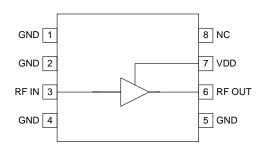
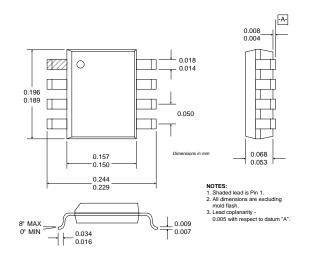

GENERAL PURPOSE LOW-NOISE AMPLIFIER

Typical Applications


- Receive or Transmit Low-Noise Amplifiers
- FDD and TDD Communication Systems
- Commercial and Consumer Systems
- Portable Battery Powered Equipment
- Wireless LAN
- ISM Band Applications

Product Description


The RF2304 is a low-noise small-signal amplifier. The device is manufactured on a low-cost Gallium Arsenide MESFET process, and has been designed for use as a gain block in high-end communication systems operating from less than 300MHz to above 2.5GHz. With +6dBm output power, it may also be used as a driver in transmitter applications, or in highly linear receivers. The device is packaged in an 8-lead plastic package and is self-contained, requiring just an inductor and blocking capacitors to operate. The +6dBm output power, combined with the 1.8dB noise figure at 900MHz allows excellent dynamic range for a variety of receive and transmit applications.

Si BJT	🗌 GaAs HBT	🗹 GaAs MESFET
Si Bi-CMOS	SiGe HBT	Si CMOS

Functional Block Diagram

Package Style: SOIC-8

Features

- Single 2.7V to 6.0V Supply
- 6dBm Output Power
- 8dB Small Signal Gain at 900MHz
- 1.8dB Noise Figure at 900MHz
- Low DC Current Consumption of 5mA
- 300MHz to 2500MHz Operation

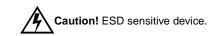
Ordering Information

 RF2304
 General Purpose Low-Noise Amplifier

 RF2304 PCBA
 Fully Assembled Evaluation Board

 RF Micro Devices, Inc.
 Tel (336) 664 1233

 7628 Thorndike Road
 Fax (336) 664 0454

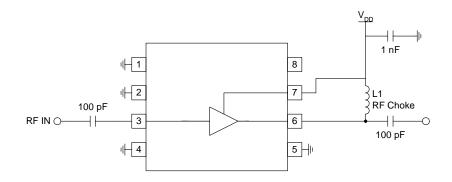

 Greensboro, NC 27409, USA
 http://www.rfmd.com

Rev A5 010717

4

Absolute Maximum Ratings

Parameter	Rating	Unit			
Supply Voltage (V _{DD})	-0.5 to +6.5	V _{DC}			
DC Current	40	mA			
Input RF Power	+10	dBm			
Operating Ambient Temperature	-40 to +85	°C			
Storage Temperature	-40 to +150	°C			



RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Parameter	Specification		Unit	Condition		
Faiailletei	Min.	Тур.	Max.	Onit	Condition	
Operating Range						
Overall Frequency Range	300		2500	MHz		
Supply Voltage	2.7		6.0	V		
Operating Current (I _{CC})		8.4		mA	V _{CC} =3V, Temp=27°C	
	7	11	26	mA	V _{CC} =5V, Temp=27°C	
Operating Ambient Temperature	-40		+85	°C		
3V Performance						
Gain		11.7		dB	Freq=300MHz, V _{CC} =3V, Temp=27°C	
Gain		8.5		dB	Freq=900MHz, V _{CC} =3V, Temp=27°C	
Noise Figure		1.9		dB		
Input IP3		+6.9		dBm		
OP1dB		+7.5		dBm		
Gain		9.2		dB	Freq=1950MHz, V _{CC} =3V, Temp=27°C	
Noise Figure		1.7		dB		
Input IP3		+8.6		dBm		
OP1dB		+6.9		dBm		
Gain		8.2		dB	Freq=2450MHz, V _{CC} =3V, Temp=27°C	
Noise Figure		1.7		dB		
Input IP3		+10.5		dBm		
OP1dB		+7.5		dBm		
5V Performance						
Gain		12.5		dB	Freq=300MHz, V _{CC} =5V, Temp=27°C	
Gain	10	12	14	dB	Freq=900MHz, V _{CC} =5V, Temp=27°C	
Noise Figure		1.9		dB		
Input IP3		+8.4		dBm		
OP1dB		+8.7		dBm		
Gain		9.8		dB	Freq=1950MHz, V _{CC} =5V, Temp=27°C	
Noise Figure		1.9		dB		
Input IP3		+10.0		dBm		
OP1dB		+8		dBm		
Gain	6	8	11	dB	Freq=2450MHz, V _{CC} =5V, Temp=27°C	
Noise Figure		1.6		dB		
Input IP3		+8.0		dBm		
OP1dB		+6		dBm		

Pin	Function	Description	Interface Schematic
1	GND	Ground connection. For best performance, keep traces physically short and connect immediately to ground plane.	
2	GND	Same as pin 1.	
S	RF IN	DC coupled RF input. A broadband impedance match is produced by internal shunt resistive feedback. The DC level is approximately 200mV. If a DC path exists in the connected circuitry, an external DC- blocking capacitor is required to properly maintain the DC operating point.	
4	GND	Same as pin 1.	
5	GND	Same as pin 1.	
6	RF OUT	RF output. A broadband impedance match is produced by internal shunt resistive feedback. The DC connection to the power supply is provided through an external chip inductor having greater than 150Ω reactance at the operating frequency. An external DC-blocking capacitor is required if the following circuitry is not DC-blocked.	
7	VDD2	Bias control connection. This pin is normally connected to the power supply, but can be used to switch the amplifier on and off by switching between power supply voltage and ground. This pin sinks approximately 600μ A when connected to V _{DD} , and sources less than 10μ A when grounded.	

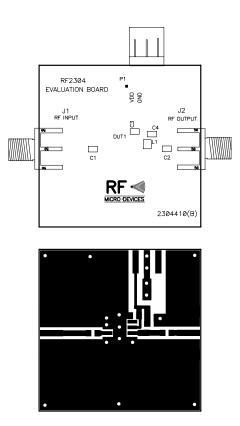
Application Schematic

GENERAL PURPOSE

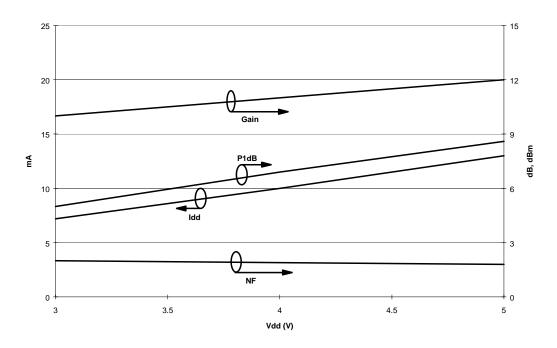
RF2304

8

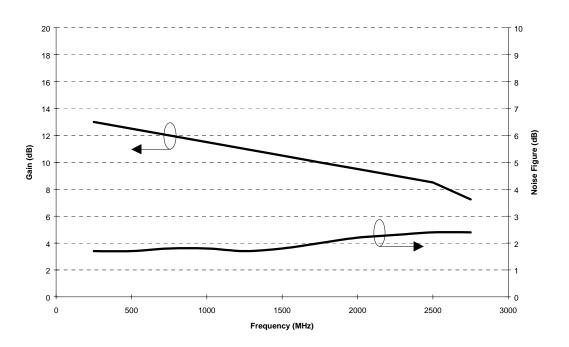
NC


No connection.

Evaluation Board Schematic

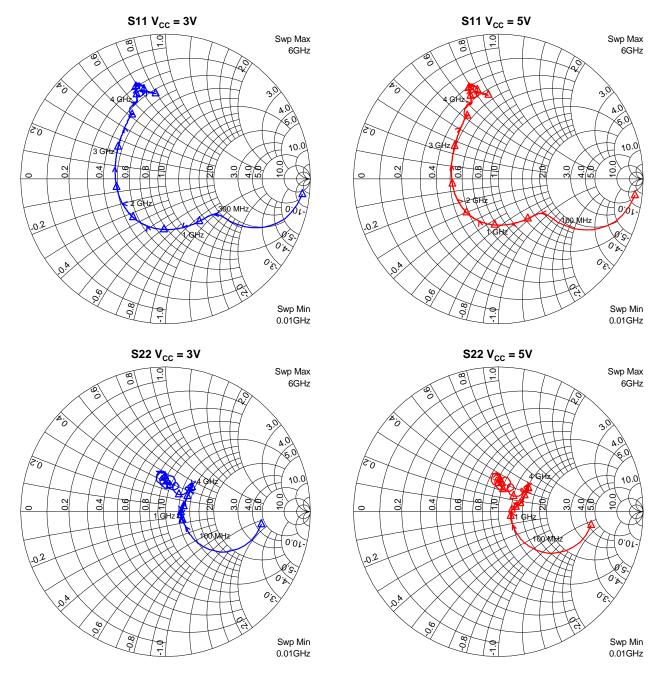

(Download Bill of Materials from www.rfmd.com.)

Evaluation Board Layout 1.43" x 1.43"



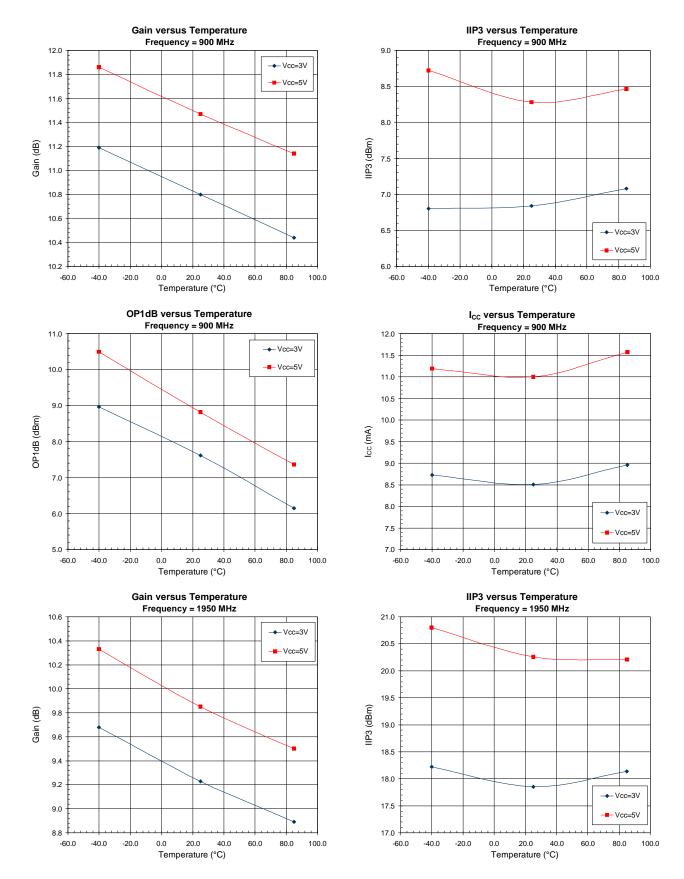
4

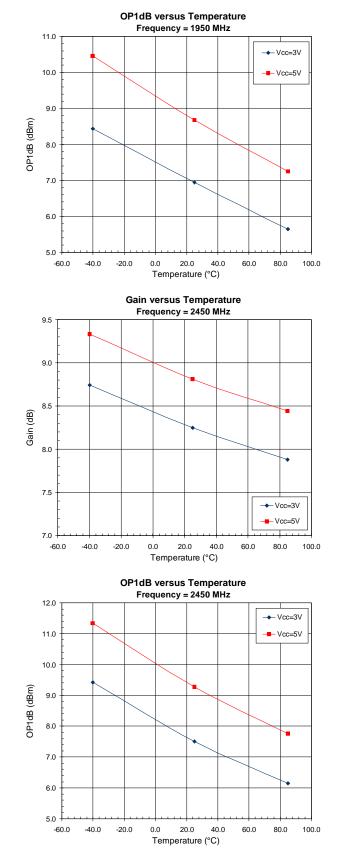
Typical Characteristics - f=900MHz



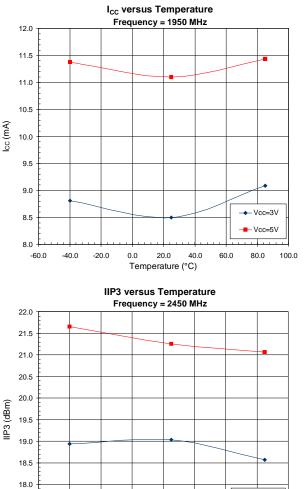
Rev A5 010717

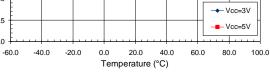
4


GENERAL PURPOSE AMPLIFIERS

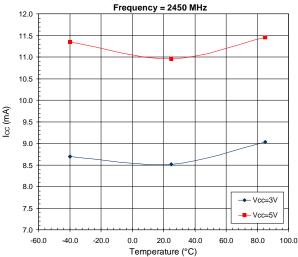

S-Parameter Conditions: All plots are taken at ambient temperature=25°C.

NOTE:

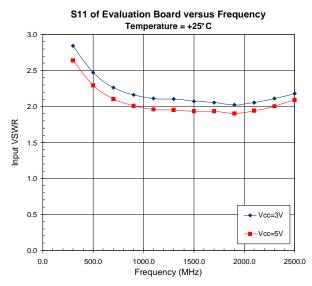

All S11 and S22 plots shown were taken from an RF2304 evaluation board with external input and output tuning components removed and the reference points at the RF IN and RF OUT pins.

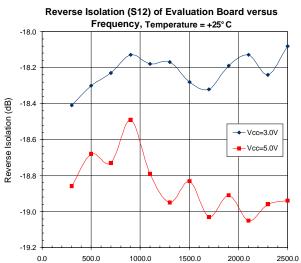


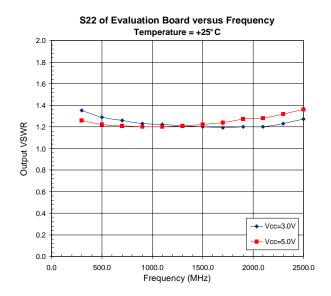
Rev A5 010717



17.5


17.0


I_{cc} versus Temperature


Rev A5 010717

4

Frequency (MHz)

GENERAL PURPOSE

Rev A5 010717

4-66