AN8481SB

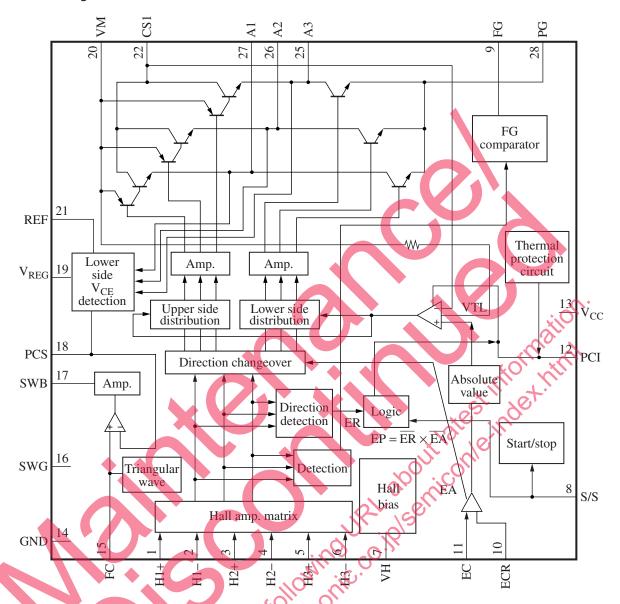
Spindle motor driver IC for optical disk

Overview

The AN8481SB is a high performance IC suited for driving a spindle motor of an optical disk such as CD-ROM, PD, DVD, CD-R, CD-RW, etc.

■ Features

- Adopting the 3-phase full-wave soft switch system
- With switching regulator control function
- With start and stop pin
- Reverse breaking by EC/ECR voltage
- With Hall bias pin
- Surface-mount small package


Applications

- High speed CD-ROM drive
- PD, DVD, CD-R, CD-RW drives

■ Package

• HSOP042-P-0400D

■ Block Diagram

■ Pin Descriptions

🔻	Coonplic				
Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	H1+	Hall element-1 positive input pin	11	EC	Torque command input pin
2	H1-	Hall element-Unegative input pin	12	PCI	Current feedback phase compensation pin
3	H2+	Hall element-2 positive input pin	13	V _{CC}	Supply voltage pin
4	H2-	Hall element-2 negative input pin	14	SG	Signal GND pin
5	H3+	Hall element-3 positive input pin	15	FC	Triangular wave oscillation pin
6	Н3-	Hall element-3 negative input pin	16	SWG	SW-REG system GND pin
7	VH	Hall bias pin	17	SWB	SW-REG driving pin
8	SS	Start/stop changeover pin	18	PCS	SW-REG system phase compensation pin
9	FG	FG signal output pin	19	V _{REG}	Fixed power supply pin
10	ECR	Torque command reference input pin	20	VM	Motor supply voltage pin

Panasonic

■ Pin Descriptions (continued)

Pin No.	Symbol	Description	Pin No.	Symbol	Description
21	REF	SW-REG reference setting pin	25	A3	Drive output 3
22	CS1	Current det. pin 1	26	A2	Drive output 2
23	N.C.	N.C.	27	A1	Drive output 1
24	N.C.	N.C.	28	PG	Power GND pin

■ Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V _{CC}	7.0	V
	V _M	14.4	
	V _{REG}		
Control signal input voltage *4	V _(n)	0 to V _{CC}	V
Supply current	I_{CC}	30	mA
Output current *3	$I_{O(n)}$	±1 200	mA
Hall bias current	I _{HB}	50	mA
Power dissipation *2	P_{D}	667	mW
Operating ambient temperature *1	Topr	-20 to +70	↓. °C
Storage temperature *1	$T_{\rm stg}$	-55 to +150	°C

Note) Do not apply external currents or voltages to any pins not specifically mentioned.

For circuit currents, '+' denotes current flowing into the IC, and '-' denotes current flowing out of the IC.

- *1: Except for the operating ambient temperature and storage temperature, all ratings are for T_a = 25°C.

 *2: For 70°C and IC alone.

 *3: n = 22, 25, 26, 27, 28

 *4: n = 1, 2, 3, 4, 5, 6, 8, 10, 11

 ecommended Operating Range

■ Recommended Operating Range

Parameter	Symbol C Range	Unit
Supply voltage	V _{CC} 4.25 to 5.5	V
	V _M 4.5 to 14	
	V _{REG}	

■ Electrical Characteristics at $\hat{T}_a = 25$ C

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Overall							
Circuit current 1	I _{CC1}	$V_{CC} = 5 \text{ V}$ in power save mode	_	0	0.1	mA	
Circuit current 2	I_{CC2}	$V_{CC} = 5 \text{ V}, I_{O} = 0 \text{ mA}$	_	8	16	mA	
Start/stop							
Start voltage	V _{START}	Voltage with which a circuit operates at $V_{CC} = 5 \text{ V}$ and $L \rightarrow H$	3.5		_	V	
Stop voltage	V _{STOP}	Voltage with which a circuit becomes off at $V_{CC} = 5 \text{ V}$ and $H \rightarrow L$	_	_	1.0	V	

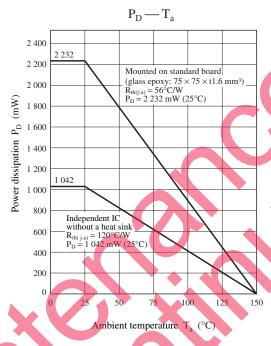
3 SDD00007CEB

\blacksquare Electrical Characteristics at $T_a=25^{\circ}C$ (continued)

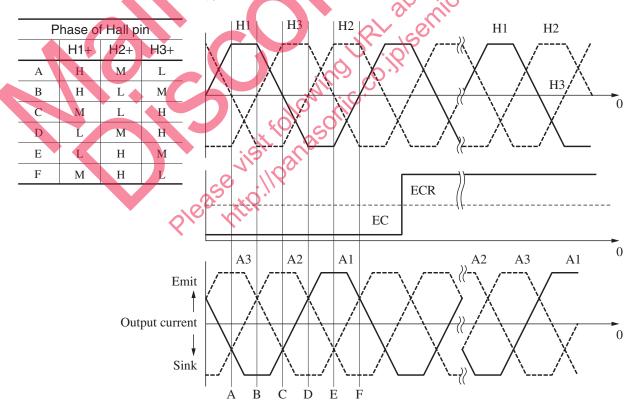
	~	,							
Parameter	Symbol	Conditions		Тур	Max	Unit			
Hall bias									
Hall bias voltage	V_{HB}	$V_{CC} = 5 \text{ V}, I_{HB} = 20 \text{ mA}$	0.7	1.2	1.6	V			
Hall amplifier									
Input bias current	I_{BH}	$V_{CC} = 5 \text{ V}$	<u> </u>	1	5	μΑ			
In-phase input voltage range	V_{HBR}	$V_{CC} = 5 \text{ V}$	1.5		4.0	V			
Minimum input level	V _{INH}	$V_{CC} = 5 \text{ V}$	60	_	_	mV[p-p]			
Torque command									
In-phase input voltage range	EC	$V_{CC} = 5 \text{ V}$	1		3.9	V			
Offset voltage	EC _{OF}	$V_{CC} = 5 \text{ V}$	-150	0	150	mV			
Dead zone	EC _{DZ}	$V_{CC} = 5 \text{ V}$	50	100	150	mV			
Input current	EC _{IN}	$V_{CC} = 5 \text{ V}, EC = ECR = 2.5 \text{ V}$	-5	-1		μΑ			
Input/output gain	A _{CS}	$V_{DD} = 5 \text{ V}, R_{CS} = 0.5 \Omega$	0.31	0.41	0.51	A/V			
Output									
High-level output saturation voltage	V _{OH}	$V_{\rm CC} = 5 \text{ V, } I_{\rm O} = -300 \text{ mA}$	P	0.9	9.6	V			
Low-level output saturation voltage	V _{OL}	$V_{CC} = 5 \text{ V}, I_0 = 300 \text{ mA}$	_	0.2	0.6	V			
Torque limit current	I _{TL}	$V_{CC} = 5 \text{ V}, R_{CS} = 0.5 \Omega$	390	530 -	670	mA			
FG			xes.	790					
FG output high-level	FG _H	$V_{CC} = 5 \text{ V}, I_{FG} = -0.01 \text{ mA}$	3.0		V _{CC}	V			
FG output low-level	FG_L	$V_{CC} = 5 \text{ V}, I_{FG} = 0.01 \text{ mA}$	P	_	0.5	V			
In-phase input voltage range	V _{FGR}	$V_{CC} = 5 \text{ V},$	1.5		3.0	V			
		Input D-range at H2+, H2-							
FG hysteresis width	H_{FG}	$V_{CC} = 5 \text{ V}$	1	10	20	mV			
Triangular wave oscillation circui	Triangular wave oscillation circuit								
Charging current	I _{CH}	$V_{CC} = 5 \text{ W, FC} = 0.5 \text{ V}$	-100	-50	-25	μΑ			
Discharging current	I _{DCH}	$V_{CC} = 5 \text{ V}, FC = 2.5 \text{ V}$	25	50	100	μΑ			
Lower side voltage detection circuit									
Input to output gain	G _{VI}	V _{CC} 5 V	5	10	20	times			
SW-REG driving circuit	S	i//x	ı	ı	I				
PNP driving current	I_{SWB}	$V_{CC} = 5 \text{ V}$	10	50		mA			

• Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

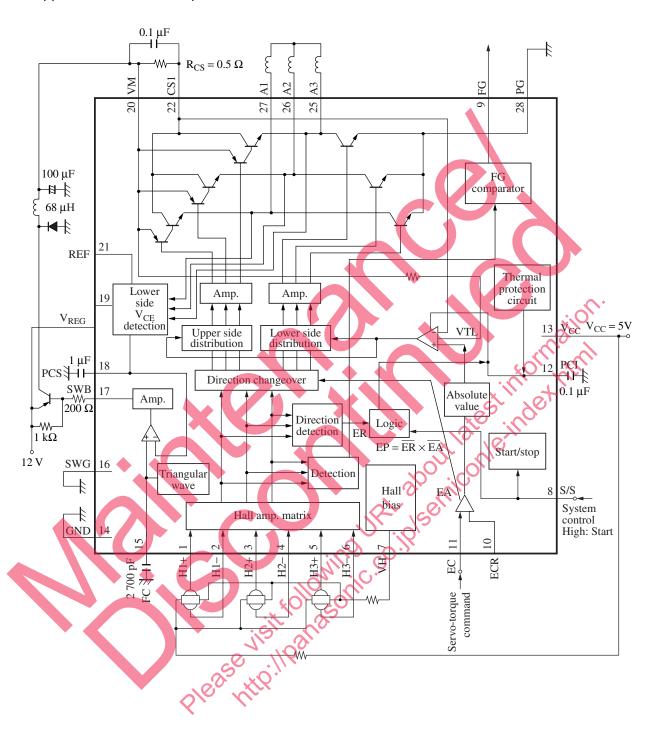

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Thermal protection						
Thermal protection operating temperature	T _{SDON}	$V_{CC} = 5 \text{ V}, \Delta EC = 100 \text{ mV}$	_	170	_	°C
Thermal protection hysteresis width	ΔT_{SD}	$V_{CC} = 5 \text{ V}, \Delta EC = 100 \text{ mV}$		45		°C

■ Usage Notes


Prevent this IC from being line-to-ground fault. (To be concrete, do not short-circuit any of pins A1 (pin 27), A2 (pin 26) and A3 (pin 25) to V_{REG} pin (pin 19) or VM pin (pin 20).)

■ Application Notes

• P_D — T_a curves of HSOP042-P-0400



• Phase conditions between Hall input and output current

SDD00007CEB 5

■ Application Circuit Example

6 SDD00007CEB

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances). Consult our sales staff in advance for information on the following applications:
 - · Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 - Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the clapsed time since first opening the packages.
- Please visit following Leading on the prior write please visit following the prior write visit following the prio (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.