A3121, A3122, and A3123

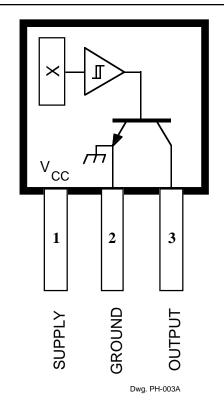
Hall Effect Switches for High Temperature Operation

Discontinued Product

These parts are no longer in production The device should not be purchased for new design applications. Samples are no longer available.

Date of status change: October 31, 2005

Recommended Substitutions:


For new customers and applications, refer to the $\underline{A110x}$ family.

NOTE: For detailed information on purchasing options, contact your local Allegro field applications engineer or sales representative.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, revisions to the anticipated product life cycle plan for a product to accommodate changes in production capabilities, alternative product availabilities, or market demand. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

HALL-EFFECT SWITCHES FOR HIGH-TEMPERATURE OPERATION

Pinning is shown viewed from branded side.

ABSOLUTE MAXIMUM RATINGS at $T_A = +25^{\circ}C$

Supply Voltage, V _{CC} 30 V
Reverse Battery Voltage, V_{RCC} 30 V
Magnetic Flux Density, B Unlimited
Output OFF Voltage, V _{OUT} 28 V
Reverse Output Voltage, V_{OUT} 0.5 V
Continuous Output Current, I _{OUT} 25 mA
Operating Temperature Range, T_A
Suffix 'E-'40°C to +85°C
Suffix 'L-'40°C to +150°C
Storage Temperature Range,
T_{s} 65°C to +170°C

These Hall-effect switches are monolithic integrated circuits with tighter magnetic specifications, designed to operate continuously over extended temperatures to +150°C, and are more stable with both temperature and supply voltage changes. The unipolar switching characteristic makes these devices ideal for use with a simple bar or rod magnet. The three basic devices (A3121, A3122, and A3123) are identical except for magnetic switch points.

Each device includes a voltage regulator for operation with supply voltages of 4.5 volts to 24 volts, reverse battery protection diode, quadratic Hall-voltage generator, temperature compensation circuitry, small-signal amplifier, Schmitt trigger, and an open-collector output to sink up to 25 mA. With suitable output pull up, they can be used with bipolar or CMOS logic circuits. The A3121 is an improved replacement for the UGx3113 and UGx3119.

The first character of the part number suffix determines the device operating temperature range. Suffix 'E–' is for the automotive and industrial temperature range of -40°C to +85°C. Suffix 'L–' is for the automotive and military temperature range of -40°C to +150°C. Two package styles provide a magnetically optimized package for most applications. Suffix '–LT' is a miniature SOT89/TO-243AA transistor package for surface-mount applications; suffix '–UA' is a three-lead ultra-mini-SIP.

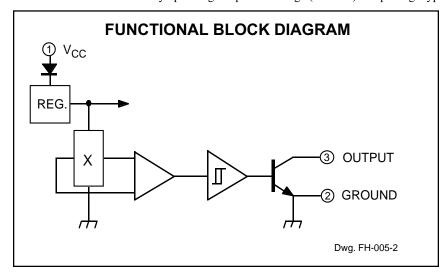
FEATURES and BENEFITS

- Superior Temp. Stability for Automotive or Industrial Applications
- 4.5 V to 24 V Operation ... Needs Only An Unregulated Supply
- Open-Collector 25 mA Output ... Compatible with Digital Logic
- Reverse Battery Protection
- Activate with Small, Commercially Available Permanent Magnets
- Solid-State Reliability ... No Moving Parts
- Small Size
- Resistant to Physical Stress

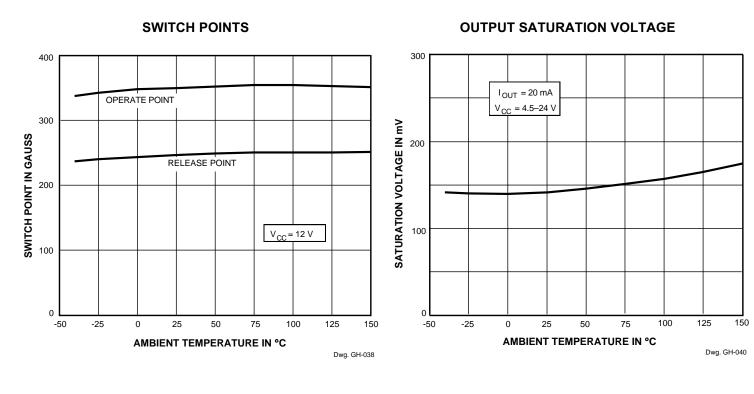
Always order by complete part number, e.g., A3121EUA.

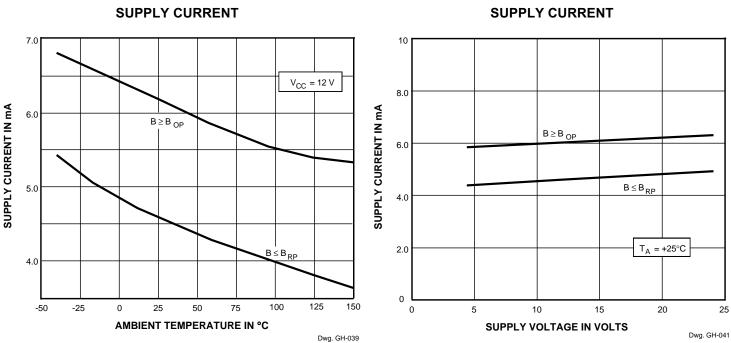
ELECTRICAL CHARACTERISTICS over operating temperature range, at V_{CC} = 12 V.

			Limits			
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Supply Voltage	V _{cc}	Operating	4.5	_	24	V
Output Saturation Voltage	V _{OUT(SAT)}	I _{OUT} = 20 mA, B > B _{OP}	_	140	400	mV
Output Leakage Current	I _{OFF}	V _{OUT} = 24 V, B < B _{RP}	_	<1.0	10	μА
Supply Current	I _{cc}	B < B _{RP} (Output OFF)	_	4.6	9.0	mA
Output Rise Time	t _r	$R_{L} = 820 \Omega, C_{L} = 20 pF$	_	0.04	2.0	μs
Output Fall Time	t _f	$R_{L} = 820 \Omega, C_{L} = 20 pF$	_	0.18	2.0	μs


MAGNETIC CHARACTERISTICS in gauss over operating supply voltage range.

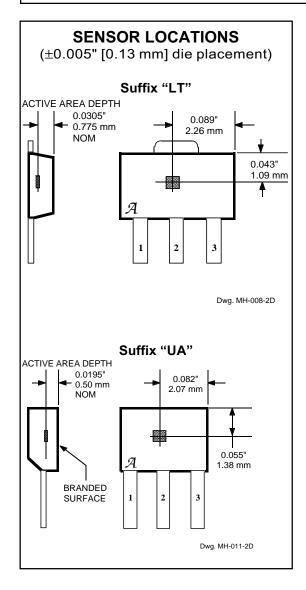
		Part Numbers*								
		A3121		A3122			A3123			
Cha	racteristic	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max
B _{OP}	at T _A = 25°C	250	350	450	280	340	400	250	345	440
	over operating temp. range	220	350	500	260	340	430	230	345	470
B _{RP}	at T _A = 25°C	125	245	380	140	235	330	180	240	300
	over operating temp. range	80	245	410	120	235	360	160	240	330
B _{hys}	at T _A = 25°C	70	105	140	70	105	140	70	105	140
	over operating temp. range	60	105	150	70	105	140	70	105	140


NOTES: Typical values are at $\rm T_A = +25^{\circ}C$ and $\rm V_{CC} = 12~V.$


 B_{OP} = operate point (output turns ON); B_{RP} = release point (output turns OFF); B_{hys} = hysteresis (B_{OP} - B_{RP}).

^{*}Complete part number includes a suffix to identify operating temperature range (E- or L-) and package type (-LT or -UA).

TYPICAL OPERATING CHARACTERISTICS



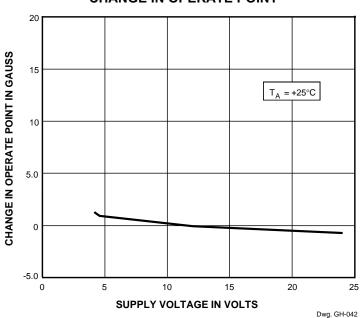
^{*} Complete part number includes a suffix denoting operating temperature range (E- or L-) and package type (-LT or -UA).

www.allegromicro.com

3121, 3122, and 3123 HALL-EFFECT SWITCHES FOR HIGH-TEMPERATURE OPERATION

OPERATION

The output of these devices (pin 3) switches low when the magnetic field at the Hall sensor exceeds the operate point threshold (B_{OP}). At this point, the output voltage is $V_{OUT(SAT)}$. When the magnetic field is reduced to below the release point threshold (B_{RP}), the device output goes high. The difference in the magnetic operate and release points is called the hysteresis (B_{hys}) of the device. This built-in hysteresis allows clean switching of the output even in the presence of external mechanical vibration and electrical noise.

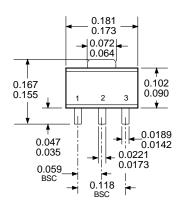

APPLICATIONS INFORMATION

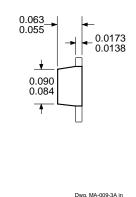
Extensive applications information for Hall-effect sensors is available in:

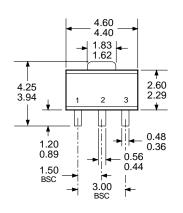
- Hall-Effect IC Applications Guide, Application Note 27701;
- Hall-Effect Devices: Soldering, Gluing, Potting, Encapsulating, and Lead Forming, Application Note 27703.1;
- Soldering of Through-Hole Hall-Sensor Dervices, Application Note 27703; and
- Soldering of Surface-Mount Hall-Sensor Devices, Application Note 27703.2.

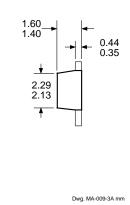
All are provided in *Allegro Electronic Data Book*, AMS-702. or at www.allegromicro.com

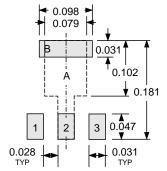
CHANGE IN OPERATE POINT

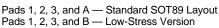

3121, 3122, AND 3123 HALL-EFFECT SWITCHES FOR HIGH-TEMPERATURE **OPERATION**

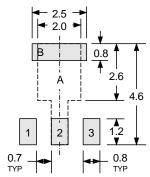

PACKAGE DESIGNATOR 'LT' (SOT89/TO-243AA)


Dimensions in Inches


(for reference only)


Dimensions in Millimeters (controlling dimensions)





Pads 1, 2, and 3 only — Lowest Stress, But Not Self Aligning

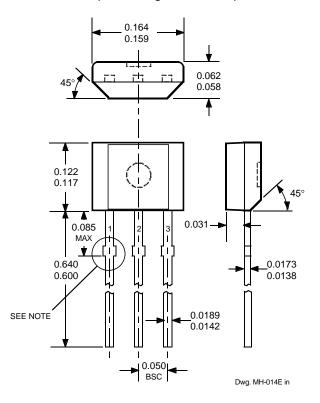
Dwg. MA-012-3 in

Pads 1, 2, 3, and A — Standard SOT89 Layout Pads 1, 2, 3, and B — Low-Stress Version

Pads 1, 2, and 3 only — Lowest Stress, But Not Self Aligning

Dwg. MA-012-3 mm

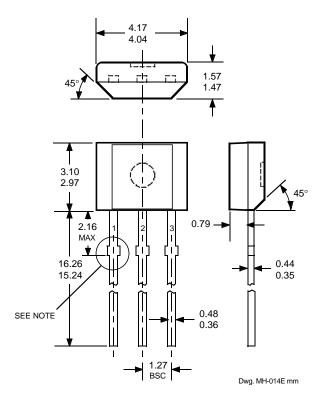
NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.

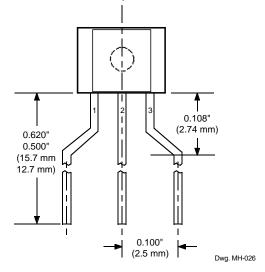

- Supplied in bulk pack (500 pieces per bag) or add "TR" to part number for tape and reel.
- Only low-temperature (≤240°C) reflow-soldering techniques are recommended for SOT89 devices.

www.allegromicro.com 5

3121, 3122, and 3123 HALL-EFFECT SWITCHES FOR HIGH-TEMPERATURE OPERATION

PACKAGE DESIGNATOR 'UA'


Dimensions in Inches (controlling dimensions)


NOTES: 1. Tolerances on package height and width represent allowable mold offsets. Dimensions given are measured at the widest point (parting line).

- Exact body and lead configuration at vendor's option within limits shown.
- 3. Height does not include mold gate flash.
- Recommended minimum PWB hole diameter to clear transition area is 0.035" (0.89 mm).
- 5. Where no tolerance is specified, dimension is nominal.
- 6. Supplied in bulk pack (500 pieces per bag).

Dimensions in Millimeters (for reference only)

Radial Lead Form (order A312xxUA-LC)

NOTE: Lead-form dimensions are the nominals produced on the forming equipment. No dimensional tolerance is implied or guaranteed for bulk packaging (500 pieces per bag).

3121, 3122, AND 3123 HALL-EFFECT SWITCHES FOR HIGH-TEMPERATURE OPERATION

HALL-EFFECT SENSORS

UNIPOLAR HALL-EFFECT DIGITAL SWITCHES										
Partial	Operate	Release	Hysteresis			Replaces				
Part	Point (G)	Point (G)	(G)	Oper.		and				
Number	Over Oper	. Voltage & Te	mp. Range	Temp.	Packages	Comments				
A3121x	220 to 500	80 to 410	60 to 150	E, L	LT, UA	3019, 3113, 3119				
A3122x	260 to 430	120 to 360	70 to 140	E, L	LT, UA					
A3123x	230 to 470	160 to 330	70 to 140	E, L	LT, UA					
A3141x	30 to 175	10 to 145	20 to 80	E, L	LT, UA	3040, 3140				
A3142x	115 to 245	60 to 190	30 to 80	E, L	LT, UA					
A3143x	205 to 355	150 to 300	30 to 80	E, L	LT, UA					
A3144x	35 to 450	25 to 430	>20	E, L	LT, UA	3020, 3120				
A3161E	<160 (Typ 130)	>30 (Typ 110)	5 to 80	Е	LT, UA	2-wire operation				
A3163E	<160 (Typ 98)	>30 (Typ 79)	5 to 40	Е	LT, UA	2-wire				
A3240x	<50 (Typ 35)	>5 (Typ 25)	Typ 10	E, L	LH, LT, UA	chopper stabilized				
A3250x	<50 to >350	_	5 to 35	J, L	UA	programmable, chopper stabilized				
A3251x	<50 to >350	_	5 to 35	J, L	UA	programmable, chopper stabilized				
A3361E	<125	>40	5 to 30	E	LH, LT, UA	2-wire, chopper stabilized, output normally high				
A3362E	<125	>40	5 to 30	E	LH, LT, UA	2-wire, chopper stabilized, output normally low				
	М	ICROPOWER O	MNIPOLAR HAL	L-EFFEC	DIGITAL SW	/ITCHES				
Partial Part	Operate Points (G)	Release Points (G)	Hysteresis (G)	Oper.		Average Supply				
Number	Over Oper	. Voltage & Te	mp. Range	Temp.	Packages	Current (μA)				
A3209E	>-60, <60	<-5, >5	Typ 7.7	E	LH, UA	<425 (Typ 145)				
A3210E	>-60, <60	<-5, >5	Typ 7.7	Е	LH, UA	<60 (Typ 8.8)				
A3212E	>-55, <55	<-10, >10	Typ. 8	Ε	LH, UA	<10 (Typ 4.2)				
	BIPOLAR HALL-EFFECT DIGITAL SWITCHES									
Partial	Operate	Release	Hysteresis			Replaces				
Part	Point (G)	Point (G)	(G)	Oper.		and				
Number	Over Oper.	Voltage & Ten	np. Range	Temp.	Packages	Comments				
UGx3132	<95 (Typ 32)	>-95 (Typ -20)	>30 (Typ 52)	K, L, S	LT, UA	3030, 3130, 3131				
UGx3133	<75 (Typ 32)		>30 (Typ 52)	K, L, S	LT, UA					
UGx3134	-40 to 50	-50 to 40	5 to 55	É, Ĺ	LT, UA					
A3260x	<30 (Typ 10)	>-30 (Typ -10)	Typ 20	E, L	LH, ĹT, UA	2 wire, chopper stabilized				

Notes: 1) Typical data is at T_A = +25°C and nominal operating voltage.

www.allegromicro.com 7

^{2) &}quot;x" = Operating Temperature Range [suffix letter or (prefix)]: S (UGN) = -20°C to +85°C, E = -40°C to +85°C, J = -40°C to +115°C, K (UGS) = -40°C to +125°C, L (UGL) = -40°C to +150°C.

3121, 3122, and 3123 HALL-EFFECT SWITCHES FOR HIGH-TEMPERATURE OPERATION

The products described herein are manufactured under one or more of the following U.S. patents: 5,045,920; 5,264,783; 5,442,283; 5,389,889; 5,581,179; 5,517,112; 5,619,137; 5,621,319; 5,650,719; 5,686,894; 5,694,038; 5,729,130; 5,917,320; and other patents pending.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro products are not authorized for use as critical components in life-support appliances, devices, or systems without express written approval.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.

