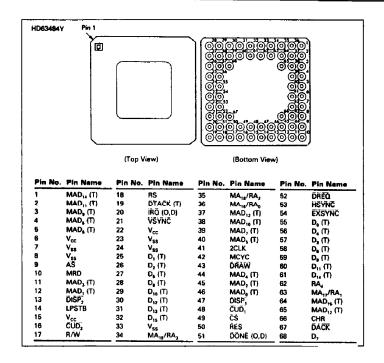
The advanced CRT controller (ACRTC) CMOS VLSI microcomputer peripheral device can display both graphics and characters on raster-scan displays. It is a new generation CRT controller based on bitmapped technology. It executes high-level commands, like Line, Ellipse, Paint, Pattern, and Copy, issued by the MPU in screen X-Y coordinates, and performs the address translation necessary to draw into frame memory. It can draw in up to 64k colors, on three split screens and an independent window, and perform area clipping and hitting.

The ACRTC controls a CRT in one of three modes: character only, graphics only, and multiplexed character/graphics modes. Therefore, the ACRTC has many applications, from character-only displays to large full-graphics systems.

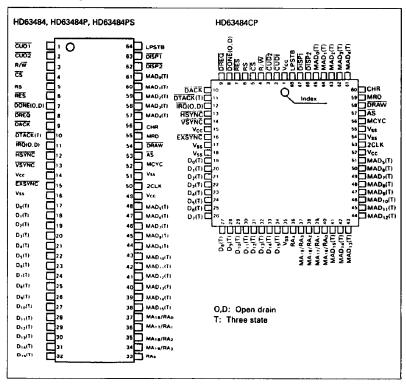
The ACRTC reduces CPU software overhead and enhances system throughput.

Features

- High-speed graphics
 - Drawing rate: 408 ns/pixel max (color drawing)
 - Commands: 38 commands including 23 graphic drawing commands
 Dot, Line, Rectangle, Poly-line, Polygon, Circle, Ellipse, Paint, Copy, etc.


- -Colors: 16 bits/word
- 1, 2, 4, 8, 16 bits/pixel (5 types) Monochrome to 64k colors max
- -Pattern RAM: 32 bytes
- —Converts logical X-Y coordinates to physical address
- -Color operation and conditional drawing
- Drawing area control for hardware clipping and hitting
- Large frame-memory space
 - —Maximum 2 Mbytes graphic memory and 128 kbytes character memory separate from the MPU memory
 - —Maximum resolution: 4096×4096 pixels (1 bit/pixel mode)
- CRT display control
 - —Split screens: three displays and one window
 - -Zoom: 1 to 16 times
 - -Scroll: vertical and horizontal
- Interleaved access mode for flashless display and superimposition
- External synchronization between ACRTCs or between ACRTC and external device (TV system or other controller)
- DMA interface
- Two programmable cursors
- Three scan modes
 - -Non-interlaced
 - -Interlace sync
 - —Interlace sync and video
- Interrupt request to MPU
- 256 characters/line 32 raster/line, 4096 rasters/screen
- Maximum clock frequency: 9.8 MHz
- CMOS, single +5 V power supply

Ordering Information


Part No.	Clock Frequency (2CLK)	Package				
HD63484-4	4 MHz	DC-64				
HD63484-6	6 MHz	(64-pin ceramic DIP)				
HD63484-8	8 MHz					
HD63484-98	9.8 MHz					
HD63484P4	4 MHz	DP-64				
HD63484P6	6 MHz	(64-pin plastic DIP)				
HD63484P8	8 MHz					
HD63484P98	9.8 MHz					
HD63484CP4	4 MHz	CP-68				
HD63484CP6*	6 MHz	(68-pin plastic PLCC)				
HD63484CPB	8 MHz					
HD63484CP98	9.8 MHz					
HD63484Y4	4 MHz	PC-68				
HD63484Y6	6 MHz	(68-pin PGA)				
HD63484Y8	8 MHz	•				
HD63484Y98	9.8 MHz					
HD63484PS4	4 MHz	DP-64S				
HD63484P\$6	6 MHz	(64-pin plastic shrink DIP				
HD63484PS8	8 MHz					
HD63484PS98	9.8 MHz					

Note: Wide temperature range (-400° to +800°) version is available.

Pin Arrangement

OHITACHI

Pin Description

D:-	MI	L
rın	Num	Der

			7 111 1401112		-	
Group	Mnenionic	DIP	PLCC	PGA	1/0	Function
MPU	RES	6	7	50	l	ACRTC reset
Interface	D ₀ -D ₁₅ *	17-32	19-34	25 -32 55-61 68	1/0	Data bus (three state)
	R/W	3	4	17	I	Read/write strobe
	CS	4	5	49	1	Chip select
	RS	5	6	18	1	Register select
	DTACK	10	11	19	0	Data transfer acknowledge (three state)
	IRQ	11	12	20	0	Interrupt request (open drain)
DMAC	DREQ	8	9	52	0	DMA request
Interface	DACK	9	10	67	1	DMA acknowledge
	DONE	7	8	51	1/0	DMA done (open drain)
CRT	2CLK	50	53	41	ł	ACRTC clock
Interface	MAD ₀ -MAD ₁₅ *	61-57, 48-38	65-61, 51-41	1-5, 11,12 37-40,44- 46, 64, 65		Multiplexed frame buffer address/data bus
	ĀS	53	57	9	0	Adress strobe
	MA ₁₆ /RA ₀ -* MA ₁₉ /RA ₃	37-34	40-37	34-36	0	Higher-order address bits/ character screen raster address
	RA₄	33	36	62	0	High-order character screen raster address bit
	CHR	56	60	66	0	Graphic or character screen access
	MCYC	52	56	42	0	Frame buffer memory access timing signal
	MRD	55	59	10	0	Frame buffer memory read
	DRAW	54	58	43	0	Draw/refresh signal
	DISP1, DISP2	63, 62	67, 66	47, 13	0	Display enable
	CUD1, CUD2	1,2	2,3	48,16		Cursor display
	VSYNC	13	14	21	0	CRT vertical sync pulse
	HSYNC	12	13	53		CRT horizontal sync pulse
	EXSYNC	15	16	54	1/0	External sync
	LPSTB	64	68	14	ŀ	Lightpen strobe
Power	V _{cc}	14, 49	1, 15, 52	6, 15, 22		+5 V
Supply	V _{ss}	16, 51	17, 18, 35, 54, 55	7, 8, 23 24, 33		Ground

^{*:} PGA pin numbers don't correspond to D_0 - D_{15} , MAD_0 - MAD_{16} , MA_{16} / RA_0 - MA_{19} / RA_3 . Please refer to the pin arrangement.

MPU Interface

RES (Reset): RES is the MPU hardware reset.

 D_0 - D_{15} (Data Bus): D_0 - D_{15} are the bidirectional data bus to/from the host MPU or DMAC. D_0 - D_7 are used in 8-bit data bus mode.

R/W (Read/Write): R/W input controls the direction of host/ACRTC transfers.

CS (Chip Select): CS input enables transfers between the host and the ACRTC.

RS(Register Select): RS input selects the ACRTC register to be accessed. It is usually connected to the least significant bit of the host address bus.

DTACK (Data Transfer Acknowledge): DTACK output provides asynchronous bus cycle timing. It is compatible with the HD68000 MPU DTACK output.

IRQ (Interrupt Request): IRQ output generates interrupt service requests to the host MPU.

DMAC Interface

DREQ (DMA Acknowledge): DACK receives DMA acknowledge timing from the host DMAC.

DONE (DMA Done): DONE terminates DMA transfer. It is compatible with the HD68450 DMAC DONE signal.

CRT Interface

2CLK (**Dot Clock**): 2CLK is the basic ACRTC operating clock, twice the frequency of the dot clock.

 ${
m MAD_0\text{-}MAD_{15}}$ (Frame Memory Address/Data Bus): ${
m MAD_0\text{-}MAD_{15}}$ are the multiplexed frame buffer address/data bus.

 $\overline{\text{AS}}$ (Address Strobe): The $\overline{\text{AS}}$ output demultiplexes the address/data bus (MAD₀-MAD₁₅).

MA₁₆/RA₀-MA₁₉/RA₃ (Memory Address/Raster Address): MA₁₆/RA₀-MA₁₉/RA₃ are the upper bits of the graphics screen address multiplexed with the lower bits of the character screen raster address.

RA4 (Raster Address): RA4 is the high bit

of the character screen raster address (up to 32 rasters).

CHR (Character): CHR output indicates whether a graphic or character screen is being accessed.

MCYC (Memory Cycle): MCYC is the frame buffer memory access timing output, one-half the frequency of 2CLK.

MRD (Memory Read): MRD output controls the frame buffer data bus direction.

DRAW (**Draw**): DRAW output differentiates between drawing and CRT display refresh cycles.

DISP1, DISP2 (Display 1, 2): The DISP1 and DISP2 programmable display enable outputs can enable, disable, and blank logical screens.

CUD1, CUD2 (Cursor Display 1, 2): CUD1 and CUD2 outputs provides cursor timing programmed by ACRTC parameters such as cursor definition, cursor mode, cursor address, etc.

VSYNC (Vertical Sync): VSYNC outputs the CRT vertical synchronization pulse.

HSYNC (Horizontal Sync): HSYNC outputs the CRT horizontal synchronization pulse.

EXSYNC (External Sync): EXSYNC allows synchronization between multiple ACRTCs and other video signal generators.

LPSTB (**Lightpen Strobe**): LPSTB is the lightpen input.

Block Diagrams

ACRTC Functions

The ACRTC consists of 5 major functional blocks (figure 1). They operate in parallel to achieve maximum performance.

MPU Interface: The MPU interface interfaces asynchronously with the host MPU. Its functions include programmable interrupts handling, and DMA handshaking control.

CRT Interface: The CRT interface manages the frame buffer bus and the CRT timing input and output control signals. It also selects display refresh or drawing address outputs.

MHTACHI

Drawing Processor: The drawing processor interprets commands and command parameters issued by the host bus (MPU and/or DMAC) and performs drawing operations on the frame buffer memory. It executes ACRTC drawing algorithms and converts logical X-Y addresses to physical frame buffer addresses.

It communicates with the host bus via separate 16-byte read and write FIFOs.

Display Processor: The display processor manages frame buffer refresh addressing based on the user-specified display screen organization. It combines and displays as many as 4 independent screen segments (3 horizontal split screens and 1 window) using an internal high-speed address calculation unit. It controls display refresh outputs in graphic (physical frame buffer address) or character (physical refresh memory address + row address) modes.

Timing Processor: The timing processor generates the CRT synchronization signals and signals used internally by the ACRTC.

Registers: The ACRTC registers that are visible to software are partitioned in the same way. They reside in the internal processor appropriate to their function. The registers in the display and timing processors are loaded with the basic display parameters during system initialization. During operation, the host communicates primarily with the ACRTC's drawing processor via the on-chip FIFOs.

High-Speed (= 9.8 MHz) Version of ACRTC

To keep up with the demand for improvements in the quality and resolution of CRT monitors, Hitachi has introduced a 9.8 MHz version of the HD63484 (ACRTC).

It can be used for:

- High-resolution displays such as in office workstations, business personal computers, and CAD/CAM displays.
- Applications requiring faster drawing than the current ACRTC with an 8-MHz 2CLK operation frequency.

High-Resolution Display

As shown in figure A, the 9.8-MHz allows the following configurations for a 4-bit/pixel system:

- 1. CRT monitor with 1024×808 dots, + 8 DA or + 4 SA
- 2. CRT monitor from 800×480 to 960×720 dots, +4 DA

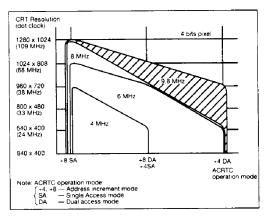


Figure A. ACRTC Operation Frequency and Supportable CRT Display Range

High-Speed Drawing Support

The ACRTC drawing speed depends on its operation frequency. Consequently it takes less time to draw with a 9.8-MHz clock than with an 8-MHz clock. Figure B compares drawing capabilities of the 9.8-MHz ACRTC and the 8-MHz ACRTC.

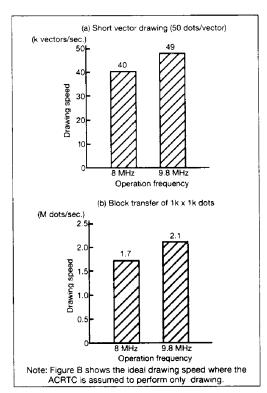


Figure B. Drawing Capability Comparison between 9.8-MHz and 8-MHz ACRTCs.

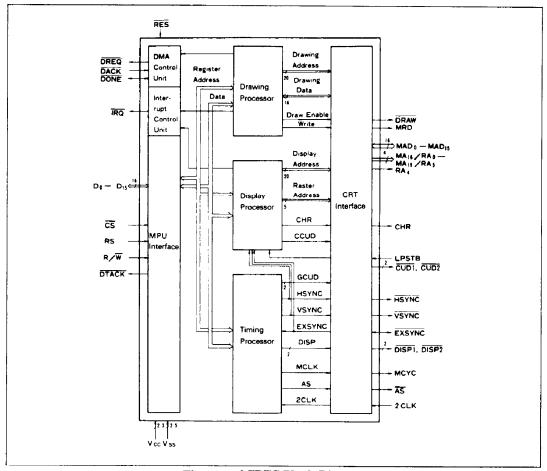


Figure 1 ACRTC Block Diagram

System Configuration

Current CRT controllers provide a single bus interface to the frame buffer that must be shared with the host MPU. However, refreshing large frame buffers, and accessing the frame buffer for drawing operations can quickly saturate the shared bus.

As shown in figure 2, the ACRTC uses separate host MPU and frame buffer interfaces. This allows the ACRTC full access to the frame buffer for display refresh and drawing operations and minimizes the ACRTC's use of the MPU system bus. A related benefit is that a large frame buffer (2 Mbyte for each ACRTC) can be used, even if the host MPU has a smaller address space or segment size restriction.

The ACRTC can use an external DMA controller. A DMA controller increases system throughput when many commands, parameters, and data must be transferred to the ACRTC. Advanced DMAC features, such as the HD68450 "chaining" modes can be used to develop powerful graphics system architectures.

However, more cost-sensitive or less performance-sensitive applications do not require a DMAC. The interface to the ACRTC can be handled under MPU software control.

While both ACRTC bus interfaces (host MPU and frame buffer) are 16 bits wide, the ACRTC also offers an 8-bit MPU mode for easy connection to popular 8-bit busses.

OHITACHI

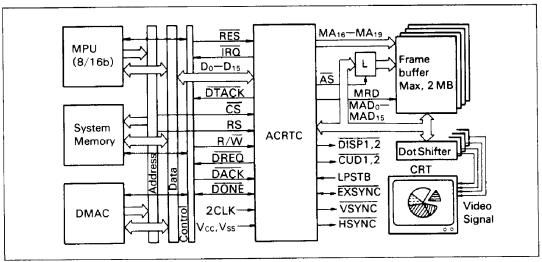


Figure 2 System Configuration

Programming Model

Address Space

The ACRTC allows the host to issue commands in logical X-Y coordinates. The ACRTC converts these physical linear word addresses with bit field offsets in the frame buffer. Figure 3 shows the relationship between the logical X-Y screen address and the frame buffer memory, which is organized as sequential 16-bit words. The host may specify logical pixels of 1, 2, 4, 8, or 16 physical bits in the frame buffer. The system in figure 3 uses 4-bit logical pixels, allowing 16 colors or tones to be selected.

Up to four logical screens (upper, base, lower, and window) are mapped onto the ACRTC physical address space. The host specifies a logical screen physical start address, logical screen physical memory width (memory words per raster), logical pixel physical memory width (bit per pixel), and the logical origin physical address. Then the ACRTC converts logical pixel X-Y addresses issued by the host MPU or the ACRTC drawing processor to physical frame buffer addresses. The ACRTC also performs bit extraction and masking to map logical pixel

operations (for example, 4 bits), to 16-bit word frame buffer addresses.

Registers

The ACRTC has over 200 bytes of accessible registers (figures 4, 5 and table 1). They are organized as hardware access, direct access, and FIFO access.

Hardware Access: The ACRTC is connected to the host MPU as a standard memory-mapped peripheral that occupies two word locations of the host's address space. The RS (register select) pin selects one of these two locations. When RS = 0 (low), read operations access the status register, and write operations access the address register.

The status register summarizes the ACRTC state. It monitors the overall state of the ACRTC for the host MPU.

When the MPU wants to access a direct access register, it puts the register's address

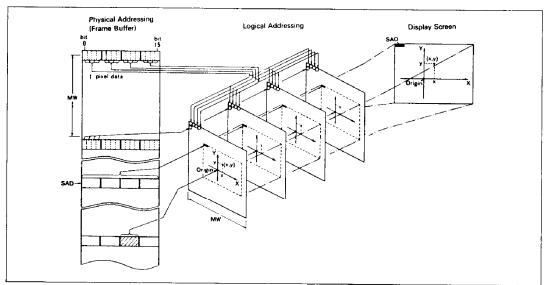


Figure 3. Logical/Physical Addressing

into the ACRTC address register.

Direct Access: The MPU accesses the direct access registers by first loading the register address into the address register. Then, when the MPU accesses the ACRTC with RS = 1 (high), the chosen register is accessed.

The FIFO entry register enables the MPU to access FIFO access registers using the ACRTC read and write FIFOs.

The command control register controls overall ACRTC operations, such as aborting or pausing commands, defining DMA protocols, and enabling/disabling interrupt sources.

The operation mode register defines basic parameters of ACRTC operation, such as frame buffer access mode, display or drawing priority, cursor and display timing skew factors, and raster scan mode.

The display control register independently enables and disables the four ACRTC logical address screens (upper, base, lower, and window). It also contains 8 user-defined video attribute bits.

The timing control RAM registers define ACRTC timing, including timing specifications for CRT control signals (HSYNC, VSYNC, etc), logical display screen size and

display period, and blink period.

The display control RAM contains registers which define logical screen display parameters, such as start address, raster address, and memory width. It also includes the cursor(s) definition, zoom factor, and lightpen registers.

FIFO Access: For high-performance drawing, key drawing processor registers are coupled to the host MPU via the ACRTC's 16-byte read and write FIFOs.

ACRTC commands are sent from the MPU via the write FIFO to the command register. As the ACRTC completes a command, the next command is automatically fetched from the write FIFO and put into the command register.

The pattern RAM defines drawing and painting patterns. It is accessed with the ACRTC's Read Pattern RAM (RPTN) and Write Pattern RAM (WPTN) register access commands.

The drawing parameter registers define detailed parameters of the drawing process, such as color data, area control (hitting/clipping), and pattern RAM pointers. The drawing parameter registers are accessed using the ACRTC's Read Parameter Register (RPR) and Write Parameter Register (WPR) commands.

MHITACHI

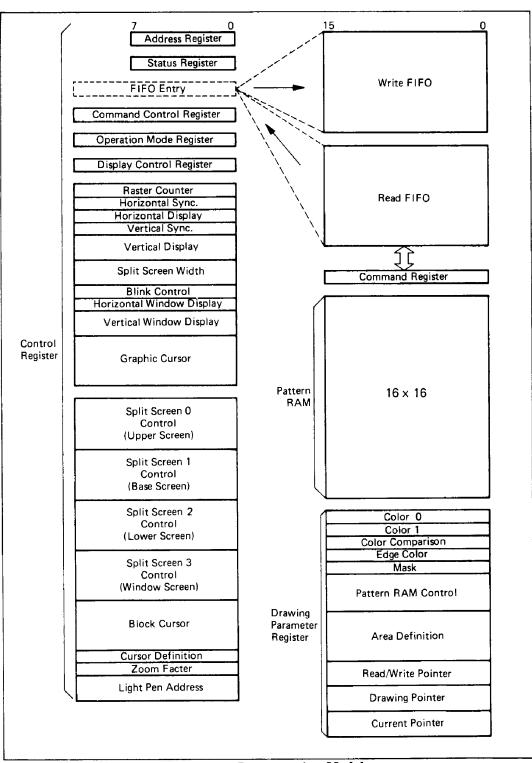


Figure 4. Programming Model

@HITACHI

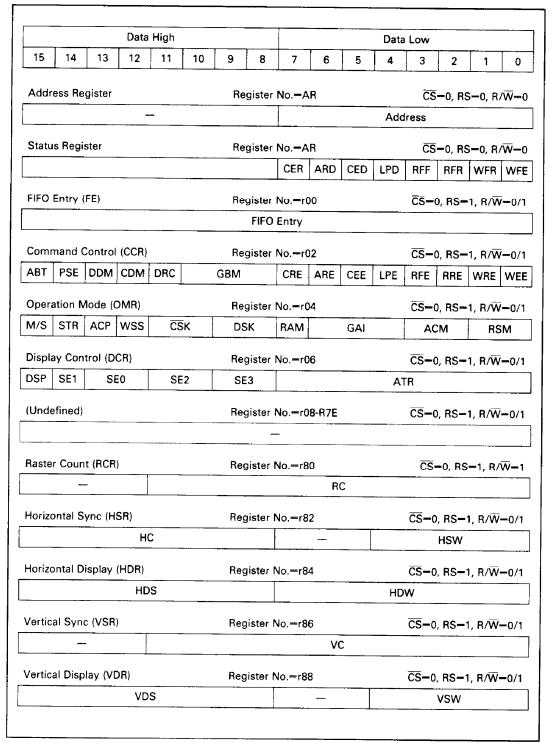


Figure 5. Hardware Access and Direct Access Registers

OHITACHI

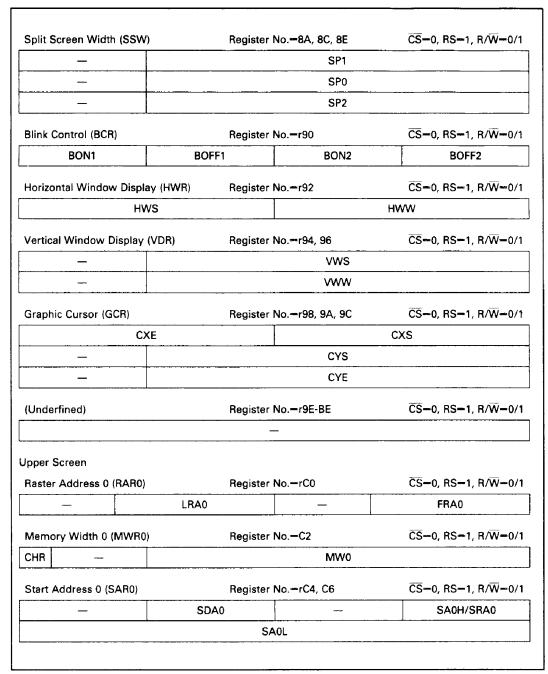


Figure 5. Hardware Access and Direct Access Registers (cont)

3 C		
Base Screen		
Raster Address 1 (RAR1)	Register NorC8	CS-0, RS-1, R/W-0/1
_	LRA1 —	- FRA1
Memory Width 1 (MWR1)	Register NorCA	CS-0, RS-1, R/W-0/1
CHR —		MW1
Start Address 1 (SAR1)	Register NorCC, r	rCE
_	SDA1	- SA1H/SRA1
	SA1L	
Lower Screen		
Raster Address 2 (RAR2)	Register NorD0	CS−0, RS−1, R/W−0/1
	LRA2 —	- FRA2
Memory Width 0 (MWR2)	Register NorD2	CC_0 BC_1 BAN_0/1
CHR —		CS-0, RS-1, R/W-0/1
Start Address 0 (SAR2)	Pogister No 124 1	CC 0 DC 4 D04/ 0/4
Otal Address o (DANZ)	Register NorD4, D	
— — — — — — — — — — — — — — — — — — —	SDA2	_ SA2H/SRA2
_		
Window Screen	SDA2 SA2L	— SA2H/SRA2
_	SDA2 SA2L Register NorD8	
Window Screen	SDA2 SA2L	— SA2H/SRA2 — SA2H/SRA2 — SA2H/SRA2
Window Screen	SDA2 SA2L Register NorD8	— SA2H/SRA2 — CS−0, RS−1, R/W−0/1 FRA3
Window Screen Raster Address 3 (RAR3)	SDA2 SA2L Register NorD8 LRA3 Register NorDA	— SA2H/SRA2 — CS−0, RS−1, R/W−0/1 FRA3
Window Screen Raster Address 3 (RAR3) — Memory Width 0 (MWR3)	SDA2 SA2L Register NorD8 LRA3 Register NorDA	— SA2H/SRA2 ———————————————————————————————————
Window Screen Raster Address 3 (RAR3) — Memory Width 0 (MWR3) CHR —	SDA2 SA2L Register NorD8 LRA3 Register NorDA	— SA2H/SRA2 ———————————————————————————————————
Window Screen Raster Address 3 (RAR3) — Memory Width 0 (MWR3) CHR —	SDA2 SA2L Register NorD8 LRA3 Register NorDA Register NorDC, r	— SA2H/SRA2 ———————————————————————————————————
Window Screen Raster Address 3 (RAR3) — Memory Width 0 (MWR3) CHR —	SDA2 Register No.—rD8 LRA3 Register No.—rDA Register No.—rDC, r	— SA2H/SRA2 CS−0, RS−1, R/W−0/1 FRA3 CS−0, RS−1, R/W−0/1 MW3 DE CS−0, RS−1, R/W−0/1 SA3H/SRA3
Window Screen Raster Address 3 (RAR3) — Memory Width 0 (MWR3) CHR — Start Address 0 (SAR3) — Block Cursor 1 (BCUR1)	SDA2 Register No.—rD8 LRA3 Register No.—rDA Register No.—rDC, r SDA3 SA3L	— SA2H/SRA2 CS−0, RS−1, R/W−0/1 FRA3 CS−0, RS−1, R/W−0/1 MW3 DE CS−0, RS−1, R/W−0/1 SA3H/SRA3
Window Screen Raster Address 3 (RAR3) — Memory Width 0 (MWR3) CHR — Start Address 0 (SAR3) — Block Cursor 1 (BCUR1)	SDA2 Register No.—rD8 LRA3 Register No.—rDA Register No.—rDC, r SDA3 SA3L Register No.—rE0, rE	— SA2H/SRA2 — SA2H/SRA2 — CS−0, RS−1, R/W−0/1 — FRA3 — CS−0, RS−1, R/W−0/1 — SA3H/SRA3 E2 — CS−0, RS−1, R/W−0/1
Window Screen Raster Address 3 (RAR3) — Memory Width 0 (MWR3) CHR — Start Address 0 (SAR3) — Block Cursor 1 (BCUR1)	SDA2 Register No.—rD8 LRA3 Register No.—rDA Register No.—rDC, r SDA3 SA3L Register No.—rE0, rE	— SA2H/SRA2 CS=0, RS=1, R/W=0/1 FRA3 CS=0, RS=1, R/W=0/1 MW3 DE
Window Screen Raster Address 3 (RAR3) — Memory Width 0 (MWR3) CHR — Start Address 0 (SAR3) — Block Cursor 1 (BCUR1) BCW1	SDA2 Register No.—rD8 LRA3 Register No.—rDA Register No.—rDC, r SDA3 SA3L Register No.—rE0, rE BCSR1 BCA1	— SA2H/SRA2 CS−0, RS−1, R/W−0/1 FRA3 CS−0, RS−1, R/W−0/1 MW3 DE

Figure 5. Hardware Access and Direct Access Registers (cont)

OHITACHI

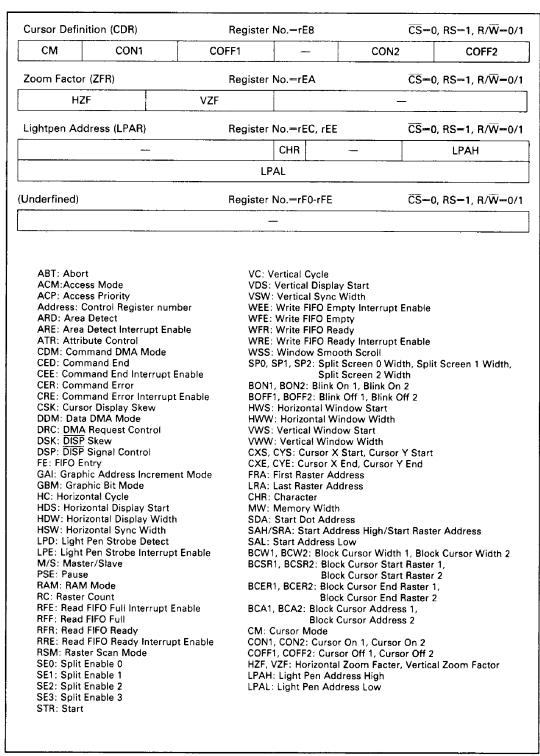


Figure 5. Hardware Access and Direct Access Registers (cont)

OHITACHI

Table 1. Drawing Parameter Registers

Register	Read/			D	ata (H)			_			1	ata	(L	.)	
No.	Write	Name of Register	Abbr.	15 14 1	3 12 11	109	8	7	6	5	4	3	2	1	0
Pr00	R/W	Color 0	CLO				(CLO							
Pr01	R/W	Color 1	CL1	CL1											
Pr02	R/W	Color Comparison	CCMP				С	СМ	P						
Pr03	R/W	Edge Color	EDG				E	DG							
Pr04	R/W	Mask	MASK				М	ASI	K						
Pr05	R/W	Pattern RAM Control	PRC	PPY	PPY PZCY					PPX	(Ţ	P	ZC)	(
1				PSY	'					PSX	(_		-	
Pr07				PEY		PZY				PEX	(PZX	
Pr08	R/W	Area Definition**	ADR	!			Х	MIN	1						
Ţ							Υ	MIN	1						
							XI	MA)	Χ						
Pr08							ΥI	MA)	X						
Pr0C	R/W	Read Write Pointer	RWP	DN							R	WP	1		
Pr0D						RW	PL					Т		_	-
Pr0E	_	Undefined	_					_							
Pr0F								_	_						
Pr010	R	Drawing Pointer	DP	DN							0	PAI	4		
Pr11						DP	ΔL			-		I		DF	D
Pr12	R	Current Pointer**	СР	X											
Pr13				Y											
Pr14	_	Undefined	_					_					_		
Pr15								_							

^{-:} Always set to 0.

Drawing Parameter Register

- R: Register which can be read by Read Parameter Register Command (RPR)
- W: Register which can written into by Write Parameter Register Command (WPR)
- -: Access is not allowed
- CL0: Defines the color data used for the drawing when logical drawing data-0
- CL1: Defines the color data used for the drawing when logical drawing data=1
- CCMP: Defines the comparison color of the drawing operation
- PSX, PSY: Pattern Start Point
- PEX, PEY: Pattern End Point
- PPX, PPY: Pattern Scan Start Point
- PZX, PZY: Pattern Zoom
- PZCX, PZCY: Pattern Zoom Count
- XMIN, YMIN: Start point of Area definition XMAX, YMAX: End point of Area definition
- Dn: Screen Number
- RWPH: High-order 8 bits of Read Write Pointer Address RWPL: Low-order 12 bits of Read Write Pointer Address DPAH: High-order 8 bits of Drawing Pointer Address DPAL: Low-order 12 bits of Drawing Pointer Address
- **DPD: Drawing Pointer Dot Address**
- X, Y: Position indicated by Current Pointer on X-Y coodinate

(1) HITACHI

^{**:} Set two's complements for negative values of X and Y axis.

Display Functions

Logical Display Screens

The ACRTC allows the frame buffer to be divided into four separate logical screens (table 2, figure 6).

In the simplest case, only the base screen parameters must be defined. Other screens may be selectively enabled, disabled, and blanked under software control.

The background screens (upper, base, and lower) split the screen into three horizontal partitions whose positions are fully programmable. A typical application might use the base screen for the bulk of user interac-

tion, using the lower screen for a "status line(s)" and the upper screen for "pulldown menus".

The window screen is unique, since the ACRTC usually gives it higher priority than the background screens. Thus, when the window, whose size and position is completely programmable, overlaps a background screen, the window is displayed. The exception is in the ACRTC superimposed mode, in which the window has the same priority as the background screens. In this mode, the window and background screens are "superimposed" on the display.

Table 2. Logical Screen

Screen Number	Screen Name	Screen Group
0	Upper screen	Background screens
1	Base screen	
2	Low screen	
3	Window screen	

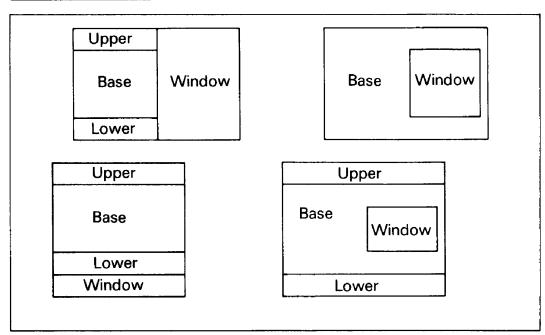


Figure 6. Screen Combination Examples

Frame Memory Setup

The ACRTC can have two independent frame memories, a 2-Mbyte frame buffer and a 128-kbyte refresh memory. The CHR output controls which memory is accessed.

Frame memory width is defined by setting up the memory width register (MWR). The horizontal width is independently defined by the horizontal display register (HDR). The memory area can therefore be specified bigger than the display area (figure 7).

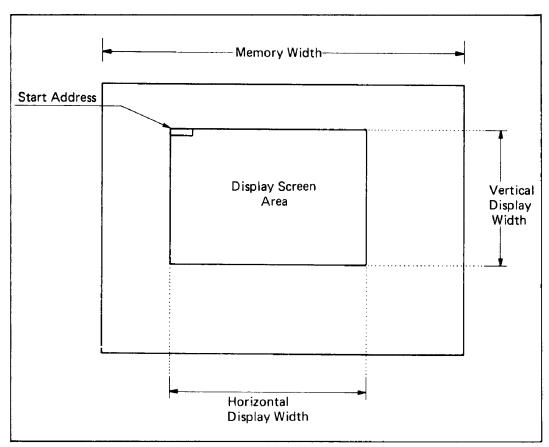


Figure 7. Frame Memory and Display Screen Area

Display Control

Figure 8 shows the relation between the frame memory and display screens. Each screen has its own memory width, vertical display width, and character/graphic attribution. These specifications are set by the control registers.

Horizontal display control registers are set in units of memory cycles. Vertical display control registers are set in units of rasters.

Note that display width of registers marked with an asterisk (*) in figure 9 is:

(Display width) = (Register value) + 1 memory cycles

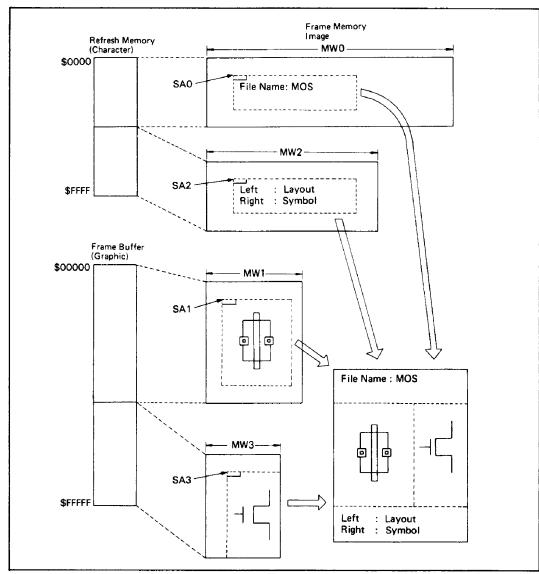


Figure 8. Frame Memory and Display Screens

OHITACHI

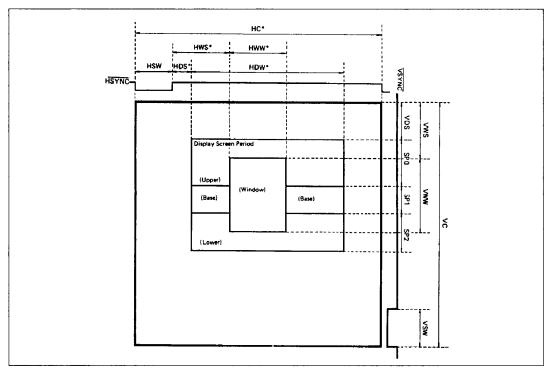


Figure 9. Display Screen Specification

Commands

The ACRTC has 38 commands classified into three groups (tables 3, 4):

- Register access
- Data transfer
- Graphic drawing

Five register access commands give the host MPU access to drawing processor drawing parameter registers and the pattern RAM.

Ten data transfer commands move data between the host system memory and the frame buffer, or within the frame buffer.

Twenty-three graphic drawing commands cause the ACRTC to draw. Parameters for these commands are specified using logical X-Y addressing.

All commands, parameters, and data are trasnferred via the ACRTC read and write FIFOs.

Assuming the ACRTC has been properly initialized, the MPU must perform two

steps to make the ACRTC draw:

- First the MPU must specify drawing parameters that define the details associated with the drawing. For example, to draw a figure or paint an area, the MPU must specify the drawing or painting pattern by initializing the ACRTC pattern RAM and related pointers. If clipping or hitting control are desired, the MPU must specify the area to be monitored during drawing by initilizing the area definition registers. Other drawing parameters include color, edge definition, etc.
- After the drawing parameters have been specified, the MPU issues a drawing command and any required command parameters, such as the CRCL (circle) command with a radius parameter

The ACRTC then performs the specified drawing operation by reading, modifying, and rewriting the contents of the frame buffer.

230

Table 3. ACRTC Command Table

Type	Mnemonic	Command Name	# (words)	Operation Cycles *1
Register	ORG	Origin	3	8
Access	WPR	Write Parameter Register	2	6
Command	RPR	Read Parameter Register	1	6
	WPTN	Write Pattern RAM	n+2	4n+8
	RPTN	Read Pattern RAM	2	4n+10
Data	DRD	DMA Read	3	$(4x+8)y+12[x\cdot y/8\uparrow]+(62\sim68)$
Transfer	DWT	DMA Write	3	(4x+8)y+16[x·y/81]+34
Command	DMOD	DMA Modify	3	(4x+8)y+16[x·y/81]+34
	RD	Read	1	12
	WT	Write	2	8
	MOD	Modify	2	8
	CLR	Clear	4	(2x+8)y+12
	SCLR	Selective Clear	4	(4x+6)y+12
	CPY	Сору	5	(6x+10)y+12
	SCPY	Selective Copy	5	(6x+10)y+12
Graphic	AMOVE	Absolute Move	3	56
Drawing	RMOVE	Relative Move	3	56
Command	ALINE	Absolute Line	3	P+L+18
	RLINE	Relative Line	3	P·L+18
	ARCT	Absolute Rectangle	3	2P(A+B)+54
	RRCT	Relative Rectangle	3	2P(A+B)+54
	APLL	Absolute Polyline	2n+2	Σ[P·L+16]+8
	RPLL	Relative Polyline	2n+2	Σ[P·L+16]+8
	APLG	Absolute Polygon	2n+2	Σ[P·L+16]+P·Lo+20
	RPLG	Relative Polygon	2n+2	Σ[P·L+16]+P·Lo+20
	CRCL	Circle	2	8d+66
	ELPS	Ellipse	4	10d+90
	AARC	Absolute Arc	5	8d+18
	RARC	Relative Arc	5	8d+18
	AEARC	Absolute Ellipse Arc	7	10d+96
	REARC	Relative Ellipse Arc	7	10d+96
	AFRCT	Absolute Filled Rectangle	3	(P·A+8)B+18
	RFRCT	Relative Filled Rectangle	3	(P-A+8)B+18
	PAINT	Paint	1	(18A+102)B-58 *2
	DOT	Dot	1	8
	PTN	Pattern	2	(P·A+10)B+20
	AGCPY	Absolute Graphic Copy	5	((P+2)A+10)B+70
	RGCPY	Relative Graphic Copy	5	((P+2)A+10)B+70

Notes: 1. 2CLK cycles.

- 2. Applies to rectangular figures. Time varies for other shapes.
- 3. Abbreviations
 - n: Number of read/write data words
 - x: Number of words in X direction
 - y: Number of words in Y direction
 - t: Round up
 - P: Operation cycles—P=4 cycles when OPM=000-011;

P=6 cycles when OPM=100-111

- L, Lo: Number of dots in a straight line
- d: Total number of dots
- A: Number of dots in main scan direction
- B: Number of dots in sub scan direction

Table 4. Command Operation Codes and Parameters

Type	Mnemonic					0	pe	ra	tio	n	Co	de)						P	aram	eter		
Register	ORG	0	0	0	0	0	1	0	0	0	0	ō	0	0	(0 0	0	DPH	DPL				
Access	WPR	0	0	0	0	1	0	0	0	0	0	0			R	N		D					
Command	RPR	0	0	0	0	1	1	0	0	Ô	0	0			R	N							
	WPTN	0	0	0	1	1	0	0	0	0	0	0	0		F	PRA		n	D1, .	, Dn			
	RPTN	0	0	0	1	1	1	0	0	0	0	0	0		F	PRA		n					
Data	DRD	0	0	1	0	0	1	0	0	0	0	0	0	0	-{	0 0	0	AX	AY				
Transfer	DWT	0	0	1	0	1	0	0	0	0	0	0	0	0	(0 0	0	AX	AY				
Command	DMOD	0	0	1	0	1	1	0	0	0	0	0	0	0	(0 M	М	AX	AY				
	RD	0	1	0	0	0	1	0	0			0	0	0	(0 0	0	-					
	WT	0	1	0	0	1	0	0	0	0	0	0	0	0	(0 0	0	D					
	MQD	0	1	0	0	1	1	0	0			0	0	0	(0 M	м	D					
	CLR	0	1	0	1	1	0	0	0	0	0	0	0	0	(0 0	0	D	AX	AY			
	SCLR	0	1	0	1	1	1	0	0	0	0	0	0	0	(O M	М	D	AX	AY			
	CPY	0	1	1	0	S		OSC		0		0	0	0	-	0 0	0	SAH	SAL	AX	ΑŸ		
	SCPY	0	1	1	1	S		OSE)	0	0	0	0	Ö	(0 M	М	SAH	SAL	AX	AY		
Graphic	AMOVE	1	0	ō	0	0	ō	0	0		0	0	0	0	- (0 0	0	X	Y				
Drawing	RMOVE	1	0	0	0	0	1	0	0	0	0	0	0	0	-	0 0	0	dΧ	dΥ				
Command	ALINE	1	0	0	0	1	0	0			AR	EΑ	С	OL	. 7	ОРМ		Х	Υ			•	
	RLINE	1	0	0	0	1	1	0	0							ОРМ		dΧ	dΥ				
	ARCT	1	0	0	1	0	0	0	0		AR	EΑ	C	οī	_ (OPM		X	Y				
	RRCT	1	0	0	1	0	1	0	0							ОРМ		dΧ	dΥ				
	APLL	1	0	0	1	1	0	0	0		AR	EΑ	С	Ōί	. 1	ОРМ		n	X1	, Y1, .	. Xn,	Υn	
	RPLL	1	0	0	1	1	1	0	0		AR	EΑ	C	ΟL	_ (ОРМ		n				ı, dYn	
	APLG	1	0	1	0	0	0	0	Ō							OPM		n	X1	Y1, .	, Xn,	Yn	
	RPLG	1	0	1	0	0	1	0	0		AR	EΑ	С	ΟL		OPM		n		dY1,.			
	CRCL	1	0	1	0	1	0	0	С		AR	EΑ	C	οι	_	OPM	_	r					
	ELPS	1	0	1	0	1	1	Ö	c		AR	EΑ	C	Oι	_	ОРМ		а	b	DX			
	AARC	1	0	1	1	0	0	0	С		AR	EΑ	· C	Oι	_	ОРМ		Хc	Υc	Xe	Ye		
	RARC	1	0	1	1	0	1	0	С		AR	EΑ	C	Οl	L	OPM	1	dXc	dΥ¢	dXe	dYe		
	AEARC	1	0	1	1	1	0	0	С		AR	EA	C	Οl	L	OPM	ı	а	b	Хc	Yc	Хe	Ye
	REARC	1	0	1	1	1	1	0	С		AR	EΑ	C	Οl	L	OPN	ı	а	b	dXc	dYc	dXe	dYe
	AFRCT	1	1	0	0	0	0	0	0		AR	EA	V C	Οl	L	OPN	Г	Х	Υ				
	RFRCT	1	1	0	0	0	1	0	0		AR	EΑ	C	OI	L	OPN	1	dΧ	dΥ				
	PAINT	1	1	0	0	1	0	0	Ε		AR	EA	0	0)	00	0						
	DOT	1	1	0	0	1	1	0	0		ΑR	EA	C	Oi	L	OPN	1						
	PTN	1	1	0	1	SI		SI			AR	EA	\ C	01	L	OPN	1	SZ					
	AGCPY	1	1	1	0	s	- [OSC)		AR	EA	٠ 0	()	OPN	1	Xs	Υs	DX	DY		
	RGCPY	1	1	1	1	s	_	OSE								OPN		dXs	dYs	DX	DY		

Notes: 1. Register access commands abbreviations
RN: Drawing parameter register number (\$0-\$13)
PRA: Pattern RAM read/write operation starting address (\$0-\$F)
DPH: Drawing pointer register ligh word (figure 29)
DPL: Drawing pointer register low word (figure 29)
DPAH: Higher 8 bits of drawing pointer address
DPAL: Lower 12 bits of drawing pointer address
DPD: Dot position in memory address

DPD: Dot position in memory address

2. Data transfer commands abbreviations
MM: Modify mode
S: Source scan direction (figure 30)
DSD: Destination scan direction (figure 31)
AX: Number of words in X direction—1
AY: Number of words in Y direction—1
D: Write data
SAH: Source start address high word (figure 32)
SAL: Source start address low word

3. Graphic drawing commands abbreviations
AREA: Area mode
CDL: Color mode
OPM: Operation mode
C: Circle drawing direction—C ≈ 0 for counterclockwise;
C = 1 for clockwise

```
E: Edge color definition—E = 0, edge color is data in edge color register;

E = 1, edge color is any color except data in color register

SL: Slant (figure 33)

SD: Scan direction (figure 30)

SD: Destination scan direction (figure 31)

Parameter abbreviations

X, X1, ..., Xn: Absolute X address from origin point

Y, Y1, ..., Yn: Absolute X address from origin point

dX: Relative X address from current pointer

dY: Relative Y address from current pointer

n: Number of nodes

dX1, ..., dXn: Relative X address from each node

dX1, ..., dXn: Relative X address from each node

r: Number of dots on radius

a, b: ratio of dX squared to dY squared in ellipse—a:b = dX2:dY2

DX: X-direction dot number

DY: Y-direction dot number

DY: Y-direction dot number

Xc: Absolute X address of center point of arc/ellipse

dXc: Relative X address from current point to center point of arc/ellipse

dXc: Relative X address from current point to center point of arc/ellipse

dXc: Relative X address from current point to ender point of arc/ellipse

dXe: Relative X address from current point to end point of arc/ellipse

dXe: Relative X address from current point to end point of arc/ellipse

dXe: Relative X address from current point to end point of arc/ellipse

dXe: Relative X address from current point to end point of arc/ellipse

dXe: Relative X address from current point to start point of arc/ellipse

dXs: Absolute X address from current point to start point of arc/ellipse

dXs: Relative X address from current point to start point of arc/ellipse

dXs: Relative X address from current point to start point of arc/ellipse

dXs: Relative X address from current point to start point of arc/ellipse

dXs: Relative X address from current point to start point of arc/ellipse

dXs: Relative X address from current point to start point of arc/ellipse
```

Program Transfer

For program transfer, the MPU specifies the FIFO entry address and then writes commands/parameters to the write FIFO under program control (RS = high, R/\overline{W} , \overline{CS} = low). The MPU writes are normally synchronized with FIFO status by software polling or interrupt.

Software Polling: WFR, WFE interrupts are disabled.

- MPU program checks the SR (status register) for write FIFO ready flag (WFR)
 1, then writes 1 command/parameter word.
- MPU program checks the SR (status register) for write FIFO empty flag (WFE)
 1, then writes 1 to 8 command/parameter words.

Interrupt Driven: WFR, WFE interrupts are enabled.

- MPU WFR interrupt service routine writes 1 command/parameter word.
- MPU WFE interrupt service routine writes 1 to 8 command/parameter words.

Register Access Commands: When writing register access commands to an in-

itially empty write FIFO, the MPU does not have to synchronize to write FIFO status. The ACRTC can fetch and execute these commands faster than the MPU can issue them.

Command DMA Transfer

Commands and parameters can be transferred from the MPU system memory by an external DMAC. The MPU initiates and terminates command DMA transfer under software control (CDM bit of CCR). Command DMA transfer can also be terminated by asserting the ACRTC DONE signal. DONE is an input in command DMA transfer mode.

In command DMA transfer mode, the ACRTC issues cycle stealing DMA requests to the DMAC when the write FIFO is ready. The DMA data is automatically sent from system memory to the ACRTC write FIFO regardless of the contents of the address register.

Make sure that the write FIFO is empty and all previous commands are terminated before starting the command DMA transfor.

Data DMA transfer cannot be executed in command DMA transfer mode.

Table 7. Graphic Drawing Commands

Command	Function
AMOVE	Move the current pointer (CP) to an absolute logical pixel X-Y address
RMOVE	Move the current pointer (CP) to a relative logical pixel X-Y address
ALINE	Draw a straight line from the current pointer (CP) to a command-specified end point in absolute coordinates
RLINE	Draw a straight line from the current pointer (CP) to a command-specified end point in relative corrdinates
ARCT	Draw a rectangle defined by the current pointer (CP) and a command-specified diagonal point in absolute coordinates
RRCT	Draw a rectangle defined by the current pointer (CP) and a command-specified diagonal point in relative coordinates
APLL	Draw a polyline (multiple contiguous segments) from the current pointer (CP) through command-specified points in absolute coordinates
RPLL	Draw a polyline (multiple contiguous segments) from the current pointer (CP) through command-specified points in relative coordinates
APLG	Draw a polygon which connects the current pointer (CP) and command-specified points in absolute coordinates
RPLG	Draw a polygon which connects the current pointer (CP) and command-specified points in relative coordinates
CRCL	Draw a circle of radius R placing the current pointer (CP) at the center
ELPS	Draw a ellipse whose shape is specifed by command parameters, placing the current pointer (CP) at the center
AARC	Draw an arc by using the current pointer (CP) as a start point with an end point and a center point in absolute coordinates
RARC	Draw an arc by using the current pointer (CP) as a start point with an end point and a center point in relative coordinates
AEARC	Draw an ellipse arc by using the current pointer (CP) as a start point with an end point and a center point in absolute coordinates
REARC	Draw an ellipse arc by using the current pointer (CP) as a start point with an end point and a center point in relative coordinates
AFRCT	Paint a rectangular area specifed by the current pointer (CP) and command parameters (absolute coordinates) according to a figure pattern stored in the pattern RAM (tiling)
RFRCT	Paint a rectangular area specifed by the current point (CP) and command parameters (relative coordinates) according to a figure pattern stored in the pattern RAM (tiling)
PAINT	Paint a closed area surrounded by edge color using a figure pattern stored in the pattern RAM (tiling)
DOT	Mark a dot on the coordinates indicated by the current pointer (CP)
PTN	Draw a graphic pattern defined in the pattern RAM onto a rectangular area specifed by the current point (CP) and by the pattern size (rotation angle: 45°)
AGCPY	Copy a rectangular area specifed by the absolute coordinates to the address specifed by the current pointer (CP) (rotation angle: 90°/mirror reflection)
RGCPY	Copy a rectangular area specified by the relative coordinates to the address specified by the current pointer (CP) (rotation angle: 90°/mirror reflection)

@HITACHI

Notes on System Design

Power-On Sequence

The conditions in figure 10 must be satisfied at power-on.

Output Waveform

If excessive ringing (figure 11) occurs on CRT data buses, (MAD₀-MAD₁₅, MA₁₆/RA₀-MA₁₉/RA₄), damping resistors may be required as shown in figure 12.

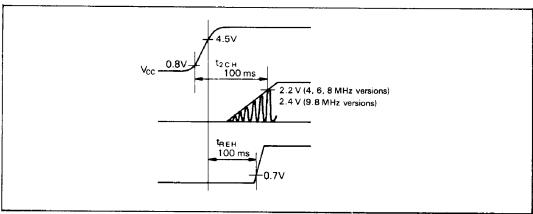


Figure 10. Power-On Sequence

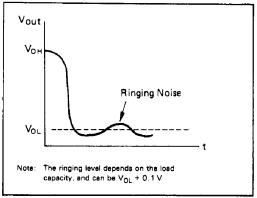


Figure 11. Ringing Noise

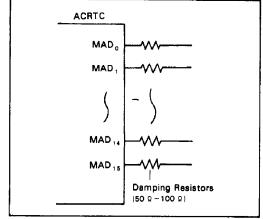


Figure 12. Damping Resistors

Power Supply Circuit

When laying out the V_{CC} and V_{SS} traces on

the circuit board, locate capacitors as close as possible to each power supply pin (figures 13, 14, 15).

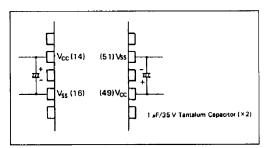


Figure 13. Power Supply Circuit Example, 64-Pin DIP

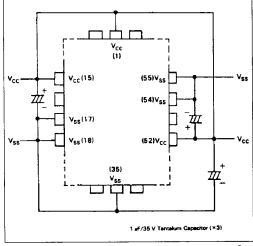


Figure 14. Power Supply Circuit Example, 68-Pin PLCC

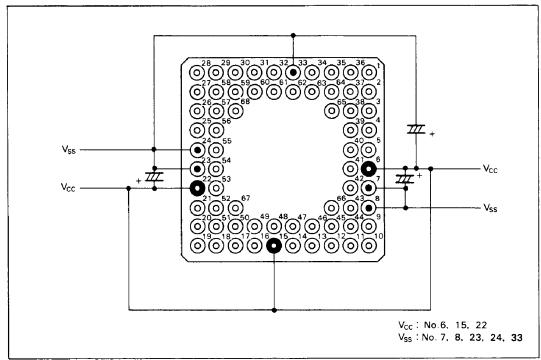


Figure 15. Power Supply Circuit Example 68-Pin PGA

(1) HITACHI

Absolute Maximum Ratings

İtem	Symbol	Rating	Unit
Supply Voltage	V _{cc} (Note 1)	−0.3 to +7.0	٧
Input Voltage	V _{in} (Note 1)	-0.3 to V _{CC} +0.3	٧
Allowable Output Current	II _o I (Note 2)	5	mA
Total Allowable Output Current	Σ ₀ (Note 3)	120	mA
Operating Temperature	T _{opr}	0 to +70	°C
Storage Temperature	T _{stg}	-55 to +150	°C

- Notes: 1. Referenced to $V_{SS}=0\ V$. 2. The maximum current that may be drawn from, or flow out of, one output, or one common input/output terminal.
 - 3. The total sum of currents that may be drawn from, or flow out of, all output or common input/ output terminals.
 - 4. Using an LSI beyond its maximum rating may result in its permanent destruction. LSIs should usually be used under recommended operating conditions. Exceeding any of these conditions may adversely affect reliability.

Recommended Operating Conditions

item		Symbol	Min	Тур	Max	Unit
Supply Voltage		V _{cc} (Note)	4.75	5.0	5.25	٧
Input Low Voltag	е	V _{IL} (Note)	0	******	0.7	٧
Input High Voltag	e (4, 6, 8 MHz versions)	V _{IH} (Note)	2.2		V _{cc}	V
	(9.8 MHz version)	V _{IH} (Note)	2.4		V _{cc}	V
Operating Tempe	erature	T _{opr}	0	25	75	°C

Note: Referenced to $V_{SS} - 0 V$

Electrical Characteristics DC Characteristics

(V_{CC} =5.0V \pm 5%, V_{SS} =0V, Ta=0°C to +70°C unless otherwise noted)

Item		Symbol	Min	Max	Unit	Test Condition
Input High Level Voltage	All inputs	V _{IH}	2.2	V _{cc}	٧	4, 6, 8 MHz versions
			2.4	V _{cc}	٧	9.8 MHz ★ version
Input Low Level Voltage	All inputs	V _{IL}	-0.3	0.7	٧	
Input Leak Current	R/W, CS, RS, RES, DACK, 2CLK, LPSTB	l _{in}	-2.5	2.5	μА	V _{in} =0.4 to V _{CC}
Hi-Z Input Current	D ₀ -D ₁₅ , MAD ₀ -MAD ₁₅ , EXSYNC	I _{TSI}	-10	10	μΑ	V _{in} =0.4 to V _{CC}
Output High Level Voltage	D ₀ -D ₁₅ , MAD ₀ -MAD ₁₅ , CUD1, CUD2, DREQ, DTACK, HSYNC, VSYNC, EXSYNC, MRD, DRAW, AS, DISP1, DISP2, CHR, MCYC, RA ₄ , MA ₁₆ /RA ₀ - MA ₁₉ /RA ₃	V _{OH}	V _{cc} -1.0		μΑ	I _{OH} ——400μΑ
Output Low Level Voltage	D ₀ -D ₁₅ , MAD ₀ -MAD ₁₅ , CUD1, CUD2, DREQ, DTACK, HSYNC, VSYNC, EXSYNC, MRD, DRAW, AS, DISP1, DISP2, CHR, MCYC, RA ₄ , MA ₁₆ /RA ₀ - MA ₁₉ /RA ₃	V _{OL}		0.5	V	l _{oL} −2.2mA
	IRQ, DONE	VOL		0.5	٧	I _{OL} -2.5 mA
Output Leak Current (Hi-Z)	IRQ, DONE	I _{LOD}		10	μА	V _{OH} -V _{CC}
Input Capacitance	D ₀ -D ₁₅ , MAD ₀ -MAD ₁₅ , EX- SYNC, R/W, CS, RS, RES, DACK, 2CLK, LPSTB	C _{in}		17	pF	V _{in} =0 V, Ta=25°C, f=1.0 MHz
Output Capacitance	ĨŔQ, DONE	C _{out}		15	pF	V _{in} =0 V, Ta=25°C, f=1.0 MHz
Current Consumption		I _{cc}		60	mΑ	4 MHz version
				80	mA	6 MHz version
				100	mA	8 MHz version
				120	mA	9.8 MHz version

239

AC Characteristics (V $_{\rm CC}$ =5.0V \pm 5%, V $_{\rm SS}$ =0V, Ta=0 to +70°C unless otherwise noted) Clock Timing

No.	Item	Symbol	4 MHz Version		6 MHz Version		8 MHz Version		9.8 MHz Version		Unit	Reference Figure
			Min	Max	Min	Max	Min	Max	Min	Max	1	Number
	Operation Frequency of 2CLK	f	1	4	1	6	1	8	1	9.8	MHz	
1	Clock Cycle Time	tcyc	250	1000	167	1000	125	1000	102	1000	ns	1
2	Clock High Level Pulse Width	tPWCH	115	500	75	500	55	500	46	500	ns	17
3	Clock Low Level Pulse Width	tPWCL	115	500	75	500	55	500	46	500	ns	
4	Clock Rise Time	tor	_	10	_	10		10		5	ns	
5	Clock Fall Time	tcf		10		10	_	10		5	ns	

MPU Read/Write Cycle Timing

No.	ltem	Symbol		MHz sion		//Hz sion	l .	VIHz rsion		MHz sion	Unit	Reference Figure
			Min	Max	Min	Max	Min	Max	Min	Max		Number
6	R/W Setup Time	tRWS	70		60		50	_	50	_	ns	
7	R/W Hold Time	tRWH	0	-	0		0	-	0	_	ns	1
8	RS Setup Time	tRSS	70	_	60	-	50	_	50	_	ns	1
9	RS Hold Time	tRSH	0	-	0	-	0	_	0	<u> </u>	nş	1820
10	CS Setup Time	tCSS	50	-	40	-	40	-	40	_	ns	†
11	CS High Level Width	tWCSH	80	_	70		60		60	Ι-	ns	18, 19
12										† ·		
13	Read Wait Time	tRWAI	0	-	0		0	_	0	_	ns	
14	Read Data Access Time	tRDAC	-	120	-	100	-	80		80	ns	
15	Read Data Hold Time	tRDH	10	_	10	-	10	1	10	_	ns	18, 20
16	Read Data Turn Off Time	tRDZ	_	60	_	60	_	60	_	60	ns	1
17	DTACK Delay Time (Z to L)	tDTKZL	_	90	_	80	-	70	-	70	ns	18-20
18	DTACK Delay Time (D to L)	tDTKDL	0	_	0	-	0	_	0	_	ns	18, 20
19	DTACK Release Time (L to H)	tDTKLH	_	100	_	90	_	80	_	80	ns	18—20
20	DTACK Turn Off Time (H to Z)	tDTKZ	-	100	_	100	_	100	_	100	ns	
21	Data Bus 3-State Recovery Time 1	tDBRT1	0	_	0	-	0	_	0	-	ns	18, 20
22	Write Wait Time	tWWAI	0	_	0	_	0	_	0	-	ns	
23	Write Data Setup Time	tWDS	80	-	60	-	40	_	40		ns	19,20
24	Write Data Hold Time	tWDH	10	-	10	- 1	10	-	10	_	ns	

DMA Read/Write Cycle Timing

No.	łtem	Symbol	4 N Vers		6 N Vers		8 M Vers		9.8 N		Unit	Reference Figure
			Min	Max	Min	Max	Min	Max	Min	Max		Number
25	DREQ Delay Time 1	tDRQD1	_	150	_	130	-	110	-	110	ns	
26	DREQ Delay Time 2	tDRQD2	_	90	-	80	-	70	-	70	ns]
27	DMA R/W Setup Time	tDMRWS	70	_	60	_	50	_	50	-	ns	21-24
28	DMA R/W Hold Time	tDMRWH	0	-	0	-	0		0	-	ns] -
29	DACK Setup Time	tDAK\$	50	_	40	-	40	-	40	-	ns] :
30	DACK High Level Width	tWDAKH	80	_	70	-	60	-	60	-	ns	
31												
32	DMA Read Wait Time	tDRW	0	_	0	-	0	_	0	_	ns	
33	DMA Read Data Access Time	tDRDAC	-	120	-	100	_	80	-	80	ns	
34	DMA Read Data Hold Time	tDRDH	10	-	10		10	-	10	_	ns	21, 22
35	DMA Read Data Turn Off Time	tDRDZ	-	60	-	60	-	60	-	60	ns	
36	DMA DTACK Delay Time (Z to L)	tDDTZL	-	90	-	80	_	70	-	70	ns	21—24
37	DMA DTACK Delay Time (D to L)	#DDTDL	0	-	0	-	0	_	0	-	ns	21, 22
38	DMA DTACK Release Time (L to H)	tDDTLH	-	100	_	90	-	8 0	-	80	ns	
39	DMA DTACK Turn Off Time (H to Z)	tDDTHZ	-	100	-	100	-	100	-	100	ns	21—24
40	DONE Output Delay Time	tDND	-	90	-	80	_	70	-	70	ns	
41	DONE Output Turn Off Time (L to Z)	tDNLZ	-	100	-	90	-	80	-	80	ns]
42	Data Bus 3-State Recovery Time 2	tDBRT2	0	_	0	-	0	-	0	_	ns	21, 22
43	DONE Input Pulse Width	tDNPW	2	-	2	-	2	-	2	-	tcyc	
44	DMA Write Wait Time	tDWW	0	-	0	-	0	-	0	-	ns	23, 24
45	DMA Write Data Setup Time	tDWDS	80	-	60	-	40	-	40	_	ns], -,
46	DMA Write Data Hold Time	tDWDH	10		10	-	10	-	10	_	ns	
47												

Frame Memory Read/Write Cycle Timing

No.	ltem	Symbol		MHz sion		MHz sion		/IHz sion	_	MHz sion	Unit	Reference Figure
			Min	Max	Min	Max	Min	Max	Min	Max	1	Number
48	AS "Low" Level Pulse Width	tPWASL	80		40	T -	25		20	T -	ns	
49	Memory Address Hold Time 2	tMAH2	10	_	10	_	10	-	5	_	ns	1
50	AS Delay Time 1	tASD1		90	_	75		60	_	50	ns	1
51	AS Delay Time 2	tASD2	5	90	5	75	5	65	5	40	ns	25—28
52	Memory Address Delay Time	tMAD	15	95	15	80	15	70	10	50	ns	1
53	Memory Address Hold Time 1	tMAH1	25	<u> </u>	25		25	_	15	<u> </u>	ns	1
54	Memory Address Turn Off Time (A to Z)	tMAAZ	_	50	-	50	-	50	_	35	ns	
55	Memory Read Data Setup Time	tMRDS	60	-	50	-	35	_	30	-	ns	26
56	Memory Read Data Hold Time	tMRDH	10	_	10		10	- -	0	<u> </u>	ns	1 -
57	MA/RA Delay Time	tMARAD		100	_	90	_	80	_	60	ns	25-28
58	MA/RA Hold Time	tMARAH	10	_	10	-	10	_	5		ns	25—27
59	MCYC Delay Time	tMCYCD	5	60	5	50	5	50	5	40	ns	2529
60	MRD Delay Time	tMRDD	-	90	_	80	_	70	_	50	ns	
61	MRD Hold Time	tMRH	10	_	10	_	10		5		ns	24—28
62	DRAW Delay Time	tDRWD	_	90		80	_	70	_	50	ns	İ
63	DRAW Hold Time	tDRWH	10	_	10	_	10		5	_	ns	1
64	Memory Write Data Delay Time	tMWDD	_	90	_	80	-	70	_	50	ns	
65	Memory Write Data Hold Time	tMWDH	10		10	_	10	_	5		ns	27
110	Memory Address Setup Time 1	tMAS1	10	-	10	-	10	_	10	-	ns	
112	Memory Address Setup Time 2	tMAS2	10		10	-	10	-	10	_	ns	25—28

Notes: 1. Characteristic No.52 is independent of the 2CLK operation frequency (f) and timing of No.51 and No.110.

2. New characteristics No.50 and No.52 shown above are applicable only to lot numbers 5M*, 6*, 7**, and greater (* means don't care).

For the other lot numbers, applicable characteristics are as follows:

No.	Symbol	4 MHz	Version	6 MHz	Version	8 MHz	Version	
140.	Symbol	Min	Max	Min	Max	Min	Max	Unit
50	tASD1	_	90	-	75		65	ns
52	tMAD	_	95	_	80	_	70	ns

Display Control Signal Output Timing

No.	ltem	Symbol	4 MHz ol Version		6 MHz Version		8 MHz Version		9.8 MHz Version		Unit	Reference Figure
			Min	Max	Min	Max	Min	Max	Min	Max	Ī	Number
67	HSYNC Delay Time	tHSD	_	90	-	80	-	70	_	50	ns	28—30
68	VSYNC Delay Time	tVSD	_	90	-	80	-	70	-	50	ns	
69	DISP1, DISP2 Delay Time	tDSPD	-	90	-	80	-	70		50	ns]
70	CUD1, CUD2 Delay Time	tCUDD	-	90	-	80	_	70	-	50	ns	29
71	EXSYNC Output Delay Time	tEXD	20	90	20	80	20	70	15	50	ns]
72	CHR Delay Time	tCHD	-	90	-	80	_	70		50	ns]
73												
74												

EXSYNC Input Timing

No.	o. Item	Symbol	4 N Ven	/IHz sion		fHz sion	8 N Ver	MHz sion	9.8 I Ver	VIHz sion	Unit	Reference Figure
			Min	Max	Min	Max	Min	Max	Min	Max	l	Number
75	EXSYNC Input Pulse Width	tEXSW	3	-	3	-	3		3	-	tcyc	
76	EXSYNC Input Setup Time	tEXS	60	-	60	-	50		30	_	ns	30
77	EXSYNC Input Hold Time	tEXH	15	-	15	-	15		10	-	ns	

LPSTB Input Timing

No.	Item	Symbol	4 N Vers	/IHz sion		MHz sion		8 MHz Version		9.8 MHz Version		Reference Figure
			Min	Max	Min	Max	Min	Max	Min	Max	1	Number
78	LPSTB Uncertain Time 1	tLPD1	70	-	70		70		45	_	ns	
79	LPSTB Uncertain Time 2	tLPD2	10	_	10	-	10	-	10	_	ns_	21 22
80	LPSTB Input Hold Time	tLPH	10	-	10		10	_	10		ns	31, 32
81	LPSTB Input Inhibit time	tLPI	4	-	4	-	4		4	_	tcyc	

RES and **DACK** Input Timing

No.	No. Item	Symbol	4 N Ver	/IHz sion	6 N Ver	/IHz sion		AHz sion	9.8 N		Unit	Reference Figure
			Min	Max	Min	Max	Min	Max	Min	Max	<u> </u>	Number
82	DACK Setup Time for RES	tDAKSR	100	-	100	_	100	_	100	-	ns	
83	DACK Hold Time for RES	tDAKHR	0		0	-	0		0	_	ns	33
84	RES Input Pulse Width	tRES	10		10		10	-	10		tcyc	

IRQ and Attributes Output Cycle Timing

No.	ltem	Symbol		MHz rsion		ЛHz sion		MHz sion	9.8 N Ver	∕lHz rsion	Unit	Reference Figure
			Min	Max	Min	Max	Min	Max	Min	Max		Number
85	IRQ Delay Time 1	tIRQ1	_	250	_	200	_	150	_	150	ns	Ī
86	IRQ Delay Time 2	tIRQ2	_	500	-	500	_	500	-	500	ns	34, 35
87	ATR Delay Time 1	tATRD1	_	100		90	_	80	_	60	ns	1
88	ATR Hold Time 1	tATRH1	10	_	10	_	10	_	5	T -	ns	28
89												
90	ATR Delay Time 2	tATRD2	_	100	_	90	_	80	_	60	ns	1
91	ATR Hold Time 2	tATRH2	10	_	10	_	10	_	5		ns	28

Synchronous Bus Timing, MPU or DMA Read/Write Cycle

No.	Item	Symbol		/Hz sion		MHz sion		VIHz sion	9.8 N Ver	ЛHz sion	Unit	Reference Figure
			Min	Max	Min	Max	Min	Max	Min	Max	1	Number
100	CS Cycle Time	tCSC	4	_	4	_	4	T	4	_	tcyc	1
101	CS Low Level Width	tWCSL	2		2	_	2		2		tcyc	18, 19
102	CS High Level Width	tWCSH	2		2	1	2	<u> </u>	2		tcyc	
104	DACK Cycle Time	tDACKC	4	_	4		4	-	4		tcyc	+
105	DACK Low Level Width	tWDACKL	2	_	2		2		2	_	tcyc	22, 24
106	DACK High Level Width	tWDACKH	2	_	2	_	2		2	_	tcyc	1

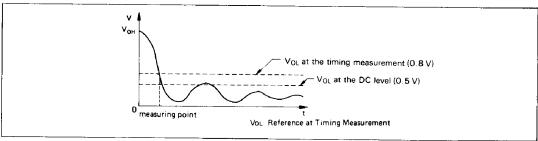


Figure 16. Test Points

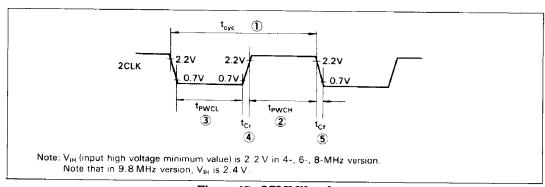
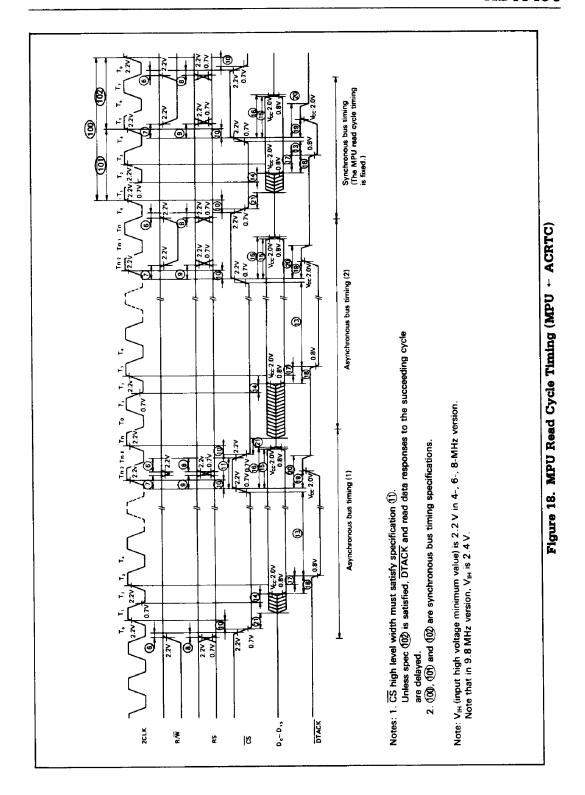
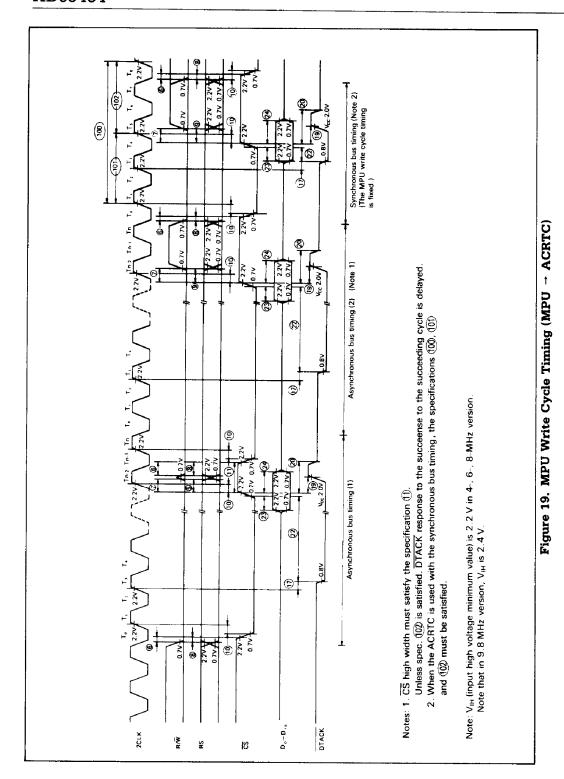
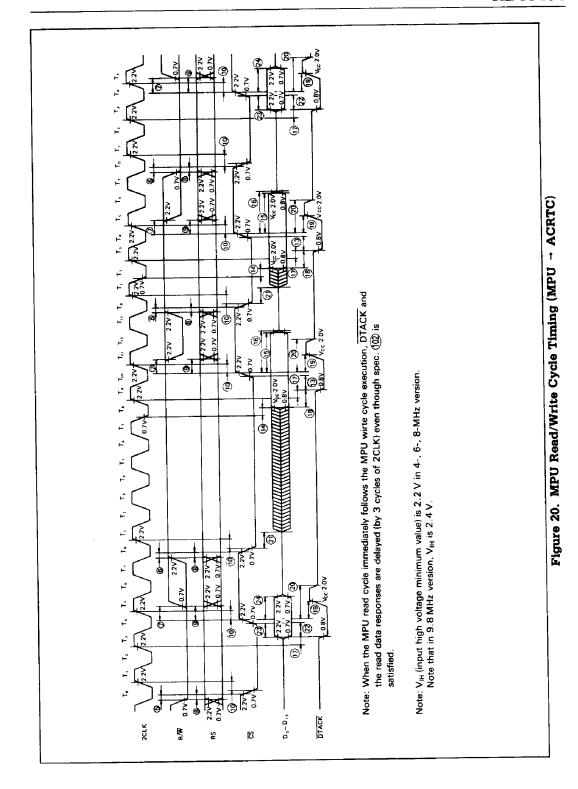
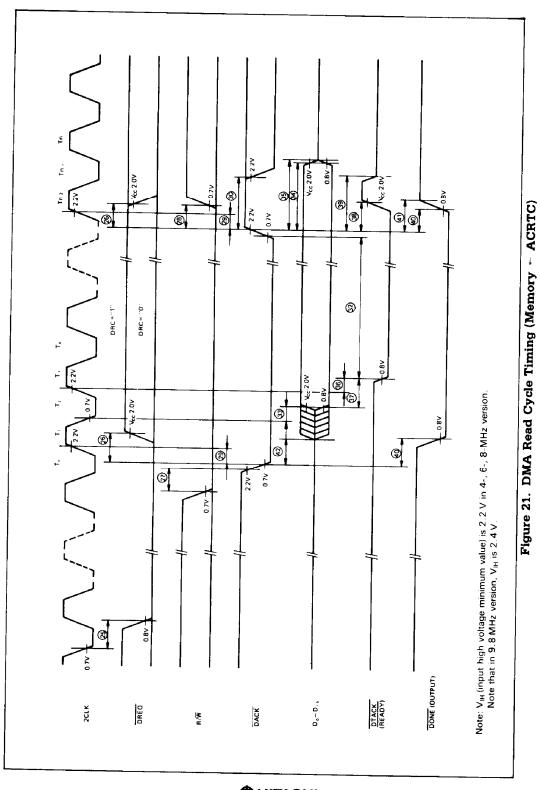




Figure 17. 2CLK Waveform

OHITACHI

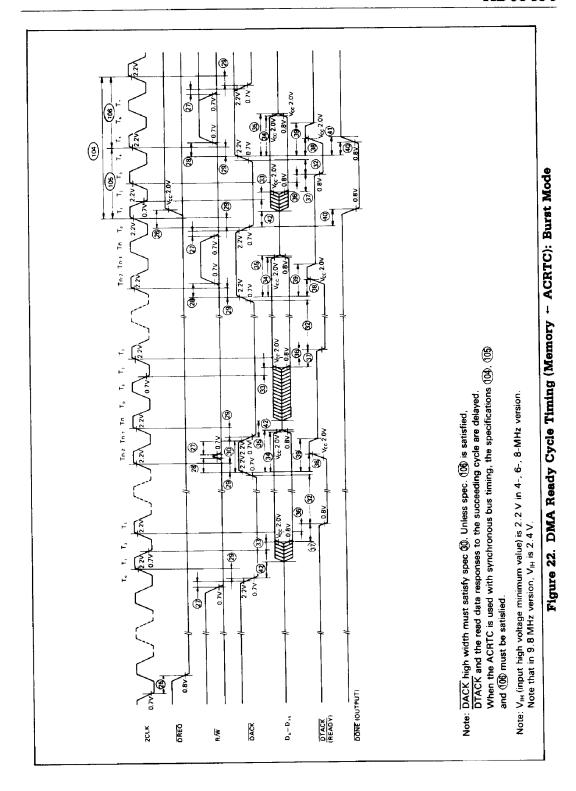


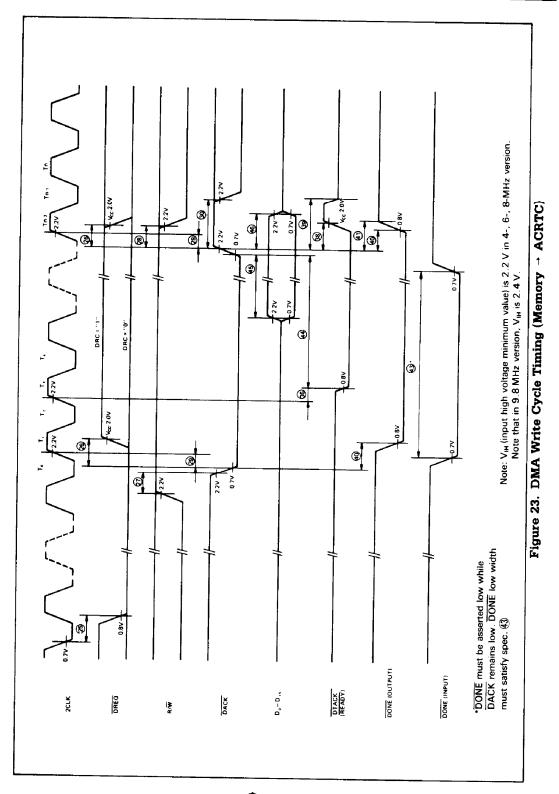
OHITACHI



(HITACHI

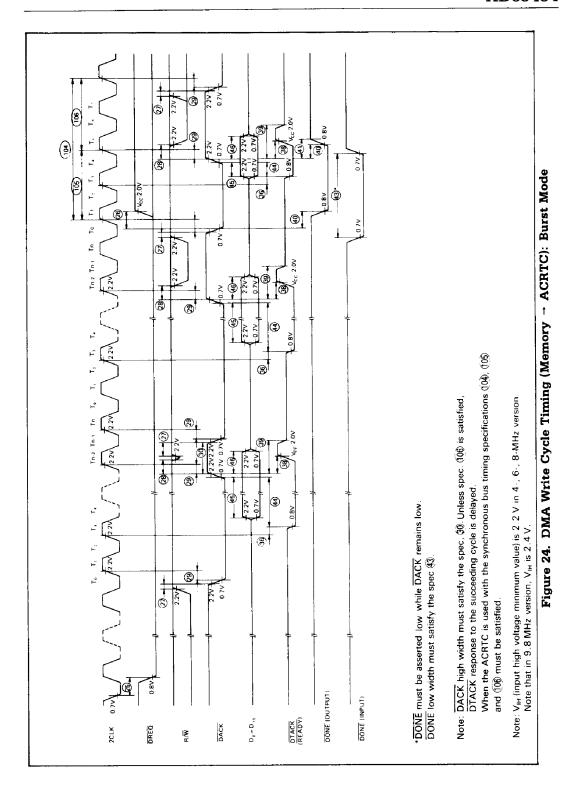
246


OHITACHI


HITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

248



(HITACHI

HITACHI

250 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

(C) HITACHI

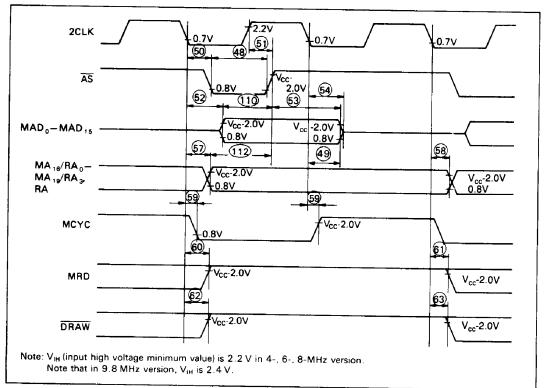


Figure 25. Display Cycle Timing

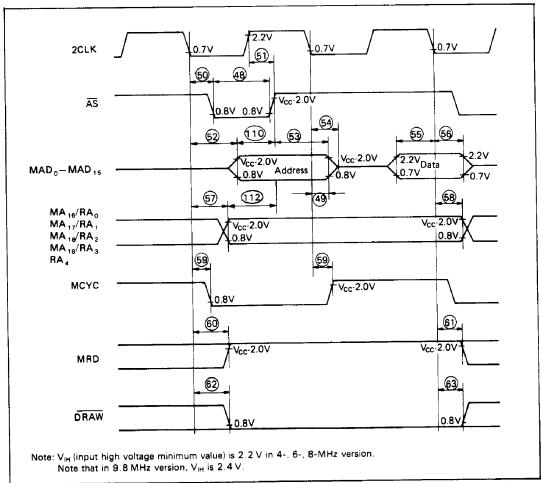


Figure 26. Frame Memory Read Cycle Timing (ACRTC - Frame Memory)

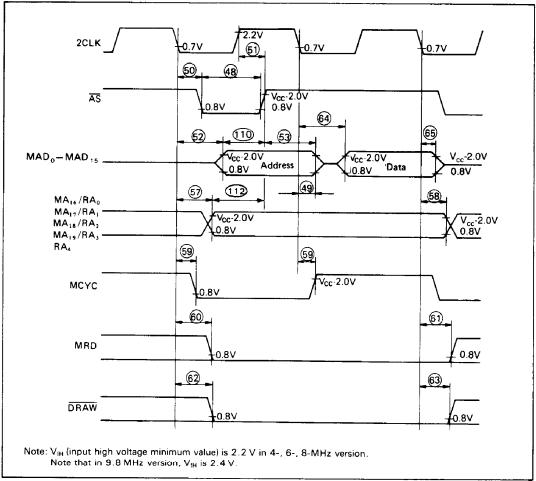


Figure 27. Frame Memory Write Cycle Timing (ACRTC - Frame Memory)

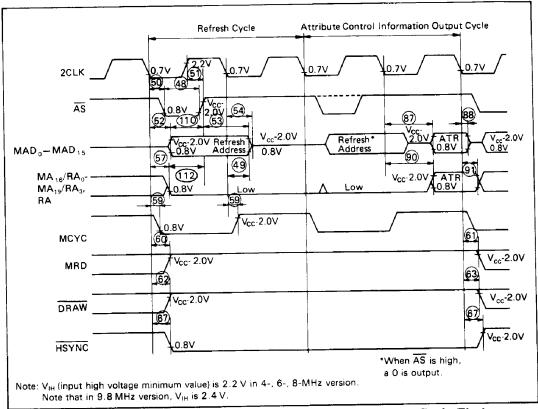


Figure 28. Frame Memory Refresh/Video Attributes Output Cycle Timing

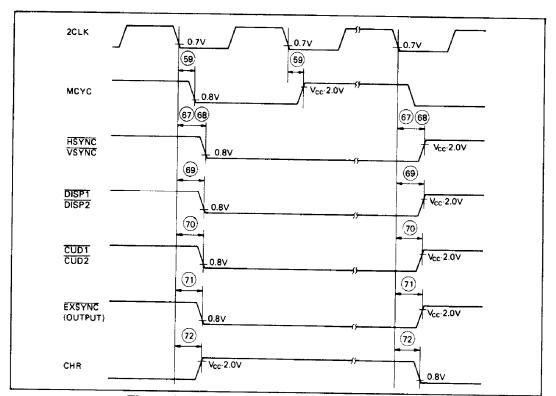


Figure 29. Display Control Signal Output Timing

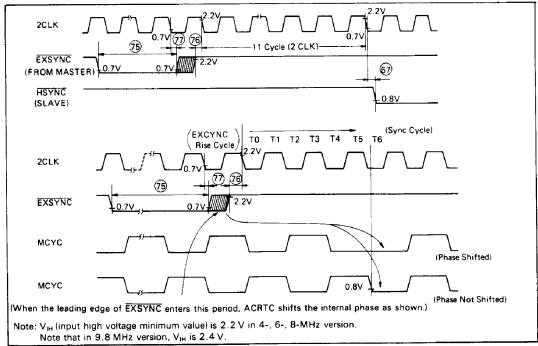


Figure 30. EXSYNC Input Timing

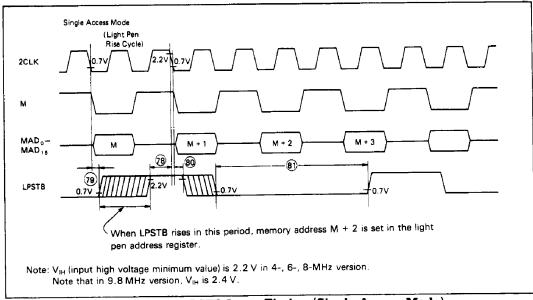


Figure 31. LPSTB Input Timing (Single Access Mode)

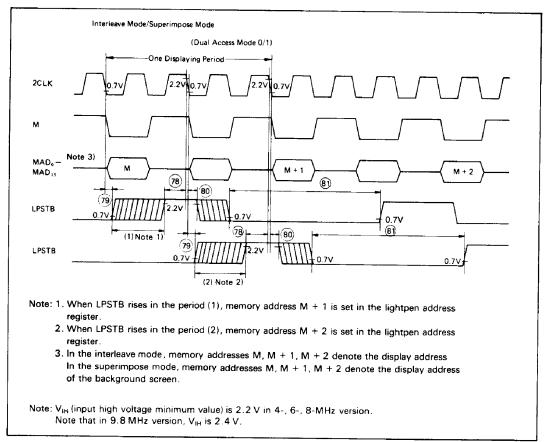


Figure 32. LPSTB Input Timing (Dual Access Mode)

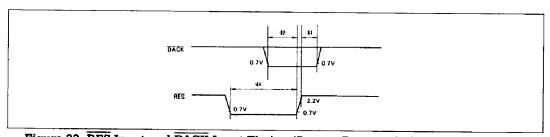


Figure 33. RES Input and DACK Input Timing (System Reset and 16-Bit/8-Bit Selection)

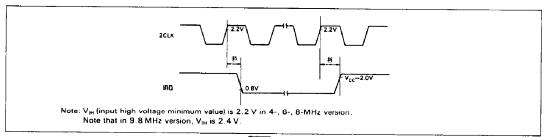
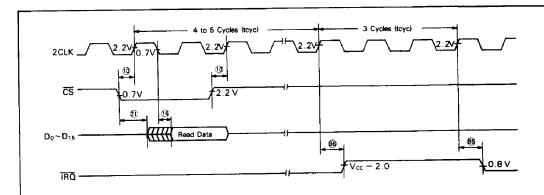



Figure 34. IRQ Output Timing

(C) HITACHI

258

This is an \overline{IRQ} output timing example. In this case, \overline{IRQ} is generated by status flag RFF (Read FIFO Full).

When issuing read commands (RD) which transfer data exceeding Read FIFO space (8 words), the FIFO becomes full, and the command execution pauses (RFF: set, \overline{IRQ} : generated). By reading out 1-word data, spare occurs in the FIFO, and the ACRTC resets RFF flag and then negates \overline{IRQ} , while on the other hand the ACRTC resumes the internal operation (command execution) to fill the FIFO, and sets RFF flag and then asserts \overline{IRQ} again.

In this case, the timing from $\overline{1RQ}$ negate to assert is 3 cycles (tcyc).

Note: V $_{\rm IH}$ (input high voltage minimum value) is 2.2 V in 4-, 6-, 8-MHz version. Note that in 9.8 MHz version, V $_{\rm IH}$ is 2.4 V.

Figure 35. IRQ Output Timing (Example: Read FIFO Full Interrupt Enable)

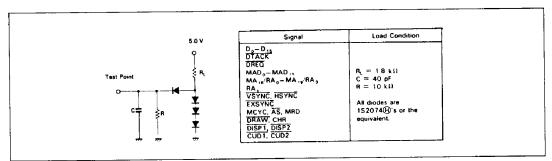


Figure 36. Test Load Circuit A

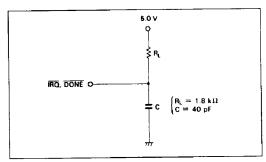


Figure 37. Test Load Circuit B

@HITACHI