INTEGRATED CIRCUITS

DATA SHEET

TZA1033HL

High speed advanced analog DVD signal processor and laser supply

Preliminary specification

2003 Mar 26

TZA1033HL

CONTENT	rs	7.4	Internal digital control, serial bus and external digital input signal relationships
1	FEATURES	7.4.1	STANDBY mode
2	GENERAL DESCRIPTION	7.4.2	RF only mode
3	ORDERING INFORMATION	7.5	Signal descriptions
		7.5.1	Data path signals through pins A to D
4	QUICK REFERENCE DATA	7.5.2	Data signal path through input pins RFSUMP
5	BLOCK DIAGRAM		and RFSUMN
6	PINNING	7.5.3	HF filtering
7	FUNCTIONAL DESCRIPTION	7.5.4	Focus signals
7.1	RF data processing	7.5.5	Radial signals
7.1	Servo signal processing	7.5.5.1	DPD signals (DVD-ROM mode) with no
7.2.1	Servo signal path set-up	7.5.5.2	drop-out concealment DPD signals (DVD-ROM mode) with
7.2.2	Focus servo	7.5.5.2	drop-out concealment
7.2.3	Radial servo	7.5.5.3	Three-beam push-pull (CD mode)
7.2.4	Differential phase detection	7.5.5.4	Enhanced push-pull
7.2.4.1	Drop-out concealment		
7.2.4.2	Push-pull and three-beam push-pull	8	LIMITING VALUES
7.2.4.3	Enhanced push-pull (dynamic offset	9	THERMAL CHARACTERISTICS
	compensation for beam landing)	10	CHARACTERISTICS
7.2.4.4	Offset compensation	11	APPLICATION INFORMATION
7.2.5	Automatic dual laser supply	11.1	Signal relationships
7.2.6	Power-on reset and general power on	11.1.1	Data path
7.2.7	Compatibility with predecessor TZA1033HL/V1	11.1.2	Servo path
7.2.8	Interface to the system controller	11.2	Programming examples
7.3 7.3.1	Control registers	11.3	Energy saving
7.3.1	Register 0: power control Register 1: servo and RF modes	11.4	Initial DC and gain setting strategy
7.3.3	Register 2: focus offset DAC	11.4.1	Electrical offset from pick-up
7.3.4	Register 3: RF path gain	11.4.2	Gain setting servo
7.3.5	Register 4: RF data offset compensation	11.4.3	DC level in RF path
7.3.6	Register 5: RF header offset compensation	11.4.4	Gain setting RF path
7.3.7	Register 6: servo gain and dynamic radial	12	PACKAGE OUTLINE
	offset compensation factor	13	SOLDERING
7.3.8	Register 7: servo path gain and bandwidth and	13.1	Introduction to soldering surface mount
	RF path bandwidth and pre-emphasis	10.1	packages
7.3.9	Register 8: RF data channel selection	13.2	Reflow soldering
7.3.10	Register 9: RF left channel selection	13.3	Wave soldering
7.3.11	Register 10: RF right channel selection	13.4	Manual soldering
7.3.12	Register 11: radial servo offset cancellation	13.5	Suitability of surface mount IC packages for
7.3.13	Register 12: central servo offset cancellation inputs A and B		wave and reflow soldering methods
7.3.14	Register 13: central servo offset cancellation	14	DATA SHEET STATUS
7.0.17	inputs C and D	15	DEFINITIONS
7.3.15	Register 14: RF filter settings		
7.3.16	Register 15: DPD filter settings	16	DISCLAIMERS

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

1 FEATURES

- Operates with DVD-ROM, DVD+RW, DVD-RW, CD-ROM and CD-RW
- Operates up to $64 \times \text{CD-ROM}$ and $12 \times \text{DVD-ROM}$
- RF data amplifier with wide, fine pitch programmable noise filter and equalizer equivalent to 64 × CD or 12 × DVD
- Programmable RF gain for DVD-ROM, CD-RW and CD-ROM applications (approximately 50 dB range to cover a large range of disc-reflectivity and OPUs)
- Additional RF sum input
- · Balanced RF data signal transfer
- Universal photodiode IC interface using internal conversion resistors and offset cancellation
- · Input buffers and amplifiers with low-pass filtering
- · Three different tracking servo strategies:
 - Conventional three-beam tracking for CD
 - Differential Phase Detection (DPD) for DVD-ROM, including option to emulate traditional drop-out detection: Drop-Out Concealment (DOC)
 - Advanced push-pull with dynamic offset compensation.
- Enhanced signal conditioning in DPD circuit for optimal tracking performance under noisy conditions
- Radial error signal for Fast Track Counting (FTC)
- RF only mode: servo outputs can be set to 3-state, while RF data path remains active
- · Radial servo polarity switch for land or groove
- Two settings for focus offset correction for land and groove
- Flexible adaption to different light pen configurations
- Two fully automatic laser controls for red and infrared lasers, including stabilization and an on/off switch
- · Automatic selection of monitor diode polarity
- · Digital interface with 3 and 5 V compatibility
- Two different strategies to read header data:
 - Full bandwidth push-pull signal
 - Left and right side signal.

2 GENERAL DESCRIPTION

The TZA1033HL is an analog preprocessor and laser supply circuit for DVD and CD read only players. The device contains data amplifiers, several options for radial tracking and focus control. The preamplifier forms a versatile, programmable interface between single light path voltage output CD or DVD mechanisms to Philips digital signal processor family for CD and DVD (for example, Gecko, HDR65 or Iguana). A separate high-speed RFSUM input is available.

The device contains several options for radial tracking:

- · Conventional three-beam tracking for CD
- · Differential phase detector for DVD
- Push-pull with flexible left and right weighting to compensate dynamic offsets e.g. beam landing offset
- A radial error signal to allow Fast Track Count (FTC) during track jumps.

The dynamic range of this preamplifier and processor combination can be optimized for LF servo and RF data paths. The gain in both channels can be programmed separately and so guarantees optimal playability for all disc types.

The RF path is fully DC coupled. The DC content compensation techniques provide a fast settling after disc errors.

The device can accommodate astigmatic, single foucault and double foucault detectors and can be used with P-type lasers with N-sub or P-sub monitor diodes. After an initial adjustment, the circuit will maintain control over the laser diode current. With an on-chip reference voltage generator, a constant stabilized output power is ensured and is independent of ageing.

An internal Power-on reset circuit ensures a safe start-up condition.

The TZA1033HL refers to type number TZA1033HL/K2 and is the successor of type number TZA1033HL/V1.

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

3 ORDERING INFORMATION

TYPE NUMBER		PACKAGE					
TIPE NOWBER	NAME	DESCRIPTION	VERSION				
TZA1033HL/K2	LQFP64 plastic low profile quad flat package; 64 leads; body 10 × 10 × 1.4 mm		SOT314-2				

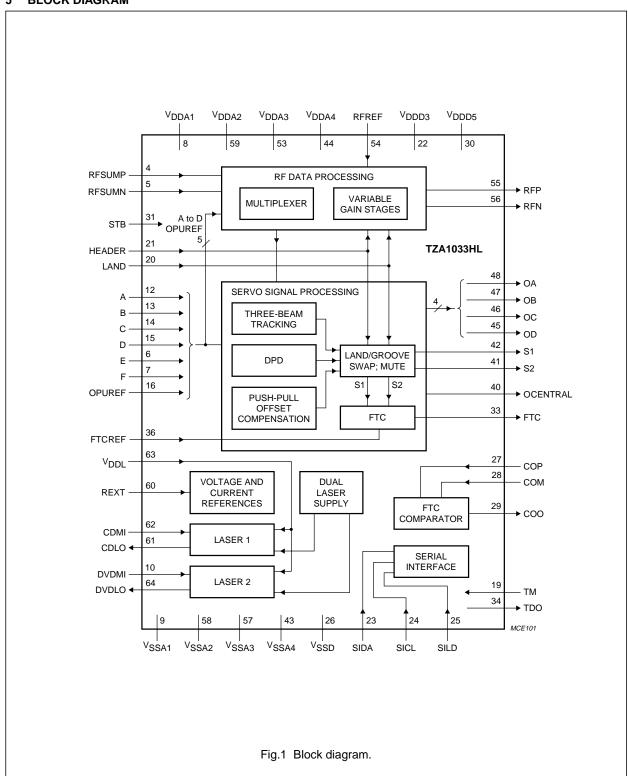
4 QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies			•		•	•
T _{amb}	ambient temperature		0	_	65	°C
V _{DDA1} , V _{DDA2} , V _{DDA3} , V _{DDA4}	analog supply voltage		4.5	5.0	5.5	V
V_{DDD3}	3 V digital supply voltage		2.7	3.3	5.5	V
V_{DDD5}	5 V digital supply voltage		4.5	5.0	5.5	V
I_{DD}	supply current	without laser supply	_	98	120	mA
		STANDBY mode	_	_	1	mA
V _{I(logic)}	logic input compatibility	note 1	2.7	3.3	5.5	V
Servo signal pro	ocessing					
B _{LF(-3dB)}	-3 dB bandwidth of LF path		60	75	100	kHz
I _{O(LF)}	output current	focus servo output	_	_	12	μΑ
		radial servo output	_	_	12	μΑ
V _{O(FTC)(p-p)}	FTC output voltage (peak-to-peak value)		2.0	_	_	V
B _{FTC}	FTC bandwidth	FTCHBW = 0	_	600	_	kHz
		FTCHBW = 1; note 2	_	1200	_	kHz
V _{I(FTCREF)}	FTC reference input voltage		1.25	_	2.75	V
RF data process	sing					
A _{RF}	linear current gain	programmable gain				
		RF channels	6	_	49	dB
		RFSUM channels	-6	_	+31	dB
B _{RF(-3dB)}	–3 dB bandwidth of RFP and RFN signal path	RFEQEN = 0; RFNFEN = 0	200	300	_	MHz
f _{0(RF)}	noise filter and equalizer	BWRF = 0	8	12.0	14.5	MHz
	corner frequency	BWRF = 127	100	145	182	MHz
t _{d(RF)}	flatness delay in RF data path	equalizer on; flat from 0 to 100 MHz; BWRF = 127	_	_	0.5	ns
Z _i	input impedance of pins A to D		100	-	_	kΩ

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{i(RF)(FS)}	input voltage on pins A to D for full-scale at	at the appropriate signal path gain setting				
	output	RF signal path	-	_	600	mV
		LF signal path	_	_	700	mV
V _{i(SUM)(dif)}	differential input voltage on pins RFSUMP and RFSUMN	G _{RFSUM} = -6 dB	_	-	1800	mV
$V_{I(DC)}$	DC input voltage range on pins RFSUMP and RFSUMN	with respect to V _{SS}	1.3	_	V _{DDA} – 1.0	V
$V_{o(RF)(dif)(p-p)}$	differential output voltage on pins RFP and RFN (peak-to-peak value)		_	-	1.4	V
V _{O(RF)(DC)}	DC output voltage on pins RFP and RFN		0.35	_	V _{DDA} – 1.9	V
V _{i(RFREF)(CM)}	input reference voltage on pin RFREF for common mode output		0.8	1.2	2.1	V
Laser supply						
I _{o(laser)(max)}	maximum current output to laser		-120	_	_	mA
V _{i(mon)}	input voltage from laser	P-type monitor diode				
	monitor diode	LOW level voltage	_	V _{DDA4} – 0.155	_	V
		HIGH level voltage	_	V _{DDA4} – 0.190	_	V
		N-type monitor diode				
		LOW level voltage	_	0.155	_	V
		HIGH level voltage	_	0.185	_	V


Notes

1. Input logic voltage level follows the supply voltage applied at pin $V_{\mbox{\scriptsize DDD3}}$.

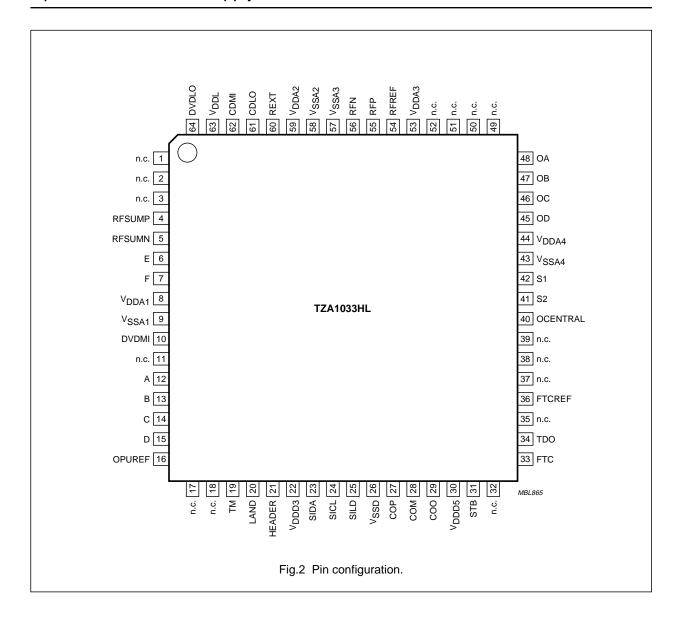
2. High FTC bandwidth is achieved when I_{S1} and I_{S2} > 1.5 $\mu A.$

TZA1033HL

5 BLOCK DIAGRAM

TZA1033HL

6 PINNING


SYMBOL	PIN	DESCRIPTION
n.c.	1	not connected
n.c.	2	not connected
n.c.	3	not connected
RFSUMP	4	positive RF sum input
RFSUMN	5	negative RF sum input
E	6	input E
F	7	input F
V _{DDA1}	8	analog supply voltage 1 (RF input stage)
V _{SSA1}	9	analog ground 1
DVDMI	10	input signal from DVD laser monitor diode
n.c.	11	not connected
A	12	input A
В	13	input B
С	14	input C
D	15	input D
OPUREF	16	reference input from Optical Pick-Up (OPU)
n.c.	17	not connected
n.c.	18	not connected
TM	19	test mode input (factory test only)
LAND	20	land/groove toggle input
HEADER	21	header detector window input
V _{DDD3}	22	digital supply voltage (serial interface 3 V I/O pads and FTC comparator)
SIDA	23	serial host interface data input
SICL	24	serial host interface clock input
SILD	25	serial host interface load input
V _{SSD}	26	digital ground
COP	27	positive FTC comparator input
СОМ	28	inverting FTC comparator input
COO	29	FTC comparator output
V_{DDD5}	30	digital supply voltage (5 V digital core)
STB	31	STANDBY mode input
n.c.	32	not connected
FTC	33	fast track count output
TDO	34	test data output (factory test only)
n.c.	35	not connected
FTCREF	36	FTC reference input
n.c.	37	not connected
n.c.	38	not connected
n.c.	39	not connected
OCENTRAL	40	test pin for offset cancellation

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

SYMBOL	PIN	DESCRIPTION
S2	41	servo current output 2 for radial tracking
S1	42	servo current output 1 for radial tracking
V _{SSA4}	43	analog ground 4
V _{DDA4}	44	analog supply voltage 4 (servo signal processing)
OD	45	servo current output for focus D
ОС	46	servo current output for focus C
ОВ	47	servo current output for focus B
OA	48	servo current output for focus A
n.c.	49	not connected
n.c.	50	not connected
n.c.	51	not connected
n.c.	52	not connected
V _{DDA3}	53	analog supply voltage 3 (RF output stage)
RFREF	54	DC reference input for RF channel common mode output voltage
RFP	55	positive RF output
RFN	56	negative RF output
V _{SSA3}	57	analog ground 3
V _{SSA2}	58	analog ground 2
V _{DDA2}	59	analog supply voltage 2 (internal RF data processing)
REXT	60	reference current input (connect via 12.1 kΩ to V _{SSA4})
CDLO	61	CD laser output
CDMI	62	input signal from CD laser monitor diode
V _{DDL}	63	laser supply voltage input
DVDLO	64	DVD laser output

TZA1033HL

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

7 FUNCTIONAL DESCRIPTION

7.1 RF data processing

The RF data path is a fully DC-coupled, multi-stage amplifier (see Fig.3). The input signal for data can be selected from RF inputs A to D or from the summed RF inputs RFSUMP and RFSUMN. Switching between the two sets of signals is performed by an internal multiplexer. The signals are fully balanced internally to improve signal quality and reduce power supply interference.

RF outputs RFP and RFN can be DC coupled to the Analog-to-Digital Converter (ADC) of the decoder.

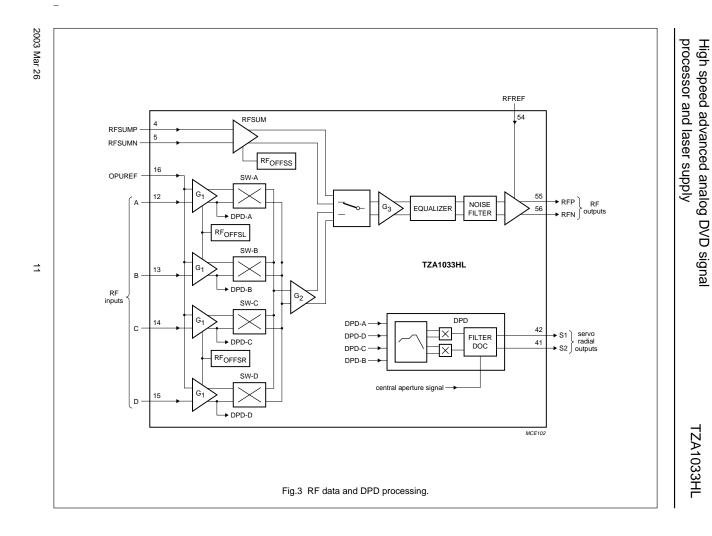
The RF input signals are from photodiodes and have a large DC content by nature. This DC component must be removed from the signals for good system performance. Built-in DACs, located after the input stages G₁ and RFSUM, have the ability to do this. The DAC range and resolution is scaled with the gain setting of the first amplifier stage. When the DC content is removed, the RF signal can be DC coupled to the decoder. The main advantage of DC coupling is fast recovery from signal swings due to disc defects since there is no AC coupling capacitance which slows the recovery. When using DC coupling, both AC and DC content in the data signal is known. The Philips Iguana decoders have on-chip control loops to support Automatic Gain Control (AGC) and DC cancellation.

When it is not possible to have a DC connection between the TZA1033HL and the decoder, the signals on servo outputs OA to OD can be used as they contain the same LP-filtered and DC coupled information.

For flexible use there are a few extra options made available:

- Two separate DACs for cases where the left and right side DC conditions can be different
- Two separate registers for each DAC allows fast changing this DC level between set points for data and header
- Dynamic changing of the data path to read data or header information (SW-A to SW-D).

Summing of the photodiode signals A to D is performed in the second amplifier stage G_2 . Dynamic changing of the data path for data or header information is carried out at the input G_2 by switches SW-A to SW-D.


Switching between photodiode signals and RFSUM input is performed immediately before the third amplifier stage G_3 . This stage has a variable gain with fine resolution to allow automatic gain adjustment to be controlled by the decoder.

The filter stage limits the bandwidth according to the maximum playback speed of the disc. This is to optimize the noise performance. The filter stage consists of an equalizer and a noise filter, both of which can be bypassed, also the boost factor of the equalizer can be set. The corner frequencies of the equalizer and noise filter are equal and can be programmed to a 7-bit resolution.

The RF output signals RFP and RFN can be DC coupled to a decoder with a differential input pair (as with Philips Iguana decoders). The common mode output voltage can be set externally at pin RFREF.

The signals for differential phase detection are tapped from the inputs A to D at the RF amplifier G_1 stages. DC cancellation for the A to D and RFSUM signal paths can be set independently or simultaneously.

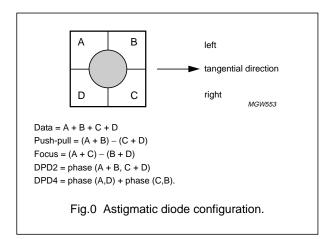
Preliminary specification

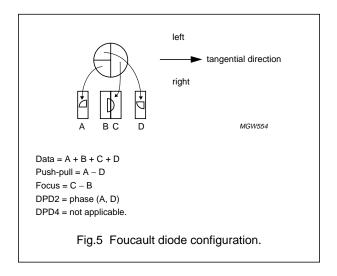
High speed advanced analog DVD signal processor and laser supply

TZA1033HL

7.2 Servo signal processing

The photodiode configurations and naming conventions are shown in Figs 0 and 5.


7.2.1 SERVO SIGNAL PATH SET-UP


A block diagram of the servo signal path is shown in Fig.6. In general, the servo signal path comprises:

- A voltage-to-current converter with programmable offset voltage source V_{LFOFFS} that is common to all inputs
- A 4-bit DAC for each of the six channels to compensate for offset per channel
- A variable gain stage to adapt the signal level to the specific pick-up and disc properties
- Low-pass filtering and output stage for the photodiode current signals
- Error output stage in the radial data path for fast track counting.

Servo output signals OA to OD, S1 and S2 are unipolar current signals which represent the low-pass filtered photodiode signals. In DPD radial tracking, the S1 and S2 signals are the equivalent of the satellite signals commonly found in traditional CD systems.

The servo output signals OA to OD, S1 and S2 are set to 3-state if bit RFonly = 1 (register 13, bit 11).

7.2.2 FOCUS SERVO

Focus information is reflected in the four outputs OA to OD. Gain and offset can be programmed. An additional offset can be added in the signal to compensate for differences in land and groove levels. Two values can be programmed for this offset (bits $\beta_L[4:0]$ and bits $\beta_G[4:0]$) and toggled internally relative to pin LAND. During the passage of a header the focus output signals can be muted to lock the focus servo loop. In this case the signal pairs OA, OD and OB, OC are made equal to each other.

For optical pick-ups where only channels B and C are used for focus, channels A and D can be switched off (bit Focus_mode = 0).

For initial alignment, a copy of the output currents can be made available on pin OCENTRAL.

Philips Semiconductors

Preliminary specification

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

7.2.3 RADIAL SERVO

Radial information can be obtained from the two output signals S1 and S2, and the gain and offset can be programmed. The TZA1033HL provides differential phase detection, push-pull and three-beam push-pull for radial tracking. The signal FTC is made available for fast track counting and is primarily the voltage error signal derived from signals S1 or S2.

During the passage of a header, the radial output signals can be muted to lock the radial servo loop. In this case the signals S1 and S2 are made equal to each other. The FTC signal will then be equal to FTCREF. The mute function can be enabled independently for S1, S2 and FTC. The polarity of the radial loop can be reversed by swapping the signals S1 and S2. This is controlled by the external pin LAND and via the serial control bus. Both mute and reverse functions are available in all radial tracking modes.

7.2.4 DIFFERENTIAL PHASE DETECTION

The TZA1033HL provides differential phase detection to support DVD in various ways:

- DPD2 with four channels programmed to be active gives DPD as required in the standard specification
- Two of the four channels can be excluded from the DPD for pick-ups with an alternative photodiode arrangement
- An increase in performance, dedicated for DVD+RW, can be obtained by using the DPD4 method. Then two truly separated phase detectors are active. After the phase detection of the two input pairs the result is summed.

Input signals for DPD are taken from input pins A to D after the first gain stage G_1 (see Fig.3). Pre-emphasis is applied by means of a programmable lead/lag filter. Additionally, a programmable low-pass filter is available to improve the signal quality under noisy signal conditions at lower speeds. For further signal improvements the DPD pulse stretcher can be programmed to higher values at lower speeds.

The DPD signal is low-pass filtered by two internal capacitors. The signal is then fed to pins S1 and S2, or directed via the drop-out concealment circuit to the outputs (see Section 7.5).

7.2.4.1 Drop-out concealment

A special function is built in for compatibility with drop-out detection strategies, based on level detection in the S1 and S2 signals. When using DPD in a fundamental way, there is no representation of mirror level information from the light pen.

When the drop-out concealment function is enabled (bit DOCEN = 1), a portion of the Central Aperture (CA) signal is added to S1 and S2. Also, when the CA signal drops below the DOC threshold, the DPD signal is gradually attenuated.

The DPD detection can not work properly when the input signal becomes very small. The output of the DPD may then show a significant offset. The DOC may not conceal this ofset completly because:

- · DOC is gradually controlled from the CA signal
- The CA signal may not become 0 during disc-defect.

For details see section 7.5.5.2

7.2.4.2 Push-pull and three-beam push-pull

The TZA1033HL can also provide radial information by means of push-pull signals (from the photodiode inputs) or in a three-spot optical system with Three-Beam Push-Pull (TBPP). The built-in multiplexer gives a flexible method of dealing with many detector arrangements. For push-pull, the input signals are taken from channels A to D. There is also a command that switches off channels B and C, leaving channels A and D for push-pull (bits RT_mode[2:0]).

For TBPP, the input signal is taken from channels E and F, irrespective of bit RFSUM setting.

7.2.4.3 Enhanced push-pull (dynamic offset compensation for beam landing)

This option cancels offsets due to beam landing. A factor α can be programmed to re-balance the signal gain between channels S1 and S2. In a simplified form this can be described as:

 $S1 = A_{LFR} \times \alpha \times \text{input left}$

 $S2 = A_{IFR} \times (2 - \alpha) \times input right.$

Factor α can be programmed in a range from 0.6 to 1.35, with 1.0 as the balanced condition (bits α [3:0]).

TZA1033HL

7.2.4.4 Offset compensation

A provision is made to compensate electrical offset from a light pen. The offset voltage from the light pen can be positive or negative. In general, the offset between any two channels is smaller than the absolute offsets. As negative input signals cannot be handled by the TZA1033HL internal servo channels, a two-step approach is adopted:

- A coarse DAC, common to all the input channels, adds an offset that shifts the input signals in positive direction until all inputs are ≥0. The DAC used (LF_{OFFS}) has a 2-bit resolution (bits LF_{OFF}[1:0]).
- A fine setting per channel is provided to cancel the remainder of the offset between the channels. This is achieved by DACs subtracting the DC component from the signals and bringing the inputs to approximately zero offset (within ≈ 1 mV). The DACs (registers 11 to 13) have a 4-bit resolution.

The range of both DACs can be increased by a factor of three to compensate for higher offset values by means of control parameter bit SERVOOS.

With a switched-off laser, the result of the offset cancellation can be observed at each corresponding output pin, OA to OD, S1 and S2, or via a built-in multiplexer to pin OCENTRAL (central channels only). See registers 11 to 13 for DAC and multiplexer control.

7.2.5 AUTOMATIC DUAL LASER SUPPLY

The TZA1033HL can control the output power of two lasers; it has an Automatic Laser Power Control (ALPC) that stabilizes the laser output power and compensates the effects of temperature and ageing of the laser.

ALPC automatically detects if there is a P-type or N-type monitor diode in use in either of the laser circuits. The regulation loop formed by the ALPC, the laser, the monitor diode and the associated adjustment resistor will settle at the monitor input voltage. The monitor input voltage can be programmed to HIGH (\approx 180 mV) or LOW (\approx 150 mV), according to frequently-used pre-adjustments of the light pen. This set point can be set independently for both ALPCs. Bandwidth limitation and smooth switch-on behaviour is realized using an internal capacitor.

A protection circuit is included to prevent laser damage due to dips in laser supply voltage V_{DDL} . If a supply voltage dip occurs, the output can saturate and restrict the required laser current. Without the protection circuit, the ALPC would try to maximize the output power with destructive results for the laser when the supply voltage recovers. The protection circuit monitors the supply voltage and shuts off the laser when the voltage drops

below a safe value. The ALPC recovers automatically after the dip has passed.

Only one laser can be activated at the same time. An internal break-before-make circuit ensures safe start-up for the laser when a toggle situation between the two lasers is detected. When both lasers are programmed on, neither laser will be activated.

7.2.6 POWER-ON RESET AND GENERAL POWER ON

When the supply voltage is switched on, bit PWRON is reset by the Power-On Reset (POR) signal. This concludes in a STANDBY mode at power up. POR is intended to prevent the lasers being damaged due to random settings. All other functions may be switched when power is on. The TZA1033HL becomes active when bit PWRON = 1 and pin STB = LOW.

Note that pin STB in the TZA1033HL is present for reasons of compatibility with the TZA1033HL/V1. Pin STB has an internal pull-down resistor, so it may be left open-circuit.

7.2.7 COMPATIBILITY WITH PREDECESSOR TZA1033HL/V1

The TZA1033HL is highly pin and software compatible with the TZA1033HL/V1. Provided that some conditions are met, the TZA1033HL can be used as a drop-in replacement without any modification to board layout or software. This compatibility is achieved with the implementation of the mode control bit (bit K2_Mode). When bit K2_Mode = 0, the TZA1033HL will 'act' as a TZA1033HL/V1. When bit K2_Mode = 1, the new functions will be available (but require a software update).

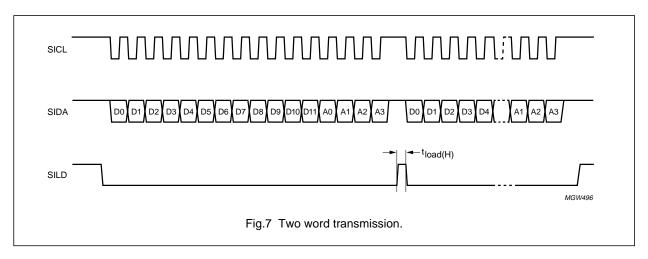
Other conditions or restrictions are:

- Input pins CD of the TZA1033HL/V1 are not used; the TZA1033HL has RFSUM inputs instead; the RFSUM inputs of the TZA1033HL may be connected to ground when not used.
- Register bits of the TZA1033HL which were not defined are programmed to a logic 0. Especially bit K2_Mode must be logic 0; registers 14 and 15 may be left undefined.
- The G₄ stage high gain setting is not available in the TZA1033HL; if this value was set to logic 0, there will be no difference.
- When bit K2_Mode = 0 the RF bandwidth will be fixed to the minimum value of 10 MHz (typical); bit K2_Mode = 1 to select a higher bandwidth; the bandwidth is now lower than using a TZA1033HL/V1.

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

7.2.8 INTERFACE TO THE SYSTEM CONTROLLER


Programming the registers of the TZA1033HL is done via a serial bus (see Fig.7). The circuitry is formed by a serial input shift register and a number of registers that store the data. The registers can always be programmed, irrespective of STANDBY mode.

If required, the bus lines can be connected in parallel with an I²C-bus. The protocol needs no switching of the data line during SICL = HIGH. This means that other I²C-bus devices will not recognise any START or STOP commands. Control words addressed to the TZA1033HL

should go uniquely with the SILD signal. When SILD = HIGH, the TZA1033HL will not respond to any signal on SIDA or SICL.

During a transmission, the serial data is first stored in an input shift register. At the rising edge of SILD, the content of the input register is copied into the addressed register. This is also the moment the programmed information becomes effective.

The input pins have CMOS compatible threshold levels for both 3.3 and 5 V supplies.

7.3 Control registers

The TZA1033HL is controlled by serial registers. To keep programming fast and efficient, the control bits are sent in 16-bit words. Four bits of the word are used for the address and for each address there are 12 data bits.

Table 1 Overview of control parameters

SYMBOL	PARAMETER	VALUE	REGISTER	BIT
Data path			•	•
G ₁ (A ₁)	gain of first RF amplifier stage (or linear amplification)	0, 6 and 12 dB (1×, 2× and 4×)	3	11 and 10
G ₂ (A ₂)	gain of second RF amplifier stage (or linear amplification)	6, 12, 18 and 24 dB (2×, 4×, 8× and 16×)	3	9 and 8
G _{3(data)} (A ₃)	gain of third RF amplifier stage in data field (or linear amplification) (pin HEADER = LOW)	0 to 13 dB in steps of 0.8 dB (1× to 4×)	3	7 to 4
G _{3(header)} (A ₃)	gain of third RF amplifier stage in header field (or linear amplification) (pin HEADER = HIGH)	0 to 13 dB in steps of 0.8 dB (1× to 4×)	3	3 to 0

TZA1033HL

SYMBOL	PARAMETER	VALUE	REGISTER	BIT
RF _{OFFSL(data)}	DC offset compensation in left data RF input path	RFSUM = 0; full range depends on G ₁ setting:	4	11 to 6
		$G_1 = 0 \text{ dB: } 0 \text{ to } 450 \text{ mV in 7.1 mV steps}$		
		G ₁ = 6 dB: 0 to 225 mV in 3.6 mV steps		
		G ₁ = 12 dB: 0 to 120 mV in 1.9 mV steps		
RF _{OFFSR(data)}	DC offset compensation in right data RF input path	RFSUM = 0; full range depends on G ₁ setting:	4	5 to 0
		$G_1 = 0$ dB: 0 to 450 mV in 7.1 mV steps		
		G ₁ = 6 dB: 0 to 225 mV in 3.6 mV steps		
		G ₁ = 12 dB: 0 to 120 mV in 1.9 mV steps		
RF _{OFFSS}	DC offset compensation in RFSUM path	RFSUM = 1; full range depends on GRFSUM setting:	4	5 to 0
		GRFSUM = -6 dB; 0 to 1700 mV		
		GRFSUM = 0 dB; 0 to 850 mV		
		GRFSUM = 6 dB; 0 to 425 mV		
		GRFSUM = 12 dB; 0 to 210 mV		
		GRFSUM = 18 dB; 0 to 105 mV		
RF _{OFFSL(header)}	DC offset compensation in left header RF input path	RFSUM = 0; full range depends on G ₁ setting:	5	11 to 6
		$G_1 = 0 \text{ dB: } 0 \text{ to } 450 \text{ mV in } 7.1 \text{ mV steps}$		
		G ₁ = 6 dB: 0 to 225 mV in 3.6 mV steps		
		G ₁ = 12 dB: 0 to 120 mV in 1.9 mV steps		
RF _{OFFSR(header)}	DC offset compensation in right header RF input path	RFSUM = 0; full range depends on G ₁ setting:	5	5 to 0
		$G_1 = 0 \text{ dB: } 0 \text{ to } 450 \text{ mV in } 7.1 \text{ mV steps}$		
		$G_1 = 6 \text{ dB: } 0 \text{ to } 225 \text{ mV in } 3.6 \text{ mV steps}$		
		G ₁ = 12 dB: 0 to 120 mV in 1.9 mV steps		
GRFSUM (A _{RFSUM})	gain of RFSUM input stage (or linear amplification)	-6, 0, 6, 12 and 18 dB (0.5×, 1×, 2×, 4× and 8×)	0	7 to 5
BWRF	bandwidth limitation in RF path	$f_{O(RF)} = 12 \text{ to } 145 \text{ MHz}$	14	6 to 0
Servo radial pat	th			
LF _{OFFS}	DC offset compensation for	SERVOOS = 0:	11	11 and 10
	LF path (common for all servo	V _{LFOFFS} = 0, 5, 10 or 15 mV		
	inputs)	SERVOOS = 1:		
	00 1 1111	V _{LFOFFS} = 0, 15, 30 or 45 mV		
R _{LFR}	CD satellite path input transresistance	15 kΩ fixed	_	_
R _{LFPP}	DVD push-pull signal transresistance	30 kΩ fixed	_	_
R _{OFFSE}	DC offset compensation for	SERVOOS = 0: V _{ROFFSE} = 0 to 20 mV	11	7 to 4
ı	radial servo path (input E)	SERVOOS = 1: V _{ROFFSE} = 0 to 60 mV		

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

SYMBOL	PARAMETER	VALUE	REGISTER	BIT
R _{OFFSF}	DC offset compensation for	SERVOOS = 0: V _{ROFFSF} = 0 to 20 mV	11	3 to 0
	radial servo path (input F)	SERVOOS = 1: V _{ROFFSF} = 0 to 60 mV		
α	dynamic radial offset compensation factor	α = 0.6 to 1.35 in 15 steps of 0.05	6	3 to 0
I _{(FS)(DPD)} , I _{(FS)(DPD)(DOC)}	full scale DPD current, fixed value based on bandgap voltage across external resistor	DOCEN = 0: fixed value = 20 μA DOCEN = 1: fixed value = 6.6 μA	1	5
I _{REFRAD(CM)}	internally generated common mode DC reference current in DPD mode	3.5 μA fixed		
f _{start_DPD}	start frequency lead/lag filter of DPD block	f _{start_DPD} = 1, 5 or 10 MHz (TZA1033HL/V1 compatible)	7	1 and 0
		f _{start_DPD} = 1, 5, 10, 18 and 24 MHz	15	5 to 3
G _{LFR} (A _{LFR})	low frequency gain, radial path output stage (or linear amplification)	-15 to +9 dB in steps of 3 dB (0.18× to 2.8×)	6	11 to 8
R _{FTC}	gain of fast track count output	680 kΩ ±20% fixed for ±2 V (p-p)	_	_
Servo focus pa	th			
R _{LFC}	LF path input transresistance	14 kΩ fixed	_	_
C _{OFFSA}	DC offset compensation for central servo path A	SERVOOS = 0: 0 to 20 mV SERVOOS = 1: 0 to 60 mV	12	7 to 4
C _{OFFSB}	DC offset compensation for central servo path B	SERVOOS = 0: 0 to 20 mV SERVOOS = 1: 0 to 60 mV	12	3 to 0
C _{OFFSC}	DC offset compensation for central servo path C	SERVOOS = 0: 0 to 20 mV SERVOOS = 1: 0 to 60 mV	13	7 to 4
C _{OFFSD}	DC offset compensation for central servo path D	SERVOOS = 0: 0 to 20 mV SERVOOS = 1: 0 to 60 mV	13	3 to 0
G _{LFC} (A _{LFC})	low frequency gain, central path output stage (or linear amplification)	-15 to +9 dB in steps of 3 dB (0.18× to 2.8×)	6	7 to 4
β_{L}	dynamic focus offset compensation for land mode	$\beta_L = 0 \text{ to } {}^{31}\!/_{32}$	2	4 to 0
β _G	dynamic focus offset compensation for groove mode	$\beta_G = 0 \text{ to } {}^{31}\!/_{32}$	2	9 to 5
F _{OFFSEN}	full range offset compensation for land/groove focus	DAC enabled: I _{FOFFS} = 400 nA (fixed) DAC disabled: I _{FOFFS} = 0 nA	2	10

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

7.3.1 REGISTER 0: POWER CONTROL

Table 2 Register address 0H

BIT	15	14	13	12	11	10	9	8
Symbol	0	0	0	0	_	_	_	_

BIT	7	6	5	4	3	2	1	0
Symbol	GRF SUM2	GRF SUM1	GRFSUM0	DVD_ MILVL	CD_MILVL	DVD_ LDON	CD_LDON	PWRON

Table 3 Description of register bits (address 0H)

BIT	SYMBOL	FUNCTION
15 to 12	_	0000 = address 0H
11 to 8	_	not used
7 to 5	GRFSUM[2:0]	Gain of RFSUM input stage.
		000 = -6 dB
		001 = 0 dB
		010 = 6 dB
		011 = 12 dB
		100 = 18 dB
4	DVD_MILVL	DVD monitor input level. 0 = 150 mV; 1 = 180 mV.
3	CD_MILVL	CD monitor input level. 0 = 150 mV; 1 = 180 mV.
2	DVD_LDON	DVD laser on. 0 = laser off; 1 = laser on.
1	CD_LDON	CD laser on. 0 = laser off; 1 = laser on.
0	PWRON	Power on. 0 = STANDBY mode; 1 = power on.

7.3.2 REGISTER 1: SERVO AND RF MODES

Table 4 Register address 1H

BIT	15	14	13	12	11	10	9	8
Symbol	0	0	0	1	DPD_DCC	FTC_mute	_	L/G_pol

BIT	7	6	5	4	3	2	1	0
Symbol	FOC_ mute	TR_ mute	DOCEN	Focus_ mode	RT_mode2	RT_mode1	RT_mode0	RFSUM

Table 5 Description of register bits (address 1H)

BIT	SYMBOL	FUNCTION
15 to 12	_	0001 = address 1H
11	DPD_DCC	RF offset DAC for DPD signal control. 0 = DAC controlled by register 4, bits RF _{OFFSL(data)} [5:0]; 1 = DAC controlled by register 5, bits RF _{OFFSR(header)} [5:0].
10	FTC_mute	Mute fast track count function. 0 = disable; 1 = enable.
9	_	not used

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

BIT	SYMBOL	FUNCTION
8	L/G_pol	Radial polarity switch. 0 = inverse; 1 = normal (default).
7	FOC_mute	Mute focus function. 0 = disable; 1 = enable.
6	TR_mute	Mute tracking function. 0 = disable; 1 = enable.
5	DOCEN	Drop-out concealment enable. 0 = disable; 1 = enable.
4	Focus_mode	Focus mode. 0 = two-channel focus (channels B and C only); 1 = four-channel focus.
3 to 1	RT_mode[2:0]	Radial tracking mode.
		000 = DPD2; DPD = phase (A, D)
		001 = push-pull; channels A, D only
		100 = DPD2; DPD = phase (A + C, B + D)
		101 = push-pull; four channels
		110 = DPD4; DPD = phase (A, D) + phase (C, B)
		X11 = TBPP channels E and F
0	RFSUM	RF channel selection. 0 = diode inputs selected; 1 = RFSUM input selected.

7.3.3 REGISTER 2: FOCUS OFFSET DAC

Table 6 Register address 2H

BIT	15	14	13	12	11	10	9	8
Symbol	0	0	1	0	K2_Mode	F _{OFFSEN}	β _G 4	β _G 3

BIT	7	6	5	4	3	2	1	0
Symbol	β _G 2	β_G 1	β_{G} 0	$\beta_L 4$	β_L 3	β _L 2	β _L 1	$\beta_L 0$

Table 7 Description of register bits (address 2H)

BIT	SYMBOL	FUNCTION
15 to 12	-	0010 = address 2H
11	K2_Mode	K2 mode. 0 = disable; 1 = enable.
10	F _{OFFSEN}	Focus offset enable. 0 = enable; 1 = disable.
9 to 5	β _G [4:0]	Dynamic focus offset compensation for groove mode. 00000 to 11111: $\beta_G = 0$ to $\beta_G = \frac{31}{32}$.
4 to 0	β _L [4:0]	Dynamic focus offset compensation for land mode. 00000 to 11111: $\beta_L = 0$ to $\beta_L = \frac{31}{32}$.

7.3.4 REGISTER 3: RF PATH GAIN

Table 8 Register address 3H

BIT	15	14	13	12	11	10	9	8
Symbol	0	0	1	1	G ₁ 1	G₁0	G ₂ 1	G ₂ 0

BIT	7	6	5	4	3	2	1	0
Symbol	G _{3(data)} 3	G _{3(data)} 2	G _{3(data)} 1	G _{3(data)} 0	G _{3(header)} 3	G _{3(header)} 2	G _{3(header)} 1	G _{3(header)} 0

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

Table 9 Description of register bits (address 3H)

BIT	SYMBOL	FUNCTION
15 to 12	_	0011 = address 3H
11 and 10	G ₁ [1:0]	First RF amplifier stage gain.
		00 = 0 dB
		01 = 6 dB
		10 = 12 dB
		11 = not used
9 and 8	G ₂ [1:0]	Second RF amplifier stage gain.
		00 = 6 dB
		01 = 12 dB
		10 = 18 dB
		11 = 24 dB
7 to 4	G _{3(data)} [3:0]	Third RF amplifier stage gain (data). Pin HEADER = LOW;
		0000 to 1111: 0 to 13 dB in 0.8 dB steps.
3 to 0	G _{3(header)} [3:0]	Third RF amplifier stage gain (header). Pin HEADER = HIGH;
		0000 to 1111: 0 to 13 dB in 0.8 dB steps.

7.3.5 REGISTER 4: RF DATA OFFSET COMPENSATION

Table 10 Register address 4H

BIT 15		14	13	12
Symbol 0		1	0	0
BIT	11	10	9	8
Symbol	RF _{OFFSL(data)} 5	RF _{OFFSL(data)} 4	RF _{OFFSL(data)} 3	RF _{OFFSL(data)} 2
BIT	7	6	5	4
Symbol	RF _{OFFSL(data)} 1	RF _{OFFSL(data)} 0	RF _{OFFSR(data)} 5	RF _{OFFSR(data)} 4
BIT	3	2	1	0
Symbol	RF _{OFFSR(data)} 3	RF _{OFFSR(data)} 2	RF _{OFFSR(data)} 1	RF _{OFFSR(data)} 0

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

Table 11 Description of register bits (address 4H)

BIT	SYMBOL	FUNCTION
15 to 12	_	0100 = address 4H
11 to 6	RF _{OFFSL(data)} [5:0]	Left channel RF offset compensation definition. If bit RFSUM = 0 then left RF data channel offset compensation value. If bit RFSUM = 1 and bit DPD_DCC = 0 then the decoder controls DPD and RFSUM channels automatically, in parallel and with same values.
5 to 0	RF _{OFFSR(data)} [5:0]	Right channel RF offset compensation definition. If bit RFSUM = 0 then right RF data channel offset compensation value [symbol is RF _{OFFSR (data)}]. If bit RFSUM = 1 then RFSUM channel offset compensation value (symbol is RF _{OFFSS}).

7.3.6 REGISTER 5: RF HEADER OFFSET COMPENSATION

Table 12 Register address 5H

BIT	15	14	13	12
Symbol	0	1	0	1
BIT	11	10	9	8
Symbol	RF _{OFFSL(header)} 5	RF _{OFFSL(header)} 4	RF _{OFFSL(header)} 3	RF _{OFFSL(header)} 2
BIT	7	6	5	4
Symbol	RF _{OFFSL(header)} 1	RF _{OFFSL(header)} 0	RF _{OFFSR(header)} 5	RF _{OFFSR(header)} 4
BIT	3	2	1	0
Symbol	RF _{OFFSR(header)} 3	RF _{OFFSR(header)} 2	RF _{OFFSR(header)} 1	RF _{OFFSR(header)} 0

Table 13 Description of register bits (address 5H)

BIT	SYMBOL	FUNCTION
15 to 12	-	0101 = address 5H
11 to 6	RF _{OFFSL(header)} [5:0]	Left channel RF offset compensation definition. If bit RFSUM = 0 then left RF header channel offset compensation value.
5 to 0	RF _{OFFSR(header)} [5:0]	Right channel RF offset compensation definition. If bit RFSUM = 0 then right RF header channel offset compensation value. If bit RFSUM = 1 and bit DPD_DCC = 1 then the decoder controls RFSUM channels; the DPD channels can be set independently from the microprocessor.

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

7.3.7 REGISTER 6: SERVO GAIN AND DYNAMIC RADIAL OFFSET COMPENSATION FACTOR

Table 14 Register address 6H

BIT	15	14	13	12	11	10	9	8
Symbol	0	1	1	0	G _{LFR} 3	G _{LFR} 2	G _{LFR} 1	G _{LFR} 0

BIT	7	6	5	4	3	2	1	0
Symbol	G _{LFC} 3	G _{LFC} 2	G _{LFC} 1	G _{LFC} 0	α3	α2	α1	α0

Table 15 Description of register bits (address 6H)

BIT	SYMBOL	FUNCTION
15 to 12	-	0110 = address 6H
11 to 8	G _{LFR} [3:0]	Low frequency gain, radial path output stage. 0000 to 1000: –15 to +9 dB in 3 dB steps.
7 to 4	G _{LFC} [3:0]	Low frequency gain, central path output stage. 0000 to 1000: -15 to +9 dB in 3 dB steps.
3 to 0	α[3:0]	Dynamic radial offset compensation factor. 0000 to 1111: 0.60 to 1.35 in 0.05 steps; 1000 = balanced value (default).

7.3.8 REGISTER 7: SERVO PATH GAIN AND BANDWIDTH AND RF PATH BANDWIDTH AND PRE-EMPHASIS

Definitions in register 7 are intended mainly for compatibility with the TZA1033HL/V1. New features that require more bit space to program are moved to registers 14 and 15. Only DPD stretch remains programmed in register 7. Some parameters are slightly modified.

Table 16 Register address 7H

BIT	15	14	13	12	11	10	9	8
Symbol	0	1	1	1	DPDLPF1	DPDLPF0	DPD_	DPD_
							stretch2	stretch1

BIT	7	6	5	4	3	2	1	0
Symbol	DPD_ stretch0	_	DVDALAS_ mode	EQ _{RF} 2	EQ _{RF} 1	EQ _{RF} 0	f _{start_DPD} 1	f _{start_DPD} 0

Table 17 Description of register bits (address 7H)

BIT	SYMBOL	FUNCTION				
БП	STIVIBOL	BIT K2_MODE = 0	BIT K2_MODE = 1			
15 to 12	_	0111 = address 7H	0111 = address 7H			
11 and 10	DPDLPF[1:0]	DPD low-pass filter.	not applicable			
		0X : B _{-3dB} = 50 MHz (equivalent to TZA1023)				
		1X : B _{-3dB} = 10 MHz				

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

DIT	CVMDOL	FUNCTION	
BIT	SYMBOL	BIT K2_MODE = 0	BIT K2_MODE = 1
9 to 7	DPD_stretch [2:0]	DPD pulse stretcher (t _P).	DPD pulse stretcher (t _P).
		000 = 1.9 ns	000 = 30 ns
		001 = 3.8 ns	001 = 15 ns
		010 = 7.5 ns	010 = 7.5 ns
		011 = 15 ns	011 = 3.8 ns
		100 = 30 ns	100 = 1.9 ns
6	DPD_ testmode	For factory test purposes only.	For factory test purposes only.
5	DVDALAS_ mode	DVDALAS mode bit. 0 = disables control of bits 11 to 6 and creates behaviour equivalent to TZA1023; 1 = enables DPD low-pass filter and time stretcher equivalent to TZA1033HL/V1.	not applicable
4 to 2	EQ _{RF} [2:0]	RF channel low-pass filter (B _{RF}). 001 = 10 MHz	not applicable
1 and 0	f _{start_DPD} [1:0]	Start frequency lead/lag filter, DPD block.	not applicable
		00 = 1 MHz	
		01 = 5 MHz	
		10 = 10 MHz	
		11 = not used	

7.3.9 REGISTER 8: RF DATA CHANNEL SELECTION

Table 18 Register address 8H

BIT	15	14	13	12	11	10	9	8
Symbol	1	0	0	0	_	_	-	_
					•	•		

BIT	7	6	5	4	3	2	1	0
Symbol	SW-D _{mute}	SW-D _{inv}	SW-C _{mute}	SW-C _{inv}	SW-B _{mute}	SW-B _{inv}	SW-A _{mute}	SW-A _{inv}

Table 19 Description of register bits (address 8H)

BIT	SYMBOL	FUNCTION
15 to 12	_	1000 = address 8H; setting for data channel; pin HEADER = LOW.
11 to 8	_	not used
7	SW-D _{mute}	0 = pass D signal; 1 = mute D signal.
6	SW-D _{inv}	0 = pass D signal with no inversion; 1 = pass D signal with inversion.
5	SW-C _{mute}	0 = pass C signal; 1 = mute C signal.
4	SW-C _{inv}	0 = pass C signal with no inversion; 1 = pass C signal with inversion.
3	SW-B _{mute}	0 = pass B signal; 1 = mute B signal.
2	SW-B _{inv}	0 = pass B signal with no inversion; 1 = pass B signal with inversion.
1	SW-A _{mute}	0 = pass A signal; 1 = mute A signal.
0	SW-A _{inv}	0 = pass A signal with no inversion; 1 = pass A signal with inversion.

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

7.3.10 REGISTER 9: RF LEFT CHANNEL SELECTION

Table 20 Register address 9H

BIT	15	14	13	12	11	10	9	8
Symbol	1	0	0	1	_	_	_	_

BIT	7	6	5	4	3	2	1	0
Symbol	SW-D _{mute}	SW-D _{inv}	SW-C _{mute}	SW-C _{inv}	SW-B _{mute}	SW-B _{inv}	SW-A _{mute}	SW-A _{inv}

Table 21 Description of register bits (address 9H)

BIT	SYMBOL	FUNCTION
15 to 12	_	1001 = address 9H; setting for left channel; pin HEADER = HIGH, pin LAND = LOW.
11 to 8	_	not used
7	SW-D _{mute}	0 = pass D signal; 1 = mute D signal.
6	SW-D _{inv}	0 = pass D signal with no inversion; 1 = pass D signal with inversion.
5	SW-C _{mute}	0 = pass C signal; 1 = mute C signal.
4	SW-C _{inv}	0 = pass C signal with no inversion; 1 = pass C signal with inversion.
3	SW-B _{mute}	0 = pass B signal; 1 = mute B signal.
2	SW-B _{inv}	0 = pass B signal with no inversion; 1 = pass B signal with inversion.
1	SW-A _{mute}	0 = pass A signal; 1 = mute A signal.
0	SW-A _{inv}	0 = pass A signal with no inversion; 1 = pass A signal with inversion.

7.3.11 REGISTER 10: RF RIGHT CHANNEL SELECTION

Table 22 Register address AH

BIT	15	14	13	12	11	10	9	8
Symbol	1	0	1	0	-	-	-	-

BIT	7	6	5	4	3	2	1	0
Symbol	SW-D _{mute}	SW-D _{inv}	SW-C _{mute}	SW-C _{inv}	SW-B _{mute}	SW-B _{inv}	SW-A _{mute}	SW-A _{inv}

Table 23 Description of register bits (address AH)

BIT	SYMBOL	FUNCTION
15 to 12	_	1010 = address AH; setting for right channel; pin HEADER = HIGH, pin LAND = HIGH.
11 to 8	-	not used
7	SW-D _{mute}	0 = pass D signal; 1 = mute D signal.
6	SW-D _{inv}	0 = pass D signal with no inversion; 1 = pass D signal with inversion.
5	SW-C _{mute}	0 = pass C signal; 1 = mute C signal.
4	SW-C _{inv}	0 = pass C signal with no inversion; 1 = pass C signal with inversion.
3	SW-B _{mute}	0 = pass B signal; 1 = mute B signal.

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

BIT	BIT SYMBOL FUNCTION			
2	SW-B _{inv}	0 = pass B signal with no inversion; 1 = pass B signal with inversion.		
1	SW-A _{mute}	0 = pass A signal; 1 = mute A signal.		
0	SW-A _{inv}	0 = pass A signal with no inversion; 1 = pass A signal with inversion.		

7.3.12 REGISTER 11: RADIAL SERVO OFFSET CANCELLATION

R_{OFFSE}2

 $R_{OFFSE}1$

Table 24 Register address BH

Symbol

BIT	15	14	13	12	11	10	9	8
Symbol	1	0	1	1	LF _{OFFS} 1	LF _{OFFS} 0	SERVOOS	FTCHBW
BIT	7	6	5	4	3	2	1	0

 $\mathsf{R}_{\mathsf{OFFSE}}\mathsf{0}$

 $R_{OFFSF}3$

 $R_{\mathsf{OFFSF}}2$

R_{OFFSF}1

 $\mathsf{R}_{\mathsf{OFFSF}}\mathsf{0}$

Table 25 Description of register bits (address BH)

R_{OFFSE}3

BIT	SYMBOL	FUNCTION					
15 to 12	-	1011 = address BH					
11 and 10	LF _{OFFS} [1:0]	DC offset compensation for LF path (V _{LFOFFS}). Common for all servo inputs:					
		bit SERVOOS = 0	bit SERVOOS = 1				
		00 = 0 mV	00 = 0 mV				
		01 = 5 mV	01 = 15 mV				
		10 = 10 mV	10 = 30 mV				
		11 = 15 mV	11 = 45 mV				
9	SERVOOS	Servo offset scale (DACs R _{OFFSx} , C _{OFFS}) 1 = triple range.	_{Sx} and LF _{OFFS}). 0 = normal range;				
8	FTCHBW	FTC bandwidth. 0 = 600 kHz (approxima	ately); 1 = 1.2 MHz (approximately.)				
7 to 4	R _{OFFSE} [3:0]	Programmable DC offset compensation for radial servo path (E input). Bit SERVOOS = 0: 0 to 20 mV; bit SERVOOS = 1: 0 to 60 mV.					
3 to 0	R _{OFFSF} [3:0]	Programmable DC offset compensation Bit SERVOOS = 0: 0 to 20 mV; bit SERVO					

7.3.13 REGISTER 12: CENTRAL SERVO OFFSET CANCELLATION INPUTS A AND B

Table 26 Register address CH

BIT	15	14	13	12	11	10	9	8
Symbol	1	1	0	0	TSTDPDRF	TSTSRV2	TSTSRV1	TSTSRV0

BIT	7	6	5	4	3	2	1	0
Symbol	C _{OFFSA} 3	C _{OFFSA} 2	C _{OFFSA} 1	C _{OFFSA} 0	C _{OFFSB} 3	C _{OFFSB} 2	C _{OFFSB} 1	C _{OFFSB} 0

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

Table 27 Description of register bits (address CH)

BIT	SYMBOL	FUNCTION
15 to 12	_	1100 = address CH
11	TSTDPDRF	DPD RF test bit. With this bit the DPD filter performance is checked. 0 = normal operation; 1 = RF signal filtered by the DPD block is connected to the RF output.
10 to 8	TSTSRV[2:0]	Test matrix for servo signals to pin OCENTRAL.
		000 = normal operation
		001 = filter DAC current for test purposes
		011 = CA (sum A to D)
		100 = channel A
		101 = channel B
		110 = channel C
		111 = channel D
7 to 4	C _{OFFSA} [3:0]	Central servo input A offset cancellation. Bit SERVOOS = 0: 0 to 20 mV; bit SERVOOS = 1: 0 to 60 mV.
3 to 0	C _{OFFSB} [3:0]	Central servo input B offset cancellation. Bit SERVOOS = 0: 0 to 20 mV; bit SERVOOS = 1: 0 to 60 mV.

7.3.14 REGISTER 13: CENTRAL SERVO OFFSET CANCELLATION INPUTS C AND D

Table 28 Register address DH

BIT	15	14	13	12	11	10	9	8
Symbol	1	1	0	1	RFonly	-	-	-

BIT	7	6	5	4	3	2	1	0
Symbol	C _{OFFSC} 3	C _{OFFSC} 2	C _{OFFSC} 1	C _{OFFSC} 0	C _{OFFSD} 3	C _{OFFSD} 2	C _{OFFSD} 1	C _{OFFSD} 0

Table 29 Description of register bits (address DH)

BIT	SYMBOL	FUNCTION
15 to 12	_	1101 = address DH
11	RFonly	Operation mode. 0 = normal operation; 1 = RF only mode (servo outputs OA to OD, S1 and S2 are 3-state).
10 to 8	_	not used
7 to 4	C _{OFFSC} [3:0]	Central servo input C offset cancellation. Bit SERVOOS = 0: 0 to 20 mV; bit SERVOOS = 1: 0 to 60 mV.
3 to 0	C _{OFFSD} [3:0]	Central servo input D offset cancellation. Bit SERVOOS = 0: 0 to 20 mV; bit SERVOOS = 1: 0 to 60 mV.

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

7.3.15 REGISTER 14: RF FILTER SETTINGS

Table 30 Register address EH

BIT	15	14	13	12	11	10	9	8
Symbol	1	1	1	0	ı	-	RFNFEN	RFEQEN

BIT	7	6	5	4	3	2	1	0
Symbol	RFKEQ	BWRF6	BWRF5	BWRF4	BWRF3	BWRF2	BWRF1	BWRF0

Table 31 Description of register bits (address EH); bit K2_Mode = 1

BIT	SYMBOL	FUNCTION
15 to 12	-	1110 = address EH
11 and 10	_	not used
9	RFNFEN	Noise filter enable. 0 = disable; 1 = enable.
8	RFEQEN	Equalizer enable. 0 = disable; 1 = enable.
7	RFKEQ	Boost factor. 0 = boost factor low; 1 = boost factor high.
6 to 0	BWRF[6:0]	Bandwidth limitation in RF path. 000 0000 to 111 1111: $f_{0(RF)} = 12$ to 145 MHz.

7.3.16 REGISTER 15: DPD FILTER SETTINGS

Table 32 Register address FH

BIT	15	14	13	12	D11	D10	D9	D8
Symbol	1	1	1	1	_	_	_	_

BIT	D7	D6	D5	D4	D3	D2	D1	D0
Symbol	_	_	DPDLL2	DPDLL1	DPDLL0	DPDLPF2	DPDLPF1	DPDLPF0

Table 33 Description of register bits (address FH); bit K2_Mode = 1

BIT	SYMBOL	FUNCTION
15 to 12	_	1111 = address FH
11 and 6	-	not used
5 to 3	DPD_LL[2:0]	DPD lead/lag filter start frequency (f _{start}).
		000 = 1 MHz
		001 = 5 MHz
		010 = 10 MHz
		011 = 18 MHz
		100 = 24 MHz

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

BIT	SYMBOL	FUNCTION
2 to 0	DPD_LPF[2:0]	DPD low-pass filter (f _{-3dB}).
		000 = 10 MHz
		001 = 50 MHz
		010 = 100 MHz
		011 = 180 MHz
		111 = 240 MHz

7.4 Internal digital control, serial bus and external digital input signal relationships

The settings of all internal switches, DACs and modes of operation can be programmed via the serial bus.

There are also a few external digital signals which influence the programmed settings. These signals are:

- Pin STB. When pin STB = HIGH, the device is switched off. This function is present in TZA1033HL to give compatibility with TZA1033HL/V1. The TZA1033HL has a built-in Power-on reset which takes it to STANDBY mode at power on. An internal pull-down resistor allows pin STB to be left unconnected.
- Pin LAND. This input is from the decoder and indicates whether the spot is on land or groove. The LAND input:
 - Causes inversion of the polarity of the radial signal (bit L/G_pol)
 - Changes setting of the focus offset DAC to the appropriate register
 - Controls the RF MUX settings for left or right during headers (see Section 7.4.2).
- Pin HEADER. This input comes from the decoder and indicates whether the spot is on a data area or on the pre-embossed header. The HEADER input:
 - Mutes the servo signals when HIGH (if this function is enabled)
 - Controls the RF MUX settings for header or data during headers (see Section 7.4.2)
 - Changes setting of the DVD RF input offset DAC to the appropriate register.

7.4.1 STANDBY MODE

To ensure a safe start-up, the TZA1033HL has an internal Power-on reset that resets on bit PWRON.

External switching to STANDBY mode can also be made via pin STB. During STANDBY mode, most circuits, including laser supplies, are switched off.

The TZA1033HL can also be set to STANDBY mode via the serial bus:

 $POWERON = \overline{STB} \text{ and } PWRON$

bit CD_LDON = 1 if CD laser is on and POWERON bit DVD_LDON = 1 if DVD laser is on and POWERON.

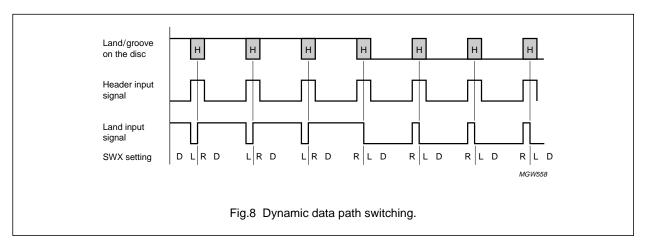
It should be noted that there is a difference between PWRON from the serial bus, and POWERON of the internally used signal. POWERON means there is supply voltage on the device.

7.4.2 RF ONLY MODE

The servo outputs can be disabled for easy interfacing in systems where two front-end signal processors are used. This mode will set the outputs OA to OD, S1 and S2 to 3-state. The RF data path remains active.

The SW-A to SW-D signals can have different settings during data and header (left and right) passage. Table 34 shows the relationship between input signals and corresponding registers for SW-A to SW-D selection.

Table 34 Bus register switching


P	IN	SIGNAL	REGISTER	
HEADER	LAND	PATH	REGISTER	
LOW	LOW	data	8	
LOW	HIGH	data	8	
HIGH	LOW	left	9	
HIGH	HIGH	right	10	

The land pulse should be in the first half of the HEADER pulse (see Fig.8). This gives the land/groove focus offset the possibility to settle before the data section starts again.

During the land pulses, the radial and focus signal will be disturbed if the corresponding mute bits are not set.

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

7.5 Signal descriptions

The variables A₁ to A₃, A_{RFSUM}. A_{LFC} and A_{LFR}, are the linear equivalents of G₁ to G₃, GRFSUM, G_{LFC} and G_{LFR}.

7.5.1 DATA PATH SIGNALS THROUGH PINS A TO D

With bit RFSUM = 0:

$$(DVD_{RFP} - DVD_{RFN}) = A_2 \times {}^{1}/_{4} \times [SW-A \{(A-OPUREF) \times A_1 - RF_{OFFSL}\} + SW-B \{(B-OPUREF) \times A_1 - RF_{OFFSL}\} + SW-C \{(C-OPUREF) \times A_1 - RF_{OFFSR}\} + SW-D \{(D-OPUREF) \times A_1 - RF_{OFFSR}\}]$$

RFP = RFREF + $0.5 \times A_3 \times (DVD_{RFP} - DVD_{RFN})$

 $RFN = RFREF - 0.5 \times A_3 \times (DVD_{RFP} - DVD_{RFN})$

Thus:

$$RF_{dif} = A_3 \times A_2 \times A_1 \times \left(\frac{A+B+C+D}{4} - OPUREF - RF_{OFFS}\right)$$

Switches SW-A to SW-D can be programmed 1, –1 or 0 (respectively pass, invert or not pass the signal) for each channel. There are separate registers for header and data. In this way the header data can be read by either left side-right side or left and right side. In left and right mode, the land/groove signal will control the switching for left and right. Switches SW-A to SW-D can also be used to exclude channels in the data path.

 RF_{OFFSL} and RF_{OFFSR} also have separate registers for header and data fields. During headers RF_{OFFSL} and RF_{OFFSR} can be different for left and right.

The first gain stage also carries the signals for DPD tracking. Therefore this stage will also be active when RFSUM input and DPD is selected. The DC offset cancellation is also active in this situation but left and right channels are controlled from a single DAC. Also in this situation, the A to D and RFSUM inputs are used simultaneously.

Control of the DC offset DACs can be chosen to be from the same register or from two independent registers (registers 4 and 5), see Section 7.3.5 for details.

7.5.2 DATA SIGNAL PATH THROUGH INPUT PINS RFSUMP AND RFSUMN

With bit RFSUM = 1:

$$(DVD_{RFP} - DID_{RFN}) = A_{RFSUM} \times [RFSUMP - RFSUMN - RF_{OFFSS}]$$

RFP = RFREF + $0.5 \times A_3 \times (DVD_{RFP} - DVD_{RFN})$

TZA1033HL

RFN = RFREF $-0.5 \times A_3 \times (DVD_{RFP} - DVD_{RFN})$

Thus:

 $RF_{dif} = A_{RFSUM} \times [RFSUMP - RFSUMN - RF_{OFFSS}]$

7.5.3 HF FILTERING

The differential HF signal from the G_3 stage is sent to a filter section that consists of an equalizer and a noise filter, which are controlled by bits BWRF, RFKEQ, RFEQEN and RFNFEN. The equalizer has a transfer function H_1 (s) which is modelled after a target transfer function H_2 (s):

$$H_{e}(s) = \frac{1 + k \times \frac{s^{2}}{\omega_{0RF}^{2}}}{1 + \frac{s^{2}}{\omega_{0RF}^{2}} + \alpha \times \frac{s}{\omega_{0RF}}} \times \frac{1}{1 + \tau \times \frac{s}{\omega_{0RF}}}$$

This represents a third-order equi-ripple phase filter with a good delay response. The boost factor k is programmable via the serial bus control bit RFKEQ. The corner frequency $\omega_{0RF} = 2\pi f_{0RF}$ is programmable via control parameter bit BWRF. The equalizer is switched on with control bit RFEQEN.

The noise filter has a transfer function H_2 (s) which is modelled after a third-order Butterworth low-pass filter with target transfer function H_n (s):

$$H_n(s) = \frac{1}{1 + \frac{s^2}{\omega_{ORF}} + \frac{s}{\omega_{ORF}}} \times \frac{1}{1 + \frac{s}{\omega_{ORF}}}$$

The corner frequency ω_{ORF} is equal to that of the equalizer filter. The noise filter is switched on with bit RFNFEN.

7.5.4 FOCUS SIGNALS

Focus servo signals:

$$OA = \frac{1}{R_{LFC}} \times A_{LFC} \times (A - OPUREF + LF_{OFFS} - C_{OFFSA}) + \beta \times F_{OFFS}$$

$$OB = \frac{1}{R_{LFC}} \times A_{LFC} \times (B - OPUREF + LF_{OFFS} - C_{OFFSB}) + (1 - \beta) \times F_{OFFS}$$

$$OC = \frac{1}{R_{LFC}} \times A_{LFC} \times (C - OPUREF + LF_{OFFS} - C_{OFFSC}) + \beta \times F_{OFFS}$$

$$OD = \frac{1}{R_{LFC}} \times A_{LFC} \times (D - OPUREF + LF_{OFFS} - C_{OFFSD}) + (1 - \beta) \times F_{OFFS}$$

The parameter β can be programmed via the serial bus and may have two different values:

- bits β_L for land (pin LAND = HIGH)
- bits β_G for groove (pin LAND = LOW).

The focus offset DAC can be switched on with the control bit F_{OFFSEN}.

TZA1033HL

Remarks:

- 1. F_{OFFS} is used to introduce a focus offset between land and groove. Land/groove mode is selected with the control signal land. The values of β_L and β_G can be set separately.
- LF_{OFFS} is a common offset DAC intended to cancel the (larger) common mode offset from the pick-up; smaller offset values between the channels can be cancelled by using C_{OFFSx}.
- During the passage of headers the servo signals can be muted; during mute, the current output signals are made equal to each other, both carrying the average:

$$OA_{mute} = OD_{mute} = \frac{OA + OD}{2}$$

$$OB_{mute} = OC_{mute} = \frac{OB + OC}{2}$$

This mute function is active when pin HEADER = HIGH, and when this function is enabled via the serial bus.

7.5.5 RADIAL SIGNALS

7.5.5.1 DPD signals (DVD-ROM mode) with no drop-out concealment

DPD tracking can be activated with bits RT_mode[2:0] of register 1. Input signals are taken from the diode inputs A to D, through the input stage G_1 and the DC offset cancellation DAC. When bit RFSUM = 0, the input stage is also used for the RF signal. When bit RFSUM = 1, the setting for G_1 and DC offset control can be independent of the setting for the data signal which goes through RFSUM.

$$S1_{DPD} = I_{(FS)(DPD)} \times \frac{\Delta t}{T_{P}} + I_{REFRAD}$$

$$S2_{DPD} = -I_{(FS)(DPD)} \times \frac{\Delta t}{T_P} + I_{REFRAD}$$

 $\frac{\Delta t}{T_{p}}$ is the time difference between the two input signals,

relative to the period time T_{P} of the input signal. $I_{(FS)(\ DPD)}$ is the full scale range.

The bandwidth of the DPD signal is limited by the 100 kHz phase detector integration filters and the bandwidth of the output stages (100 kHz for S1 and S2).

The input signals used for DPD depend on the programmed radial tracking mode (bits RT_mode[2:0]):

DPD_{mode} = DPD2:
$$\frac{\Delta t}{T_P}$$
 (A,D) or DPD2: $\frac{\Delta t}{T_P}$ (A + C, B + D)

$$DPD_{mode} = DPD4: 0.5[\frac{\Delta t}{T_P}(A,D) + \frac{\Delta t}{T_P}(C,B)]$$

Range of
$$\frac{\Delta t}{T_P}$$
 is from -0.5 to + 0.5.

$$\frac{\Delta t}{T_P}$$
 > 0 if A,C phase leads with respect to D,B.

For S1 and S2 the following condition is required: Pin LAND = HIGH and bit L/G_pol = 0 or Pin LAND = LOW and bit L/G_pol = 1. Without this condition, the signals appearing at S1 and S2 will be swapped.

$$FTC = (S1 - S2) \times (R_{FTC} + FTCREF)$$

7.5.5.2 DPD signals (DVD-ROM mode) with drop-out concealment

With bit DOCEN = 1, drop-out concealment is activated and the S1 and S2 outputs change:

- The common mode level (I_{REFRAD}) is now determined by the CA signal
- · The scaling changes.

At low signal levels (SUM < DOC threshold), the contribution of $\frac{\Delta t}{T_p}$ is reduced smoothly.

$$\label{eq:S1DPD} S1_{DPD} = C \times I_{(FS)(DPD)(DOC)} \times \frac{\Delta t}{T_P} \ + \ 0.25 \times CA.$$

$$S2_{DPD} = -C \times I_{(FS)(DPD)(DOC)} \times \frac{\Delta t}{T_P} \ \, \text{+ 0.25} \times CA. \label{eq:S2DPD}$$

Where:

- I_{(FS)(DPD)(DOC)} is the full scale range
- C = concealment multiplier, C = 0 to 1 when CA is 0 to DOC_{threshold}
- CA = OA + OB + OC + OD
- DOC_{threshold} is typically 3 μA.

The DPD detection can not work properly when the input signal becomes very small. The output of the DPD may then show a significant offset. The DOC may not conceal this ofset completly because:

- DOC is gradually controlled from the CA signal
- The CA signal may not become 0 during disc-defect.

TZA1033HL

7.5.5.3 Three-beam push-pull (CD mode)

When the three-beam system is used, the radial signals S1 and S2 can be composed from inputs E and F.

With the settings: Pin LAND = HIGH and bit L/G_pol = 0 or Pin LAND = LOW and bit L/G_pol = 1.

Without this condition, the signals appearing at S1 and S2 will be swapped.

$$S1_{PP} \,=\, A_{LFR} \times \left\{ \frac{E - OPUREF + LF_{OFFS} + R_{OFFSE}}{R_{LFR}} \right\}$$

$$S2_{PP} = A_{LFR} \times \left\{ \frac{F - OPUREF + LF_{OFFS} - R_{OFFSF}}{R_{LFR}} \right\}$$

FTC = $(S1 - S2) \times R_{FTC} + FTCREF$ (bandwidth limited to 600 kHz).

7.5.5.4 Enhanced push-pull

Top hold push-pull method is supported but only in conjunction with a compatible decoder. The peak hold function is executed in the decoder, by measuring the mirror levels of the gap-zones in each header. The TZA1033HL will compensate for offset errors in two ways:

- The DC offset from the pick-up can be compensated by means of a DAC (COFFSX) in each channel
- The dynamic offsets can be compensated by means of the multiplier ratio α .

The correction values must be calculated in the decoder and programmed via the serial bus. The method is called the enhanced push-pull method.

With the settings: Pin LAND = HIGH and bit L/G_pol = 0 or pin LAND = LOW and bit L/G_pol = 1.

For S1 and S2 the following condition is required; without this condition, the signals appearing at S1 and S2 will be swapped.

$$S1_{PP} = A_{LFR} \times \alpha \times \left\{ \frac{A + B - 2 \times OPUREF + 2 \times LF_{OFFS} - (C_{OFFSA} - C_{OFFSB})}{R_{LFPP}} \right\}$$

$$S2_{PP} = A_{LFR} \times (2 - \alpha) \times \left\{ \frac{C + D - 2 \times OPUREF + 2 \times LF_{OFFS} - (C_{OFFSC} - C_{OFFSD})}{R_{LFPP}} \right\}$$

or:

$$S1_{PP} = A_{LFR} \times \alpha \times \left\{ \frac{A - OPUREF + LF_{OFFS} - C_{OFFSA}}{R_{LFPP}} \right\}$$

$$S2_{PP} = A_{LFR} \times (2 - \alpha) \times \left\{ \frac{D - OPUREF + LF_{OFFS} - C_{OFFSD}}{R_{LFPP}} \right\}$$

The signals from the B and C channels can be switched off, depending on the photodiode configuration (bit RT_mode[2:0]).

During the passage of headers the servo signals can be muted. During mute, the current output signals are made equal to each other, both carrying the average of the signals:

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

$$S1_{mute} = S2_{mute} = \frac{S1 + S2}{2}$$

The mute function $FTC_{mute} = FTC_{REF}$ is active when pin HEADER = HIGH, and when this function is enabled via the serial bus. Muting for FTC, S1 and S2 can be enabled independently.

8 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOLS	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DD}	supply voltage		_	5.5	V
T _{amb}	ambient temperature		0	65	°C
V _{esd}	electrostatic discharge	Human Body Model (HBM); note 1	_	2000	V
	voltage	Machine Model (MM); note 1	_	200	V

Note

- 1. ESD behaviour is tested in accordance with JEDEC II standard:
 - a) HBM is equivalent to discharging a 100 pF capacitor through a 1.5 k Ω series resistor.
 - b) MM is equivalent to discharging a 200 pF capacitor through a 0.75 μ H series inductor.

9 THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from	in free air	68	K/W
	junction to ambient			

10 CHARACTERISTICS

 $V_{DDA} = 5 \ V_{;} \ V_{DDD3} = 3.3 \ V; \ V_{DDD5} = 5 \ V; \ V_{RFREF} = 1.2 \ V; \ T_{amb} = 25 \ ^{\circ}C; \ RF \ inputs \ A \ to \ D \ are \ referred \ to \ pin \ OPUREF; \\ f_{0(RF)} = 50 \ MHz; \ R_{ext} = 12.1 \ k\Omega \ (pin \ REXT); \ RF \ output \ maximum \ load \ on \ pins \ RFP \ and \ RFN \ is \ Z_{O(max)}: 5 \ pF \ parallel \ with \ 10 \ k\Omega \ to \ V_{SS}; \ unless \ otherwise \ specified.$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies		•	•			•
T _{amb}	ambient temperature		0	-	65	°C
V _{DDA1} , V _{DDA2} , V _{DDA3} , V _{DDA4}	analog supply voltage		4.5	5.0	5.5	V
V_{DDD3}	3 V digital supply voltage		2.7	3.3	5.5	V
V_{DDD5}	5 V digital supply voltage		4.5	5.0	5.5	V
V _{I(logic)}	logic input compatibility	note 1	2.7	3.3	5.5	V
V _{POR}	Power-on reset voltage		3.3	3.5	3.7	V
I _{DD}	supply current	without laser supply	_	98	120	mA
		STANDBY mode	_	_	1	mA

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
RF data path	, input: pins A to D ar	nd OPUREF				
$V_{i(OPUREF)}$	input voltage on pin OPUREF	note 2	1.5	0.5V _{DDA}	V _{DDA} – 2	V
$V_{i(RF)(FS)}$	input voltage on pins A to D for full-scale at output	referred to V_{OPUREF} $G_1 = 0 \text{ dB}$ $G_1 = 6 \text{ dB}$ $G_1 = 12 \text{ dB}$	_ _ _	- - -	600 300 150	mV mV mV
V _{I(DC)}	DC component of input voltage		1.8	0.5V _{DDA}	V _{DDA} - 1.4	V
V _{RFOFFSL} , V _{RFOFFSR}	DC offset compensation voltage	$G_1 = 0 \text{ dB}$ $G_1 = 6 \text{ dB}$ $G_1 = 12 \text{ dB}$	350 175 90	450 225 120	550 275 160	mV mV mV
$\Delta V_{RFOFFSL}$, $\Delta V_{RFOFFSR}$	DC offset compensation voltage resolution	$G_1 = 0 \text{ dB}$ $G_1 = 6 \text{ dB}$ $G_1 = 12 \text{ dB}$	- - -	7.1 3.6 1.9	- - -	mV mV mV
I _{I(bias)}	input bias current on pins A to D		-	-	5	μА
Z _i	input impedance on pins A to D		100	-	-	kΩ
$A_{RF(min)}$	minimum gain	$G_1 = 0 \text{ dB}, G_2 = 6 \text{ dB},$ $G_3 = 0 \text{ dB}; \text{ note } 3$	4	6	8	dB
A _{RF(max)}	maximum gain	$G_1 = 12 \text{ dB},$ $G_2 = 24 \text{ dB},$ $G_3 = 13 \text{ dB}; \text{ note } 3$	48	49	52	dB
TC _{gain}	gain temperatue coefficient		_	-0.025	-	dB/°C
ΔG_1	first RF amplifier stage gain step size		5	6	7	dB
ΔG_2	second RF amplifier stage gain step size		5	6	7	dB
RF data path	, input: pins RFSUMP	and RFSUMN		•	•	
V _{I(DC)}	DC input voltage	with respect to V _{SS}	1.3	_	V _{DDA} - 1.0	V
$V_{I(SUM)(dif)}$	differential input voltage	$G_{RFSUM} = -6 \text{ dB}$ $G_{RFSUM} = 0 \text{ dB}$	_	-	1800 1400	mV mV
		$G_{RFSUM} = 6 \text{ dB}$ $G_{RFSUM} = 12 \text{ dB}$ $G_{RFSUM} = 18 \text{ dB}$	_ _ _	- - -	700 350 175	mV mV
V _{RFOFFSS}	DC offset compensation voltage	$G_{RFSUM} = -6 \text{ dB}$ $G_{RFSUM} = 0 \text{ dB}$	-	1700 850		mV mV
		$G_{RFSUM} = 6 \text{ dB}$ $G_{RFSUM} = 12 \text{ dB}$ $G_{RFSUM} = 18 \text{ dB}$	_ _ _	425 210 105	- -	mV mV mV

TZA1033HL

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{I(bias)}	input bias current		_	5	_	μΑ
Z _I	input impedance	note 4	50	_	600	kΩ
$\Delta V_{RFOFFSS}$	DC offset	G _{RFSUM} = −6 dB	_	27	_	mV
	compensation	G _{RFSUM} = 0 dB	_	13.5	_	mV
	voltage resolution	G _{RFSUM} = 6 dB	_	6.7	_	mV
		G _{RFSUM} = 12 dB	_	3.4	_	mV
		G _{RFSUM} = 18 dB	_	1.7	_	mV
A _{RFSUM(min)}	minimum gain	note 3	-8	-6	-4	dB
A _{RFSUM(max)}	maximum gain	note 3	29	31	33	dB
ΔG_{RFSUM}	RFSUM amplifier stage gain step size		5	6	7.5	dB
TC _{gain}	gain temperatue coefficient		-	-0.02	-	dB/°C
RF data path	, filter and output					
V _{n(o)(dif)(rms)}	differential RF output noise voltage (RMS value)	diode inputs; BWRF = 127; f = 0 to 500 MHz; RFNFEN = 1; note 5				
		A = 12 + 24 + 6 dB; RFEQEN = 0	_	7	-	mV
		A = 12 + 6 + 6 dB; RFEQEN = 0	_	6	-	mV
		A = 12 + 6 + 6 dB; RFEQEN = 1; RFKEQ = 0	_	9	_	mV
		A = 12 + 6 + 6 dB; RFEQEN = 1; RFKEQ = 1	_	11	-	mV
		SUM inputs; BWRF = 127; f = 0 to 500 MHz; RFNFEN = 1; A = 18 + 6 dB; RFEQEN = 0; note 5	-	12	-	mV
V _{OO(ref)}	DC output offset voltage	$V_{I(RF)} = 0 \text{ V};$ DVD _{OFFS} = 0; note 6				
		V _{RFREF} = 1.2 V	_	_	60	mV
		$V_{RFREF} = 0.8 \text{ to } 2.1 \text{ V}$	_	_	100	mV
$V_{o(dif)(p-p)}$	differential output voltage on pins RFP and RFN (peak-to-peak value)		_	_	1.4	V
V _{O(RF)(DC)}	DC output voltage on pins RFP and RFN		0.35	-	V _{DDA} – 1.9	V

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{i(RFREF)(CM)}	input reference voltage for common mode output on pin RFREF		0.8	1.2	2.1	V
R _o	output impedance on pins RFP and RFN		_	100	_	Ω
ΔG_3	third RF amplifier stage gain step size	note 7	-	0.85	1.3	dB
h ₁ – h _e	equalizer amplitude error	flatness between f ₀ and 100 kHz	-	_	1.5	dB
$ h_1 - h_n $	noise filter amplitude error	flatness between f ₀ and 100 kHz	-	_	1.5	dB
B _{RF(-3dB)}	-3 dB bandwidth of RFP and RFN signal path	RFEQEN = 0; RFNFEN = 0	200	300	-	MHz
f _{0(RF)}	noise filter and	BWRF = 0	8	12.0	14.5	MHz
equalizer corner frequency		BWRF = 127	100	145	182	MHz
$\Delta f_{0(RF)}$	noise filter and equalizer corner frequency step size	ΔBWRF = 1; note 8	0.73	1.06	1.32	MHz
t _{d(RF)}	flatness delay in RF data path	equalizer off; f = 0 to 150 MHz	-	_	0.1	ns
		equalizer on; f = 0 to 100 MHz; BWRF = 127	-	-	0.5	ns
		equalizer and noise filter on; f = 0 to 0.7f _{0(RF)}				
		BWRF = 0	-	-	3.5	ns
	_	BWRF = 127			0.6	ns
t _{st(G3)}	amplifier G ₃ gain change settling time	note 9	_	_	0.5	μs
α	equalizer parameter	see Section 7.5.3	1.125	1.25	1.375	
τ	equalizer parameter	see Section 7.5.3	1.18	1.31	1.44	
k	equalizer parameter	see Section 7.5.3				
		RFKEQ = 0	3.2	4.0	4.8	
		RFKEQ = 1	4.8	6.0	7.2	

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
LF servo pat	h		'			'
V _{I(LF)}	input voltage range	path to focus servo outputs referred to VOPUREF	700	_	_	mV
		path to radial servo outputs referred to V _{OPUREF}	500	_	_	mv
V _{O(LF)}	servo output voltage		-0.2	_	V _{DD} – 2.5	V
V _{LFOFFS(CM)}	common mode	SERVOOS = 0	_	15	_	mV
	offset compensation voltage	SERVOOS = 1	_	45	_	mV
ΔV_{LFOFFS}	DC offset voltage	SERVOOS = 0	4.25	5	5.75	mV
	resolution	SERVOOS = 1	13	15	17	mV
V_{ROFFS} ,	offset voltage	SERVOOS = 0	_	20	_	mV
V _{COFFS}	compensation	SERVOOS = 1	_	60	_	mV
ΔV_{ROFFS} ,	DC offset voltage	SERVOOS = 0	1.0	1.3	1.6	mV
ΔV_{COFFS}	resolution	SERVOOS = 1	3.0	4	4.8	mV
V _{I(FTCREF)}	FTC reference input reference voltage		1.25	_	2.75	V
V _{O(FTC)(p-p)}	FTC output voltage (peak-to-peak value)		2.0	-	-	V
I _{O(LF)}	output current	focus servo outputs	0	_	12	μΑ
, ,		radial servo outputs	0	_	12	μΑ
I _{FOFFS}	focus land/groove compensation current	from F _{OFFS} DAC	310	390	480	nA
ΔI_{FOFFS}	compensation current resolution		_	12	-	nA
I _{(FS)(DPD)}	DPD full scale current	f = 3 MHz; V _i = 100 mV (p-p)				
		DOCEN = 0	17	20	23	μΑ
		DOCEN = 1	4.5	6.6	8	μΑ
I _{th(DOC)}	DOCEN threshold current	SUM value	2.5	3	3.5	μΑ
I _{REFRAD(CM)}	common mode DC current in DPD mode	DOCEN = 0	-	3.5	-	μΑ
R _{LFC}	LF path input transresistance	ath input $G_{LFC} = 0 \text{ dB}$ 10.5		14	16.5	kΩ
R _{LFR}	CD satellite path input transresistance	Itellite path $G_{LFR} = 0 \text{ dB}; \alpha = 1$ 11 15 18		kΩ		
R _{LFPP}	DVD push-pull transresistance	$G_{LFR} = 0 \text{ dB}; \alpha = 1$	23	30	36	kΩ

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
R _{FTC}	fast track count transimpedance	note 10	510	650	800	kΩ
G _{LFC}	gain range central channels		-15.5	-	+8.5	dB
ΔG_{LFC}	gain resolution central channels		_	3	_	dB
G _{LFR}	gain range radial channels	central path output stage	-15.5	-	+8.5	dB
ΔG_{LFR}	gain resolution radial channels		_	3	_	dB
B _{LF(-3dB)}	-3 dB bandwidth of LF path		60	75	100	kHz
B _{FTC}	FTC bandwidth	FTCHBW = 0	_	600	_	kHz
		FTCHBW = 1; note 11	_	1200	_	kHz
LRM	dynamic radial left right matching	α = 1	-7	-	+7	%
CPM	channel pair	G _{LF} = 0 dB; note 12				
	matching	V _{I(LF)} = 96 mV; pairs OA, OD or OC, OB	-2	_	+2	%FS
		V _{I(LF)} = 48 mV; pair S1 and S2	-7	_	+7	%FS
α	dynamic radial offset compensation factor			1.35		
Δα	dynamic radial offset compensation factor resolution		_	0.05	-	
ALPC Auton	natic Laser Power Con	trol	•			•
V _{i(mon)}	laser monitor diode	P-type monitor diode				
(meny	input voltage	LOW level voltage	V _{DDA4} – 0.140	V _{DDA4} – 0.155	V _{DDA4} – 0.17	V
		HIGH level voltage	V _{DDA4} – 0.215	V _{DDA4} – 0.190	V _{DDA4} – 0.18	V
		N-type monitor diode				
		LOW level voltage	0.145	0.155	0.17	V
		HIGH level voltage	0.175	0.185	0.2	V
V _{O(laser)}	laser output voltage		_	_	V _{DDL} – 0.5	V
V _{prot}	low supply voltage protection level		3.6	3.8	4.0	V
ΔV_{prot}	low supply voltage protection hysteresis	- 200 -		_	mV	
I _{I(mon)}	laser monitor diode input current	de – 20		200	nA	

High speed advanced analog DVD signal processor and laser supply

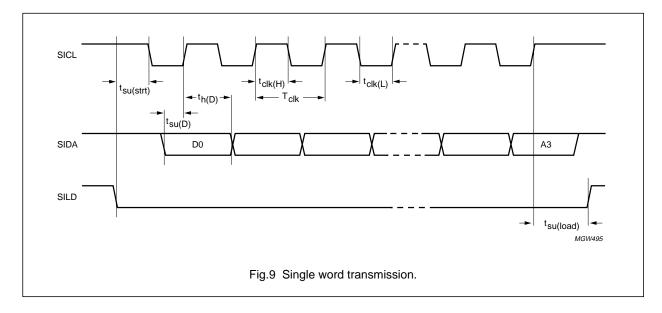
TZA1033HL

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{o(laser)(max)}	maximum laser output current		-120	_	-	mA
t _{on(laser)}	laser switch on time		_	3	_	ms
FTC compar	ator		•	•		•
V _{I(CM)}	common mode input voltage		0	_	2.5	V
V _{OL}	LOW-level output voltage		0	_	0.5	V
V _{OH}	HIGH-level output voltage		V _{DDD3} - 0.5	_	V _{DDD3}	V
V _{IO}	input offset voltage		_	_	10	mV
ILI	input leakage current		_	_	100	nA
A _V	voltage gain		_	200	_	V/mV
t _r , t _f	rise and fall time	C _L = 15 pF	_	250	_	ns
t _{res}	response time	V _{I(dif)} = 200 mV (p-p)	_	200	_	ns
Serial bus in	terface (see Fig.9)	•	•	•		•
V _{IH}	HIGH-level input voltage		0.7V _{DDD3}	_	_	V
V _{IL}	LOW-level input voltage			_	0.3V _{DDD3}	V
I _{IH}	HIGH-level input current on pins TM, LAND, HEADER and STB	inputs incorporate internal pull-down resistors	-	-	100	μА
I _I	input current	pins SIDA, SICL and – SILD		_	100	nA
t _{su(strt)}	start set-up time		0	_	_	ns
t _{su(D)}	data set-up time		5	_	_	ns
t _{h(D)}	data hold time		20	_	_	ns
t _{clk(H)}	clock HIGH time		10	-	_	ns
t _{clk(L)}	clock LOW time		10 –		_	ns
T _{clk}	clock period		30	-	_	ns
t _{su(load)}	load pulse set-up time		30	_	-	ns
t _{load(H)}	load pulse HIGH time		10	_	-	ns

Notes

- 1. Level follows the applied supply voltage at pin $V_{\mbox{\scriptsize DDD3}}.$
- 2. This range for the servo path is designed to be larger than for the data path so that the servo path can handle out of focus situations.

High speed advanced analog DVD signal processor and laser supply


TZA1033HL

3.
$$A = 10^{\frac{(G_1 + G_2 + G_3)}{20}}$$
 [dB] or $A = 10^{\frac{(G_{RFSUM} + G_3)}{20}}$ [dB], see Section 7.5.1.

- 4. Input impedance depends on gain setting. Highest gain has lowest input impedance.
- 5. Noise figures depend on gain and filter settings, examples given here.

6.
$$V_{OO(ref)} = \frac{V_{RFP} + V_{RFN}}{2} - V_{RFREF}$$

- 7. Integral range for G₃ from minimum to maximum gain is 13 dB (typical).
- 8. At the transition BWRF = 63 to 64 the Δf may be between -0.2 and +1.7 MHz
- 9. Faster for small steps.
- Overall gain from input to output is determined by R_{FTC}/R_{LFR} or R_{FTC}/R_{LFPP}, depending on radial tracking mode, three-beam push-pull (CD) or DVD push-pull. Gain FTC scales with G_{FRR}. When DPD tracking is selected the FTC gain is fixed.
- 11. High FTC bandwidth is achieved when I_{S1} and $I_{S2} > 1.5 \mu A$.
- 12. Channel pair matching is defined in % of full scale (FS) output at half of the full scale level.

TZA1033HL

11 APPLICATION INFORMATION

11.1 Signal relationships

Simplified signal relationships between signals are described in this section. In the simplification, all built-in options for DVD-ROM are omitted. The variables A_1 to A_3 , A_{LFC} and A_{LFR} , are the linear equivalents of bits G_1 to G_3 , G_{LFC} and G_{LFR} .

11.1.1 DATA PATH

Pins RFP and RFN carry the RF data signals in opposite phases with respect to each other. This allows an ADC with a balanced or differential input to be used in the decoder. Depending on the DC input ranges of the ADC, in many cases the connection between TZA1033HL and the decoder can be a DC pin to pin connection. The common mode DC level of pins RFP and RFN can be chosen independently by means of input pin RFREF.

If bit RFSUM = 0

- $V_{RFP} = V_{RFREF} + 0.5 \times A_3 \times A_2 \times A_1 \times (V_I V_{RFOFFS})$
- $V_{RFN} = V_{RFREF} 0.5 \times A_3 \times A_2 \times A_1 \times (V_I V_{RFOFFS})$
- $V_{RFDIF} = A_3 \times A_2 \times A_1 \times (V_I V_{RFOFFS})$

If bit RFSUM = 1

- V_{RFP} = V_{RFREF} + 0.5 × A_{RFSUM} × A₃ × (V_{RFSUMP} V_{RFSUMN} V_{RFOFFSS})
- $V_{RFN} = V_{RFREF} 0.5 \times A_{RFSUM} \times A_3 \times (V_{RFSUMP} V_{RFSUMN} V_{RFOFFSS})$
- V_{RFDIF} = A_{RFSUM} × A₃ (V_{RFSUMP} V_{RFSUMN} V_{RFOFFSS})

Where:

- A₁, A₂, A₃ and A_{RFSUM} are programmed gain values
- V_I = average input voltage at pins A to D, with respect to the voltage at pin OPUREF
- V_{RFOFFS} is the programmed RF_{OFFS} DAC voltage (register 4 and register 5)
- V_{RFREF} is the input voltage at pin RFREF

Correct settings for V_{RFREF} and V_{RFOFFS} are required to keep both V_{RFP} and V_{RFN} at the DC voltage levels specified for the TZA1033HL and the decoder.

11.1.2 SERVO PATH

The current through output pins OA to OD represents the low-pass filtered input voltage of each individual pick-up segment. The gain from input to output can be programmed to adapt to different disc types or pick-ups (offset cancellation is omitted for simplicity):

$$\begin{split} I_{Ox} &= \frac{V_{Ix} \times A_{LFC}}{14 \ k\Omega} \\ I_{S1} &= \frac{(V_{I(A)} + V_{I(B)}) \times A_{LFR}}{30 \ k\Omega} \ \ \text{(in DVD push-pull mode)} \\ I_{S2} &= \frac{(V_{I(C)} + V_{I(D)}) \times A_{LFR}}{30 \ k\Omega} \ \ \text{(in DVD push-pull mode)} \end{split}$$

or:

$$I_{S1} = \frac{V_{I(E)} \times A_{LFR}}{15 \text{ k}\Omega}$$
 (in CD three-beam push-pull mode)

$$I_{S2} = \frac{V_{I(F)} \times A_{LFR}}{15 \text{ k}\Omega}$$
 (in CD three-beam push-pull mode)

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

or

$$I_{S1} = I_{DC} + I_{FS} \times \text{phase difference (in DPD mode)}$$

$$I_{S2} = I_{DC} - I_{FS} \times \text{phase difference (in DPD mode)}$$

Where:

- A_{LFC} and A_{LFR} are the programmable gain in central and radial path
- Gain should be programmed such that maximum signal levels fit into the range of the servo processor ADC
- $V_{I(A)}$; $V_{I(B)}$; $V_{I(C)}$ and $V_{I(D)}$ are defined as input voltage at pins A to D with respect to pin OPUREF
- I_{DC} is a DC current that keeps I_{S1} and I_{S2} unipolar
- I_{FS} is the sensitivity to relative phase difference.

Phase difference =
$$\frac{\Delta t}{T_p} = \frac{\Delta \phi [degrees]}{360}$$
; -180° < ϕ < + 180°.

11.2 Programming examples

Table 35 Sample of register values and mode settings.

REGISTER VALUE (HEX)					
	BIT[11:0]			MODE SETTINGS	
BIT[15:12]	DVD; LOW GAIN	DVD; HIGH GAIN ⁽¹⁾	CD; HIGH GAIN ⁽¹⁾		
0	005	045	043	switch on the laser power; $V_{mon} = 150 \text{ mV}$; set GRFSUM	
1	01D	01D	007	select diode or SUM inputs and corresponding tracking method	
2	800	800	800	set K2 mode	
3	800	_	800	set low RF gain = 18 dB + G ₃	
	_	800	_	set G ₁ for DPD (G ₃ = 0 dB in this example)	
4	820	410	410	approximation for DVD _{OFFS} DAC	
5	000	000	000	optional second RF offset setting	
6	338	778	778	$G_{LFC} = G_{LFR} = -6$ dB (low gain) or +6 dB (high gain); $\alpha = 1$	
7	200	200	000	set bits DPD_stretch to 1.9 ns	
8	000	000	000	enable inputs A to D for RF	
9	000	000	000	optional other selections for RF	
А	000	000	000	optional other selections for RF	
В	000	000	000	set for electrical offset compensation from pick-up (see	
С	000	000	000	Section 11.4)	
D	000	000	000		
E	335	335	335	set bits BWRF to 80 MHz; RFEQEN = 1; RFNFEN = 1	
F	022	022	000	set bits DPD_LL to 24 MHz; set bits DPD_LPF to 100 MHz	

Note

1. Use RFSUM input.

TZA1033HL

11.3 Energy saving

Pin STB and/or bit PWRON can be used to bring the TZA1033HL into STANDBY mode reducing the supply current to approximately 0.5 mA.

11.4 Initial DC and gain setting strategy

11.4.1 ELECTRICAL OFFSET FROM PICK-UP

It is useful to compensate for electrical offset, especially with pick-ups that give a low output signal. It is possible to compensate for each individual servo channel. Due to internal circuitry, the TZA1033HL servo channels can handle only signals positive with respect to the reference input OPUREF. Therefore the potentially negative offset from the pick-up must first be cancelled. The LF_{OFFS} DAC can be programmed to do this, and will apply this to all six channels at the same time. The LF_{OFFS} DAC can be set to 0, 5, 10 or 15 mV.

As a second step, the offset between each channel can be compensated by means of the DACs connected to each individual DAC (C_{OFFSA} to C_{OFFSD} , R_{OFFSE} and R_{OFFSF}). These DACs can be programmed between 0 and 20 mV with approximately 1.25 mV resolution. Where the LF_{OFFS} DAC increases the outputs signal level, the individual DACs decrease the output signal. In this way the output signal can be set very close to zero. The range of DACs, LF_{OFFS}, C_{OFFS} and R_{OFFS} can be tripled with control bit SERVOOS.

The output current of servo channel A is calculated by:

$$I_{OA} = \frac{[(V_A - V_{OPUREF}) + V_{FLOFFS} - V_{COFFSA}] \times A_{LFC}}{14 \text{ k}\Omega}$$

In case the laser is switched off, the term ($V_A - V_{OPUREF}$) represents the electrical offset from the pick-up.

The procedure to cancel the offset is:

- 1. Activate the pick-up and switch off the laser.
- 2. Set LF_{OFFS} to its maximum value.
- Measure the output currents off all relevant servo outputs.
- If all outputs represent a signal >5 mV equivalent input voltage, decrease V_{LFOFFS} then repeat step 3; if all outputs represent a signal <5 mV equivalent input voltage, go to step 5.
- Measure each output and increase C_{OFFS} until the output current is close enough to zero.

This procedure needs only to be done once, or after a longer time when temperature may have changed the pick-up offset.

The test pin OCENTRAL can be useful to follow this procedure. This pin can be programmed to output a copy of the signal OA to OD (see register 12).

11.4.2 GAIN SETTING SERVO

The servo gain has to be chosen dependant on the reflectivity of the disc. So this needs to be done each time when a new disc is inserted in the mechanism. A trial and error procedure should be able to find the optimal setting. Gain can be set in 3 dB steps.

11.4.3 DC LEVEL IN RF PATH

Once the gains in the servo path have been set, the average DC level at the inputs can be calculated from the value of the servo output signals:

$$V_{I} = \frac{I_{Ox} \times 14 \text{ k}\Omega}{A_{LFC} - (V_{LFOFFS} + V_{COFFSx})}$$

Where I_{Ox} is the average value of the output currents at pins OA to OD.

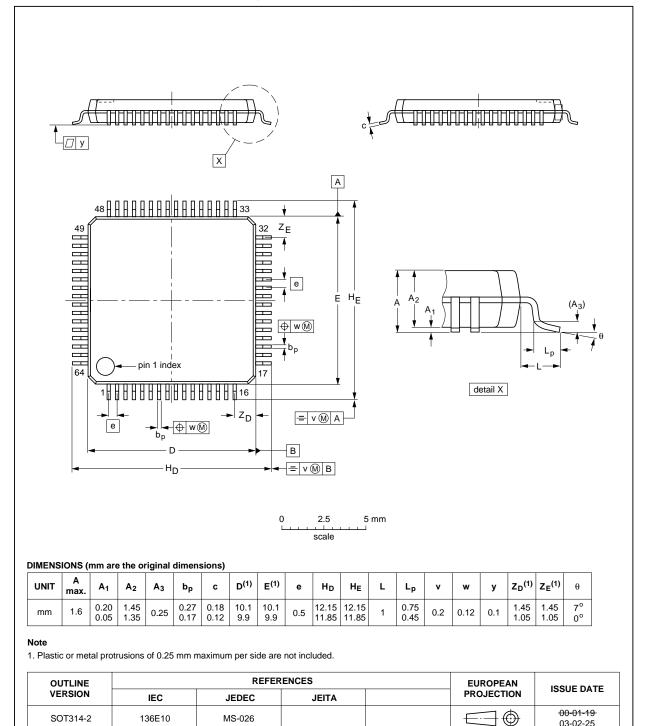
This value is a good estimate to use initially to set the RF DC compensation, V_{RFOFFS} . The range and resolution of the RF_{OFFS} DACs are scaled with the programmed gain of G_1 .

In cases where a DC coupling between TZA1033HL and the decoder is made, a fine tuning of the RF DC compensation can be done during play. The zero-crossing level of the data-eye pattern can be used as a measure to judge the correct DC compensation level.

11.4.4 GAIN SETTING RF PATH

The choice of RF gain is determined by the modulation of the disc, therefore the modulation needs to be checked each time a new disc is inserted in the mechanism. A trial and error procedure should be sufficient to find the optimum setting. For optimal use of the dynamic range:

- Use G₃ for fine tuning and AGC, so initially this should be set in the range 0 to 6 dB to leave an additional gain of 6 dB free to use during disc defects
- Use G₁ and G₂ to set the gain, increase G₁ first, when G₁ reached its maximum then G₂ should be increased
- G₂ shows better noise performance in 12 and 24 dB setting than in 6 and 18 dB setting
- A similar procedure can be followed for RFSUM.


TZA1033HL

03-02-25

12 PACKAGE OUTLINE

LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm

SOT314-2

2003 Mar 26 45

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

13 SOLDERING

13.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

13.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 220 °C for thick/large packages, and below 235 °C for small/thin packages.

13.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

 For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

13.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

13.5 Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE ⁽¹⁾	SOLDERING METHOD		
PACKAGE	WAVE	REFLOW ⁽²⁾	
BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA	not suitable	suitable	
DHVQFN, HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable ⁽³⁾	suitable	
PLCC ⁽⁴⁾ , SO, SOJ	suitable	suitable	
LQFP, QFP, TQFP	not recommended ⁽⁴⁾⁽⁵⁾	suitable	
SSOP, TSSOP, VSO	not recommended ⁽⁶⁾	suitable	

Notes

- For more detailed information on the BGA packages refer to the "(LF)BGA Application Note" (AN01026); order a copy from your Philips Semiconductors sales office.
- 2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
- 4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 6. Wave soldering is suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

High speed advanced analog DVD signal processor and laser supply

TZA1033HL

14 DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾⁽³⁾	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

15 DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

16 DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

TZA1033HL

NOTES

TZA1033HL

NOTES

TZA1033HL

NOTES

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2003

under patent- or other industrial or intellectual property rights.

SCA75

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license

Printed in The Netherlands

753503/01/pp52

Date of release: 2003 Mar 26

Document order number: 9397 750 10295

Let's make things better.

Philips Semiconductors

