Optical disc ICs

4-channel BTL driver for CD player and CD-ROM drives BA5921FP

The BA5921FP is an IC with an internal 4-channel BTL driver for CD players and CD-ROM driver actuators and motors, as well as an internal standard operational amplifier. In addition, the 28-pin HSOP package allows for application miniaturization.

Applications

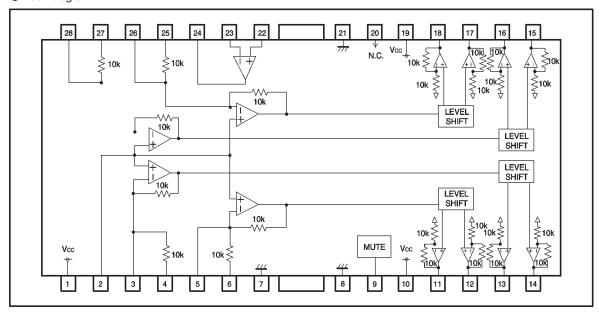
CD players, CD-ROM drives

Features

- 1) 4-channel BTL driver.
- 2) HSOP 28-pin power package allows for application miniaturization.
- 3) Wide dynamic range. (typically 3.6V when V_{CC} = 5V and R_{L} = $8\Omega)$
- 4) Internal thermal shutdown circuit.
- 5) Gain is adjustable with an attached resistor.
- 6) Internal standard operational amplifier.
- 7) Output current is mutable with an external mute pin.

Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	7	٧
Power dissipation	Pd	1.7*1	W
Operating temperature	Topr	−35 ~+85	°C
Storage temperature	Tstg	−35∼+150	°C


^{*1} Reduced by 13.6 mW for each increase in Ta of 1°C over 25°C. When mounted on a 50×50×1 mm paper phenol board.

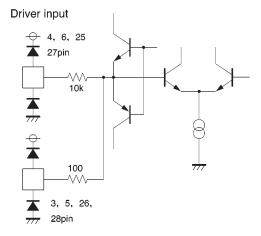
●Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	4.3	_	6.6	٧

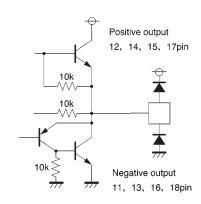
ROHM

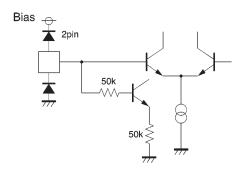
Block diagram

Pin descriptions

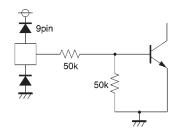

Pin No.	Pin name	Function	Pin No.	Pin name	Function
1	Vcc	Vcc	15	VO4 (+)	Driver channel 4 positive output
2	BIAS IN	Bias amplifier input	16	VO4 (—)	Driver channel 4 negative output
3	VIN1'	Driver channel 1 gain adjustment input	17	VO3 (+)	Driver channel 3 positive output
4	VIN1	Driver channel 1 input	18	VO3 (-)	Driver channel 3 negative output
5	VIN2'	Driver channel 2 gain adjustment input	19	Vcc	Vcc
6	VIN2	Driver channel 2 input	20	N.C.	_
7	GND	Ground	21	GND	Ground
8	GND	Ground	22	OP IN (+)	Operational amplifier positive input
9	MUTE	Mute control	23	OP IN (-)	Operational amplifier negative input
10	Vcc	Vcc	24	OP OUT	Operational amplifier output
11	VO2(-)	Driver channel 2 negative output	25	VIN3	Driver channel 3 input
12	VO2(+)	Driver channel 2 positive output	26	VIN3'	Driver channel 3 gain adjustment input
13	VO1(-)	Driver channel 1 negative output	27	VIN4	Driver channel 4 input
14	VO1(+)	Driver channel 1 positive output	28	VIN4'	Driver channel 4 gain adjustment input

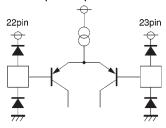
Note: Positive and negative output of the driver is relative to the polarity of the input pins.

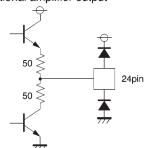

When the input pin is at the high level, the negative output pin is at the low level and the positive output pin at the high level.


270

●Pin equivalent circuit diagrams






Mute

Operational amplifier input

Operational amplifier output

•Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 5V, BIAS = 2.5V, RL = 8 Ω)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Quiescent current dissipation	lcc	_	13	20	mA	No load
Output offset voltage	Voo	-40	_	40	mV	
Maximum output amplitude	Vом	3.1	3.6	_	V	
Closed loop voltage gain	Gvc	10.4	11.8	13.2	dB	Vin=0.1V _{ms} , 1kHz
Mute-on voltage	VMON	_	_	0.5	V	
Mute-off voltage	VMOFF	2.0	_	_	V	
(Operational amplifier)						
Offset voltage	Vofop	-6	0	6	mV	
Input bias current	VBOP	_	_	300	nA	
Output high level voltage	Vонор	3.9	4.35	_	V	
Output low level voltage	Volop	_	0.75	1.1	V	
Output drive current (sink)	Isı	10	30	_	mA	Vcc at 50 Ω
Output drive current (source)	Iso	10	25	_	mA	Ground at 50 Ω
Slew rate	SRop	_	1	_	V/μs	100 kHz square wave, 2 V _{P-P} output

 $[\]ensuremath{\bigcirc}$ Not designed for radiation resistance.

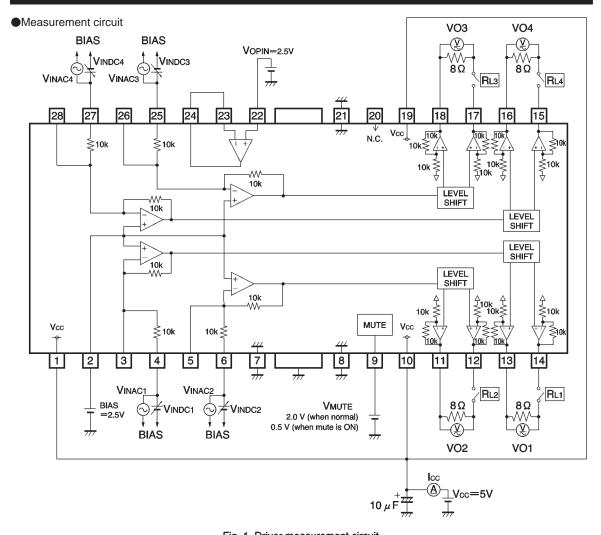


Fig. 1 Driver measurement circuit

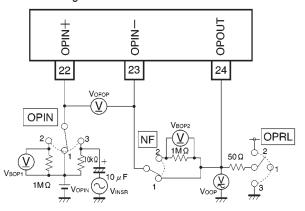


Fig. 2 Operational amplifier measurement circuit

ROHM

Measurement circuit switch table

(1) Driver (OPIN \rightarrow 1, NF \rightarrow 1, OPRL \rightarrow 1, VOPIN = 2.5V)

Symbol ——	Switch	Input	Note	Test point
	RL	VINDC		
lcc	OFF	_		lcc
V∞	ON	0V		V01~4
Vом	ţ	±2.5V		V01~4
Gvc	ţ	_	V _{INAC} =0.1V _{rms} , 1kHz	V01~4

(2) Operational amplifier (R_L→OFF)

Symbol		Switch		Input	Nisha	Test point
Symbol	OPIN	NF	OPRL	VOPIN	Note	
VOFOP	1	1	1	2.5V		Vofop
VBOP	2	2	1	2.5V		V _{BOP1} ~2
Vонор	1	1	1	5V		Voop
VOLOP	1	1	1	0V		Voop
lsı	1	1	2	2.5V		Voor
Iso	1	1	3	2.5V		Voor
SRop	3	1	1	2V	V _{INSR} = 100 kHz, square wave, 2 V _{P-P} output	Voor

Application example

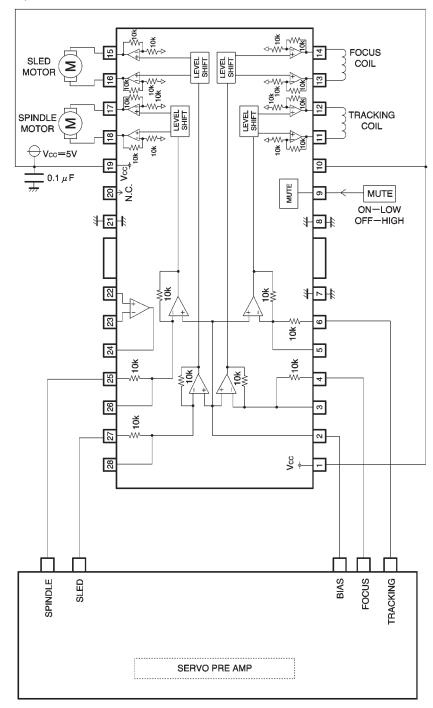


Fig. 3

ROHM

Operation notes

- (1) The BA5921FP has a thermal shutdown circuit. The output current is muted when the chip temperature rises above 175°C (typically). When the chip temperature falls to 150°C (typically), the driver circuit starts up again.
- (2) The output current can be muted by opening the mute pin (pin 9) or lowering it below 0.5V. During ordinary use, pin 9 should be pulled up above 2.0V.
- (3) Muting also occurs when the bias pin (pin 2) drops below 1.4V (typically). Make sure it stays above 1.7V during normal use.
- (4) The internal circuits turn off when the supply voltage drops below 3.8V (typically), and turn on again when it rises above 4.0V (typically).
- (5) Muting occurs during thermal shutdown, mute-on operations or a drop in the bias pin voltage or supply voltage. In each case, only the drivers are muted. During muting, the output pins remain at the internal bias voltage, roughly (Vcc-VF)/2.
- (6) Connect the IC to a $0.1\mu F$ bypass capacitor between power supplies, at the base of the IC.
- (7) The radiating fin is connected to the package's internal GND, but should also be connected to an external ground.

Electrical characteristic curves

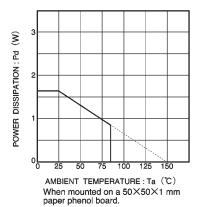


Fig.4 Thermal derating curve

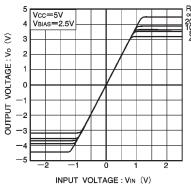


Fig.5 Driver I / O characteristics

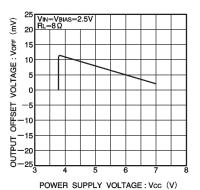


Fig. 6 Power supply voltage vs. output offset voltage

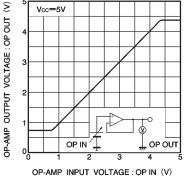


Fig. 7 Operational amplifier I / O characteristics

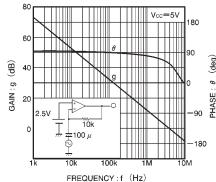
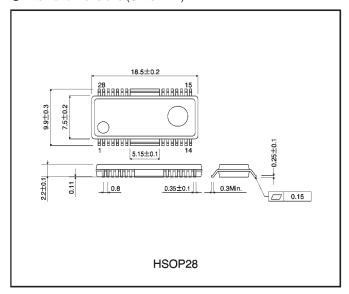



Fig. 8 Operational amplifier vs.open loop

External dimensions (Units: mm)

