INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4017B MSI

5-stage Johnson counter

Product specification
File under Integrated Circuits, IC04

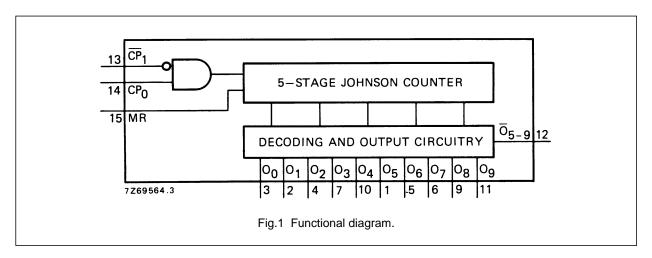
January 1995

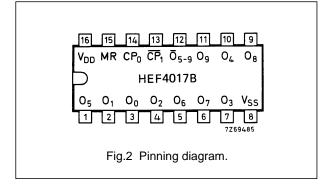
5-stage Johnson counter

HEF4017B MSI

DESCRIPTION

The HEF4017B is a 5-stage Johnson decade counter with ten spike-free decoded active HIGH outputs (O_0 to O_9), an active LOW output from the most significant flip-flop (\overline{O}_{5-9}), active HIGH and active LOW clock inputs (CP_0 , \overline{CP}_1) and an overriding asynchronous master reset input (MR).


The counter is advanced by either a LOW to HIGH transition at $\overline{CP_0}$ while $\overline{CP_1}$ is LOW or a HIGH to LOW transition at $\overline{CP_1}$ while $\overline{CP_0}$ is HIGH (see also function table).


When cascading counters, the \overline{O}_{5-9} output, which is LOW while the counter is in states 5, 6, 7, 8 and 9, can be used to drive the CP₀ input of the next counter.

A HIGH on MR resets the counter to zero $(O_0 = \overline{O}_{5-9} = \text{HIGH}; O_1 \text{ to } O_9 = \text{LOW})$ independent of the clock inputs (CP_0, \overline{CP}_1) .

Automatic code correction of the counter is provided by an internal circuit: following any illegal code the counter returns to a proper counting mode within 11 clock pulses.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

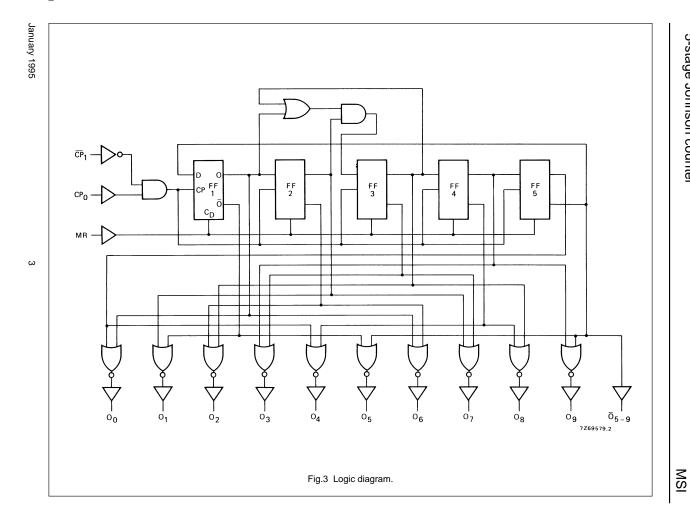
PINNING

CP₀ clock input (LOW to HIGH triggered)
CP₁ clock input (HIGH to LOW triggered)

MR master reset input O_0 to O_9 decoded outputs

O₅₋₉ carry output (active LOW)

FAMILY DATA, I_{DD} LIMITS category MSI


See Family Specifications

HEF4017BP(N): 16-lead DIL; plastic (SOT38-1)
HEF4017BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)
HEF4017BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

Philips Semiconductors

Product specification

Philips Semiconductors Product specification

5-stage Johnson counter

HEF4017B MSI

FUNCTION TABLE

MR	CP ₀	CP₁	OPERATION
Н	Х	Х	$O_0 = \overline{O}_{5-9} = H$; O_1 to $O_9 = L$
L	Н		Counter advances
L		L	Counter advances
L	L	Х	No change
L	X	Н	No change
L	Н		No change
L		L	No change

Notes

- 1. H = HIGH state (the more positive voltage)
- 2. L = LOW state (the less positive voltage)
- 3. X = state is immaterial
- 4. ____ = positive-going transition
- 5. = negative-going transition

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN. T	YP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$CP_0, \overline{CP}_1 \rightarrow O_0 \text{ to } O_9$	5		1	140	280	ns	113 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
	5		1	125	250	ns	98 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
$\overline{CP_0}, \overline{CP}_1 \rightarrow \overline{O}_{5-9}$	5		1	145	290	ns	118 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
	5		1	125	250	ns	98 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
$MR \rightarrow O_1 \text{ to } O_9$	5		,	115	230	ns	88 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			35	70	ns	27 ns + (0,16 ns/pF) C _L
$MR \rightarrow \overline{O}_{5-9}$	5		,	110	220	ns	83 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		45	90	ns	34 ns + (0,23 ns/pF) C _L
	15			35	70	ns	27 ns + (0,16 ns/pF) C _L
$MR \rightarrow O_0$	5		1	130	260	ns	103 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		55	105	ns	44 ns + (0,23 ns/pF) C _L
	15			40	75	ns	32 ns + (0,16 ns/pF) C _L

Philips Semiconductors Product specification

5-stage Johnson counter

HEF4017B MSI

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Output transition							
times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.	
Hold times	5		90	45	ns	
$CP_0 \rightarrow \overline{CP}_1$	10	t _{hold}	40	20	ns	
	15		20	10	ns	
	5		80	40	ns	
$\overline{CP}_1 \to CP_0$	10	t _{hold}	40	20	ns	
	15		30	10	ns	
Minimum clock						
pulse width:	5		80	40	ns	
$CP_0 = LOW;$	10	t _{WCPL} =	40	20	ns	see also waveforms
CP₁ = HIGH	15	WCPH	30	15	ns	Figs 4 and 5
Minimum MR	5		50	25	ns	
pulse width; HIGH	10	t _{WMRH}	30	15	ns	
	15		20	10	ns	
Recovery time	5		60	30	ns	
for MR	10	t _{RMR}	30	15	ns	
	15		20	10	ns	
Maximum clock	5		6	12	MHz	
pulse frequency	10	f _{max}	12	24	MHz	
	15		15	30	MHz	

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	500 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	2200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	6000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load cap. (pF)
			$\sum (f_o C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

5-stage Johnson counter

HEF4017B MSI

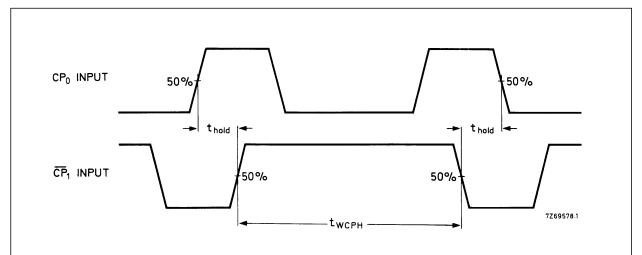
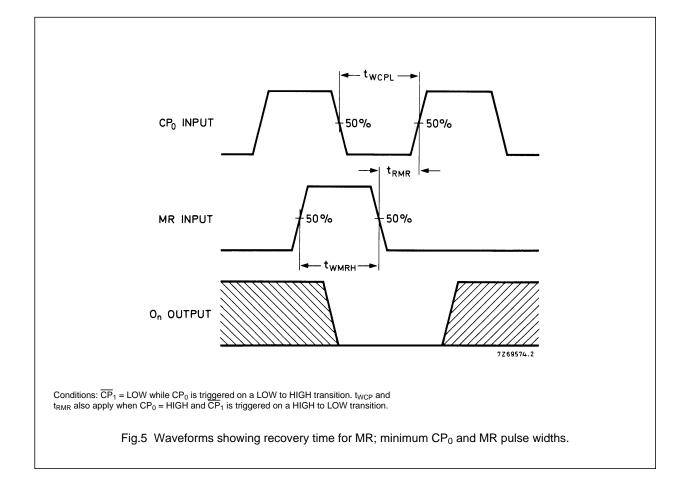
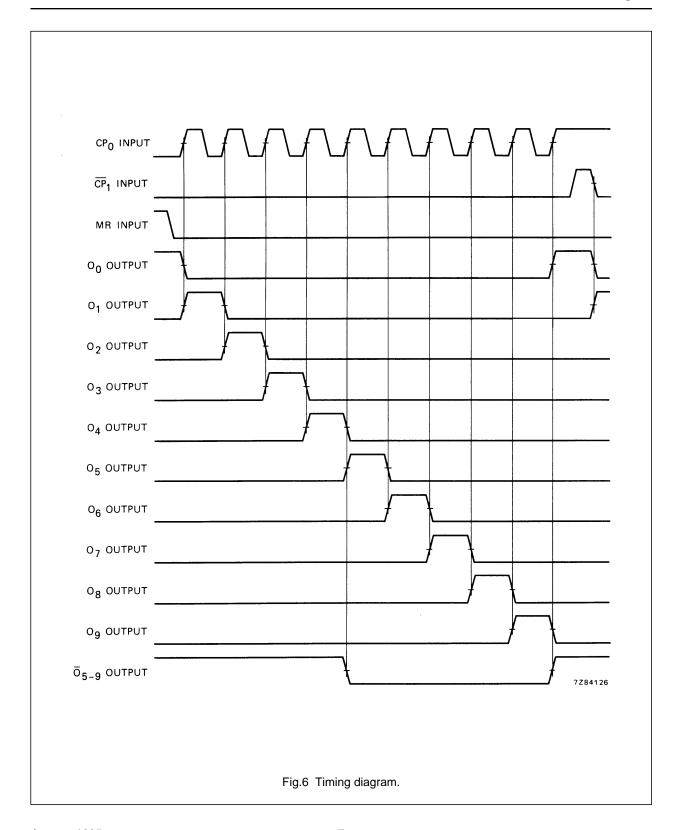




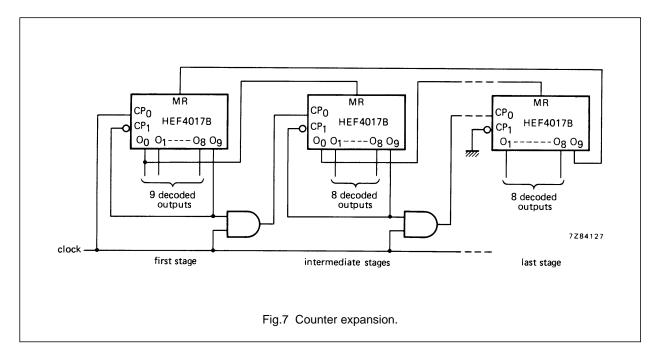
Fig.4 Waveforms showing hold times for CP_0 to \overline{CP}_1 and \overline{CP}_1 to CP_0 . Hold times are shown as positive values, but may be specified as negative values.

5-stage Johnson counter

HEF4017B MSI

Philips Semiconductors Product specification

5-stage Johnson counter


HEF4017B MSI

APPLICATION INFORMATION

Some examples of applications for the HEF4017B are:

- · Decade counter with decimal decoding
- 1 out of n decoding counter (when cascaded)
- · Sequential controller
- Timer.

Figure 7 shows a technique for extending the number of decoded output states for the HEF4017B. Decoded outputs are sequential within each stage and from stage to stage, with no dead time (except propagation delay).

Note

It is essential not to enable the counter on \overline{CP}_1 when CP_0 is HIGH, or on CP_0 when \overline{CP}_1 is LOW, as the this would cause an extra count.