Typical Applications

- W-CDMA Systems
- PCS/Cellular CDMA Systems
- PHS 1500/WLAN 2400 Systems
- General Purpose Upconverter
- BPSK Modulation
- Micro-Cell PCS Base Stations

Product Description

The RF2638 is a complete upconverter designed for cellular, PCS and W-CDMA applications. This device may also be used to directly BPSK modulate a carrier. The unit operates at 3.0 V and is designed as part of the RFMD PCS/Cellular CDMA and W-CDMA Chip Sets.

Optimum Technology Matching® Applied

\square Si BJT	\square GaAs HBT	\square GaAs MESFET
\square Si Bi-CMOS	\square SiGe HBT	\square Si CMOS
\square InGaP/HBT	\square GaN HEMT	\square SiGe Bi-CMOS

Functional Block Diagram

Package Style: MSOP-8

Features

- Supports Dual Mode Operation
$\cdot+10 \mathrm{dBm}$ Output IP3 (1950 MHz)
- +13dBm Output IP3 (830 MHz)
- Single 3.0V Power Supply
- Miniature 8-Pin Package
- Double-Balanced Mixer

Ordering Information

RF2638 W-CDMA and CDMA Upconverter/ BPSK Modulator RF2638 PCBA-PCS/CELFully Assembled Evaluation Board RF2638 PCBA-DOFully Assembled Evaluation Board

RF Micro Devices, Inc.	Tel (336) 664 1233
7628 Thorndike Road	Fax (336) 6640454
Greensboro, NC 27409, USA	http://www.rfmd.com

Greensboro, NC 27409, USA

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to +5.0	$\mathrm{~V}_{\mathrm{DC}}$
Input RF Power	+3	$\mathrm{dBm}^{\circ} \mathrm{C}$
Operating Ambient Temperature	-30 to +80	${ }^{\circ} \mathrm{C}$
Storage Temperature	-30 to +150	${ }^{\circ} \mathrm{C}$

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Overall RF Output Frequency Range Spurious Product Rejection		$\begin{gathered} 500 \text { to } 2500 \\ 30 \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{MHz} \\ \mathrm{dBc} \end{gathered}$	$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ Referenced to RF output
Cellular Conversion Gain Noise Figure Output IP3	$\begin{gathered} -1 \\ -2.2 \end{gathered}$	$\begin{gathered} -0.5 \\ -1 \\ 14 \\ +13 \end{gathered}$		$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \mathrm{dBm} \end{gathered}$	$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{LO}=960 \mathrm{MHz} @-3 \mathrm{dBm}, \\ & \mathrm{IF}=130 \mathrm{MHz} @-13 \mathrm{dBm} \\ & \mathrm{RF}_{\text {OUT }}=830 \mathrm{MHz} \\ & \mathrm{RF}_{\text {OUT }}=836 \mathrm{MHz} \text { (Dual-Output board) } \\ & \mathrm{RF}_{\text {OUT }}=830 \mathrm{MHz} \\ & \mathrm{P}_{\text {IN }}=-13 \mathrm{dBm} \text { per Tone, RF out }=830 \mathrm{MHz} \\ & \hline \end{aligned}$
PCS Conversion Gain Noise Figure Output IP3	$\begin{gathered} -3.0 \\ -3.5 \\ +7 \end{gathered}$	$\begin{gathered} -1.5 \\ -2.5 \\ 15 \\ +11 \end{gathered}$		$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \mathrm{dBm} \end{gathered}$	$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \\ & \mathrm{LO}=1750 \mathrm{MHz} @-3 \mathrm{dBm}, \\ & \mathrm{IF}=130 \mathrm{MHz} @-13 \mathrm{dBm} \\ & R F_{\text {OUT }}=1880 \mathrm{MHz} \\ & R F_{\text {OUT }}=1880 \mathrm{MHz} \text { (Dual-Output board) } \\ & R F_{\text {OUT }}=1880 \mathrm{MHz} \\ & \mathrm{P}_{\text {IN }}=-13 \mathrm{dBm} \text { per Tone, RF out }=1880 \mathrm{MHz} \\ & \hline \end{aligned}$
W-CDMA ACPR Conversion Gain Noise Figure Output IP3 Max OIP3	$\begin{gathered} -58 \\ -2.0 \\ 13 \\ +8 \end{gathered}$	$\begin{gathered} -57 \\ -1.0 \\ 14 \\ +10 \end{gathered}$	$\begin{gathered} -56 \\ 0 \\ 15 \\ \\ 11 \end{gathered}$	dBc dB dB dBm dBm	$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \\ & \mathrm{LO}=2330 \mathrm{MHz} @-3 \mathrm{dBm}, \\ & \mathrm{IF}=380 \mathrm{MHz} @-13 \mathrm{dBm} \\ & \\ & \mathrm{RF}_{\text {OUT }}=1950 \mathrm{MHz} \\ & \mathrm{RF}_{\text {OUT }}=1950 \mathrm{MHz} \\ & \mathrm{P}_{\text {IN }}=-13 \mathrm{dBm} \text { per Tone, } \mathrm{RF}_{\text {OUT }}=1950 \mathrm{MHz} \end{aligned}$
IF Input IF Frequency Differential Input Impedance IF to RF Output Isolation IF to LO Isolation	$\begin{aligned} & \text { DC } \\ & 220 \end{aligned}$	$\begin{gathered} 130 / 380 \\ 260 \\ 30 \\ 30 \\ \hline \end{gathered}$	$\begin{aligned} & 500 \\ & 300 \end{aligned}$	$\begin{gathered} \mathrm{MHz} \\ \Omega \\ \mathrm{~dB} \\ \mathrm{~dB} \end{gathered}$	$\mathrm{IF}=130 \mathrm{MHz}$
LO Input LO Frequency Range LO Level LO to RF Output Leakage RF to LO Isolation LO Input VSWR	$\begin{aligned} & -18 \\ & -15 \\ & -14 \end{aligned}$	$\begin{gathered} 300 \text { to } 2700 \\ -6 \text { to } 0 \\ -25 \\ -17 \\ -15 \\ \\ 30 \\ 2: 1 \\ \hline \end{gathered}$		MHz dBm dBm dBm dBm dB	At Cellular band, high side injection (Dual-Output board) At PCS band, low side injection (Dual-Output board) 50Ω
Power Supply Voltage Current Consumption	2.7	$\begin{aligned} & 3.0 \\ & 25 \\ & \hline \end{aligned}$	3.3	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \end{gathered}$	

Pin	Function	Description	Interface Schematic
1	IF-	Balanced IF input pin. This pin is internally DC-biased and should be DC-blocked if connected to a device with a DC level present. For singleended input operation, one pin is used as an input and the other IF input is AC-coupled to ground. The balanced, input impedance is 260Ω.	
2	IF+	Same as pin 1, except complementary input.	See pin 1.
3	BYP	Bypass pin for internal bias circuitry. Bypass with a 1 nF capacitor.	
4	LO-	Balanced LO input pin. This pin is internally DC-biased and should be DC-blocked if connected to a device with a DC level present. For singleended input operation, one pin is used as an input and the other LO input is AC-coupled to ground.	
5	LO+	Same as pin 4, except complementary input.	See pin 4.
6	GND	Ground connection. For best performance, keep traces physically short and connect immediately to ground plane.	
7	VCC	Supply voltage pin. External bypassing is required. External RF, LO, and IF bypassing is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
8	RF OUT	RF output pin.	

Application Schematic 836 MHz

Application Schematic
1880 MHz

Application Schematic Dual-Band Output (836MHz/1880MHz)

Application Schematic W-CDMA (1950 MHz)

RF2638

Evaluation Board Schematic - PCS/Cellular $R F=1880 \mathrm{MHz}, I F=130 \mathrm{MHz}$
 (Download Bill of Materials from www.rfmd.com.)

Evaluation Board Schematic - Dual Output Cellular Out $=836 \mathrm{MHz}$, PCS Out $=1880 \mathrm{MHz}, \mathrm{IF}=130 \mathrm{MHz}$

Evaluation Board Schematic - W-CDMA
 $R F=1950 \mathrm{MHz}, I F=380 \mathrm{MHz}$

Evaluation Board Layout PCS/Cellular
 Board Size 2.0" x 2.0"
 Board Thickness 0.031", Board Material FR-4

Evaluation Board Layout
 Dual Output
 Board Size $2.5^{\prime \prime} \times 1.0 "$

Board Thickness 0.060", Board Material FR-4, Multi-Layer (Intermediate layers (Ground Plane and Power Plane [$V_{C C 1}$]) are not shown.)

Evaluation Board Layout
 W-CDMA
 Board Size 2.5" x 1.0"

Board Thickness 0.060", Board Material FR-4, Multi-Layer
(Intermediate layers (Ground Plane and Power Plane [VCC1]) are not shown.)

