

November 1992 Revised January 1999

74ABT899

9-Bit Latchable Transceiver with Parity Generator/Checker

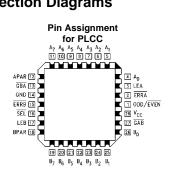
General Description

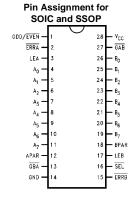
The ABT899 is a 9-bit to 9-bit parity transceiver with transparent latches. The device can operate as a feed-through transceiver or it can generate/check parity from the 8-bit data busses in either direction.

The ABT899 features independent latch enables for the A-to-B direction and the B-to-A direction, a select pin for ODD/EVEN parity, and separate error signal output pins for checking parity.

Features

- Latchable transceiver with output sink of 64 mA
- Option to select generate parity and check or "feed-through" data/parity in directions A-to-B or B-to-A
- Independent latch enables for A-to-B and B-to-A directions
- Select pin for ODD/EVEN parity
- ERRA and ERRB output pins for parity checking


- Ability to simultaneously generate and check parity
- May be used in systems applications in place of the 543 and 280
- May be used in system applications in place of the 657 and 373 (no need to change T/R to check parity)
- Guaranteed output skew
- Guaranteed multiple output switching specifications
- Output switching specified for both 50 pF and 250 pF loads
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Nondestructive hot insertion capability
- Disable time less than enable time to avoid bus contention


Ordering Code:

Order Number	Package Number	Package Description
74ABT899CSC	28-Lead Small Outline Integrated Circuit (SOIC), MS-013, 0.300" Wide Body	
74ABT899CMSA	MSA28	28-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74ABT899CQC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450" Square

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagrams

© 1999 Fairchild Semiconductor Corporation

DS011509.prf

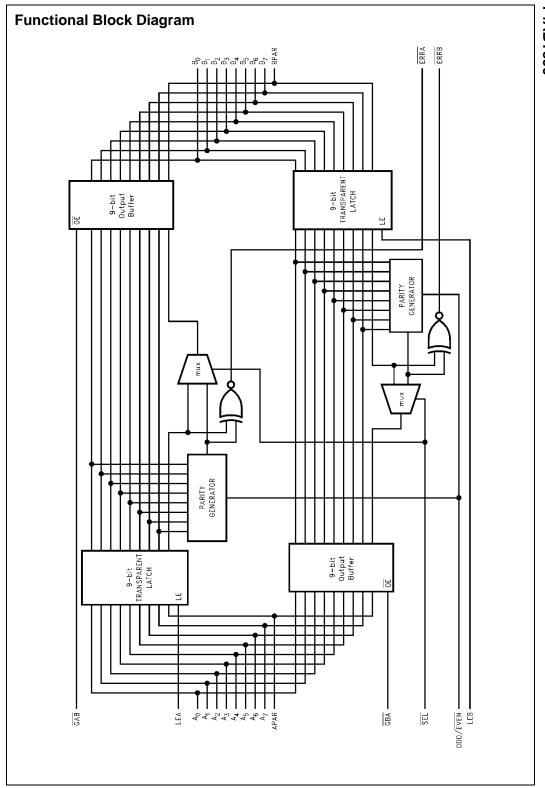
Pin Descriptions

Pin Names	Descriptions
A ₀ -A ₇	A Bus Data Inputs/Data Outputs
B ₀ -B ₇	B Bus Data Inputs/Data Outputs
APAR, BPAR	A and B Bus Parity Inputs/Outputs
ODD/ <u>EVEN</u>	ODD/EVEN Parity Select, Active LOW for EVEN Parity
GBA, GAB	Output Enables for A or B Bus, Active LOW
SEL	Select Pin for Feed-Through or Generate Mode, LOW for Generate Mode
LEA, LEB	Latch Enables for A and B Latches, HIGH for Transparent Mode
ERRA, ERRB	Error Signals for Checking Generated Parity with Parity In, LOW if Error Occurs

Functional Description

The ABT899 has three principal modes of operation which are outlined below. These modes apply to both the A-to-B and B-to-A directions.

- Bus A (B) communicates to Bus B (A), parity is generated and passed on to the B (A) Bus as BPAR (APAR). If LEB (LEA) is HIGH and the Mode Select (SEL) is LOW, the parity generated from B[0:7] (A[0:7]) can be checked and monitored by ERRB (ERRA).
- Bus A (B) communicates to Bus B (A) in a feed-through mode if SEL is HIGH. Parity is still generated and checked as ERRA and ERRB in the feed-through mode (can be used as an interrupt to signal a data/parity bit error to the CPU).
- Independent Latch Enables (LEA and LEB) allow other permutations of generating/checking (see Function Table below).


Function Table

Inputs			3		Operation
GAB GBA SEL LEA LEB		LEB			
Н	Н	Χ	Х	Χ	Busses A and B are 3-STATE.
Н	L	L	L	Н	Generates parity from B[0:7] based on O/Ē (Note 1). Generated parity → APAR. Generated parity checked against BPAR and output as ĒRRB.
Н	L	L	Н	Н	Generates parity from B[0:7] based on O/\overline{E} . Generated parity \to APAR. Generated parity checked against BPAR and output as \overline{ERRB} . Generated parity also fed back through the A latch for generate/check as \overline{ERRA} .
Н	L	L	Х	L	Generates parity from B latch data based on O/Ē. Generated parity → APAR. Generated parity checked against latched BPAR and output as ĒRRB.
Н	L	Н	Х	Н	BPAR/B[0:7] → APAR/A0:7] Feed-through mode. Generated parity checked against BPAR and output as ERRB.
Н	L	Н	Н	Н	$BPAR/B[0:7] \to APAR/A[0:7]$
					Feed-through mode. Generated parity checked against BPAR and output as ERRB. Generated parity also fed back through the A latch for generate/check as ERRA.
L	Н	L	Н	L	Generates parity for A[0:7] based on O/\overline{E} . Generated parity \to BPAR. Generated parity checked against APAR and output as $\overline{\text{ERRA}}$.
L	Н	L	Н	Н	Generates parity from A[0:7] based on O/ $\overline{\mathbb{E}}$. Generated parity \to BPAR. Generated parity checked against APAR and output as \overline{ERRA} . Generated parity also fed back through the B latch for generate/check as \overline{ERRB} .
L	Н	L	L	Х	Generates parity from A latch data based on O/Ē. Generated parity → BPAR. Generated parity checked against latched APAR and output as ĒRRĀ.
L	Н	Н	Н	L	$APAR/A[0:7] \rightarrow BPAR/B[0:7]$
					Feed-through mode. Generated parity checked against APAR and output as ERRA.
L	Н	Н	Н	Н	$APAR/A[0:7] \to BPAR/B[0:7]$
					Feed-through mode. Generated parity checked against APAR and output as ERRA. Generated parity also fed back through the B latch for generate/check as ERRB.

H = HIGH Voltage Level

L = LOW Voltage Level

Note 1: $O/\overline{E} = ODD/\overline{EVEN}$

Absolute Maximum Ratings(Note 2)

Storage Temperature -65°C to +150°C -55°C to +125°C Ambient Temperature under Bias

Junction Temperature under Bias

-55°C to +150°C Plastic

V_{CC} Pin Potential to

Ground Pin -0.5V to +7.0V Input Voltage (Note 3) -0.5V to +7.0V -30 mA to +5.0 mA

Input Current (Note 3) Voltage Applied to Any Output

in the Disable or Power-

Off State -0.5V to +5.5V in the HIGH State $-0.5 \text{V to V}_{\text{CC}}$

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA) DC Latchup Source Current -500 mA Over Voltage Latchup (I/O) 10V

Recommended Operating Conditions

Free Air Ambient Temperature -40°C to +85°C

+4.5V to +5.5V Supply Voltage

Minimum Input Edge Rate ($\Delta V/\Delta t$)

Data Input 50 mV/ns Enable Input 20 mV/ns

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 3: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA (Non I/O Pins)
V _{OH}	Output HIGH	2.5			V	Min	$I_{OH} = -3 \text{ mA}, (A_n, B_n, APAR, BPAR)$
	Voltage	2.0					$I_{OH} = -32 \text{ mA}, (A_n, B_n, APAR, BPAR)$
V _{OL}	Output LOW Voltage			0.55	V	Min	$I_{OL} = 64 \text{ mA}, (A_n, B_n, APAR, BPAR)$
V _{ID}	Input Leakage Test	4.75			V	0.0	I _{ID} = 1.9 μA, (Non-I/O Pins)
							All Other Pins Grounded
I _{IH}	Input HIGH Current			5	μΑ	Max	V _{IN} = 2.7V (Non-I/O Pins) (Note 4)
							V _{IN} = V _{CC} (Non-I/O Pins)
I _{BVI}	Input HIGH Current			7	μΑ	Max	V _{IN} = 7.0V (Non-I/O Pins)
	Breakdown Test						
I _{BVIT}	Input HIGH Current			100	μΑ	Max	$V_{IN} = 5.5V (A_n, B_n, APAR, BPAR)$
	Breakdown Test (I/O)						
I _{IL}	Input LOW Current			-5	μΑ	Max	V _{IN} = 0.5V (Non-I/O Pins) (Note 4)
							V _{IN} = 0.0V (Non-I/O Pins)
I _{IH} + I _{OZH}	Output Leakage Current			50	μΑ	0V-5.5V	$V_{OUT} = 2.7V (A_n, B_n);$
							$\overline{\text{GAB}}$ and $\overline{\text{GBA}} = 2.0\text{V}$
I _{IL} + I _{OZL}	Output Leakage Current			-50	μΑ	0V-5.5V	$V_{OUT} = 0.5V (A_n, B_n);$
							GAB and GBA = 2.0V
Ios	Output Short-Circuit Current	-100		-275	mA	Max	$V_{OUT} = 0V (A_n, B_n, APAR, BPAR)$
I _{CEX}	Output HIGH Leakage Current			50	μΑ	Max	$V_{OUT} = V_{CC} (A_n, B_n, APAR, BPAR)$
I _{ZZ}	Bus Drainage Test			100	μΑ	0.0V	$V_{OUT} = 5.5V (A_n, B_n, APAR, BPAR);$
							All Others GND
I _{CCH}	Power Supply Current			250	μΑ	Max	All Outputs HIGH
I _{CCL}	Power Supply Current			34	mA	Max	All Outputs LOW, ERRA/B = HIGH (Note 5)
I _{CCZ}	Power Supply Current			250	μΑ	Max	Outputs 3-STATE All Others at V _{CC} or GND
I _{CCT}	Additional I _{CC} /Input			2.5	mA	Max	V _I = V _{CC} - 2.1V All Others at V _{CC} or GND
I _{CCD}	Dynamic I _{CC} : No Load			0.4	mA/MHz	Max	Outputs Open
	(Note 4)						\overline{GAB} or $\overline{GBA} = GND$, LE = HIGH
							Non-I/O = GND or V _{CC}
		'					One bit toggling, 50% duty cycle
Note 4: G	juaranteed but not tested		1				

Note 4: Guaranteed, but not tested.

Note 5: Add 3.75 mA for each $\overline{\text{ERR}}$ LOW.

DC Electrical Characteristics

(PLCC package)

Symbol	Parameter	Min	Тур	Max	Units	V _{cc}	Conditions $\mathbf{C_L} = 50 \ \mathbf{pF}, \ \mathbf{R_L} = 500 \boldsymbol{\Omega}$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		0.8	1.1	V	5.0	T _A = 25°C (Note 6)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-1.3	-0.8		V	5.0	T _A = 25°C (Note 6)
V _{OHV}	Minimum HIGH Level Dynamic Output Voltage	2.5	3.0		V	5.0	T _A = 25°C (Note 8)
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	2.2	1.8		V	5.0	T _A = 25°C (Note 7)
V _{ILD}	Maximum LOW Level Dynamic Input Voltage		0.8	0.5	V	5.0	T _A = 25°C (Note 7)

Note 6: Max number of outputs defined as (n). n – 1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested.

 $\textbf{Note 8:} \ \text{Max number of outputs defined as (n).} \ n-1 \ \text{data inputs are driven 0V to 3V.} \ \text{One output HIGH.} \ \text{Guaranteed, but not tested.}$

AC Electrical Characteristics

(SOIC and PLCC Package)

			$T_A = +25$ °C		T _A = -40°		
0	B		$\textbf{V}_{\textbf{CC}} = +\textbf{5.0V}$		$V_{CC}=4$.5V-5.5V	Units
Symbol	Parameter	$C_L = 50 \text{ pF}$			C _L =	Units	
		Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	1.5	3.0	4.8	1.5	4.8	ns
t _{PHL}	A _n , to B _n	1.5	3.5	4.8	1.5	4.8	
t _{PLH}	Propagation Delay	2.5	5.9	9.2	2.5	9.2	ns
t _{PHL}	A _n , B _n to BPAR, APAR	2.5	5.8	9.2	2.5	9.2	
t _{PLH}	Propagation Delay	2.5	5.4	8.5	2.5	8.5	ns
t _{PHL}	A _n , B _n to ERRA, ERRB	2.5	5.4	8.5	2.5	8.5	
t _{PLH}	Propagation Delay	1.5	3.7	6.0	1.5	6.0	ns
t _{PHL}	APAR, BPAR to ERRA, ERRB	1.5	3.7	6.0	1.5	6.0	
t _{PLH}	Propagation Delay	2.0	4.4	6.9	2.0	6.9	ns
t _{PHL}	ODD/EVEN to APAR, BPAR	2.0	4.4	6.9	2.0	6.9	
t _{PLH}	Propagation Delay	1.8	4.0	6.0	1.8	6.0	ns
t _{PHL}	ODD/EVEN to ERRA, ERRB	1.8	4.0	6.0	1.8	6.0	
t _{PLH}	Propagation Delay	1.5	3.8	6.0	1.5	6.0	ns
t _{PHL}	SEL to APAR, BPAR	1.5	3.8	6.0	1.5	6.0	
t _{PLH}	Propagation Delay	1.5	3.2	4.6	1.5	4.6	ns
t _{PHL}	LEA, LEB to B _n , A _n	1.5	3.2	4.6	1.5	4.6	
t _{PLH}	Propagation Delay	2.5	5.9	8.8	2.5	8.8	
t _{PHL}	LEA, LEB to BPAR, APAR	2.5	5.7	8.8	2.5	8.8	ns
	Generate Mode						
t _{PLH}	Propagation Delay	1.5	3.6	5.1	1.5	5.1	ns
t _{PHL}	LEA, LEB to BPAR, APAR,	1.5	3.6	5.1	1.5	5.1	
	Feed Thru Mode						
t _{PLH}	Propagation Delay	1.6	5.4	8.4	1.6	8.4	ns
t _{PHL}	LEA, LEB to ERRA, ERRB	1.6	5.4	8.4	1.6	8.4	
t _{PZH}	Output Enable Time	1.5	3.6	6.0	1.5	6.0	ns
t_{PZL}	GBA or GAB to A _n ,	1.5	3.4	6.0	1.5	6.0	
	APAR or B _n , BPAR						
t _{PHZ}	Output Disable Time	1.0	4.0	6.0	1.0	6.0	ns
t_{PLZ}	GBA or GAB to A _n ,	1.0	3.3	6.0	1.0	6.0	
	APAR or B _n , BPAR						
t _{PLH} t _{PHL}	Propagation Delay	1.5	3.3	5.4	1.5	5.4	ns
	APAR to BPAR, BPAR to APAR	1.5	3.8	5.4	1.5	5.4	

Note 7: Max number of data inputs (n) switching. n – 1 inputs switching 0V to 3V. Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}). Guaranteed, but not tested.

AC Electrical Characteristics

(SSOP Package)

(SSOF Fackage)		T _A = +25°C		T _A = -40°		
_		V _{CC} = +5.0V		V _{CC} = 4	.5V-5.5V	
Parameter		C _L = 50 pF		C _L =	Units	
	Min	Тур	Max	Min	Max	
Propagation Delay	1.5	3.0	5.3	1.5	5.3	ns
A_n , to B_n	1.5	3.5	5.3	1.5	5.3	
Propagation Delay	2.5	5.9	9.9	2.5	9.9	ns
A _n , B _n to BPAR, APAR	2.5	5.8	9.9	2.5	9.9	
Propagation Delay	2.5	5.4	9.4	2.5	9.4	ns
A _n , B _n to ERRA, ERRB	2.5	5.4	9.4	2.5	9.4	
Propagation Delay	1.5	3.7	6.5	1.5	6.5	ns
APAR, BPAR to ERRA, ERRB	1.5	3.7	6.5	1.5	6.5	
Propagation Delay	2.0	4.4	7.4	2.0	7.4	ns
ODD/EVEN to APAR, BPAR	2.0	4.4	7.4	2.0	7.4	
Propagation Delay	1.8	4.0	6.5	1.8	6.5	ns
ODD/EVEN to ERRA, ERRB	1.8	4.0	6.5	1.8	6.5	
Propagation Delay	1.5	3.8	6.5	1.5	6.5	ns
SEL to APAR, BPAR	1.5	3.8	6.5	1.5	6.5	
Propagation Delay	1.5	3.2	5.1	1.5	5.1	ns
LEA, LEB to B _n , A _n	1.5	3.2	5.1	1.5	5.1	
Propagation Delay	2.5	5.9	9.2	2.5	9.2	
LEA, LEB to BPAR, APAR	2.5	5.7	9.2	2.5	9.2	ns
Generate Mode						
Propagation Delay	1.5	3.6	5.6	1.5	5.6	ns
LEA, LEB to BPAR, APAR,	1.5	3.6	5.6	1.5	5.6	
Feed Thru Mode						
Propagation Delay	1.6	5.4	8.9	1.6	8.9	ns
LEA, LEB to ERRA, ERRB	1.6	5.4	8.9	1.6	8.9	
Output Enable Time	1.5	3.6	6.5	1.5	6.5	ns
GBA or GAB to A _n ,	1.5	3.4	6.5	1.5	6.5	
APAR or B _n , BPAR						
Output Disable Time	1.0	4.0	6.5	1.0	6.5	ns
GBA or GAB to A _n ,	1.0	3.3	6.5	1.0	6.5	
APAR or B _n , BPAR						
Propagation Delay	1.5	3.3	5.9	1.5	5.9	ns
APAR to BPAR, BPAR to APAR	1.5	3.8	5.9	1.5	5.9	
	An, to Bn Propagation Delay An, Bn to BPAR, APAR Propagation Delay An, Bn to ERRA, ERRB Propagation Delay APAR, BPAR to ERRA, ERRB Propagation Delay APAR, BPAR to ERRA, ERRB Propagation Delay ODD/EVEN to APAR, BPAR Propagation Delay SEL to APAR, BPAR Propagation Delay SEL to APAR, BPAR Propagation Delay LEA, LEB to Bn, An Propagation Delay LEA, LEB to BPAR, APAR Generate Mode Propagation Delay LEA, LEB to BPAR, APAR Generate Mode Propagation Delay LEA, LEB to BPAR, APAR Generate Mode Propagation Delay LEA, LEB to BRAR, APAR Feed Thru Mode Propagation Delay LEA, LEB to ERRA, ERRB Output Enable Time GBA or GAB to An, APAR or Bn, BPAR Output Disable Time GBA or GAB to An, APAR or Bn, BPAR Propagation Delay Propagation Delay Propagation Delay Propagation Delay Propagation Delay Propagation Delay	Min Propagation Delay 1.5 1.5	Parameter V _{CC} = +5.0V V _{CC} = 50 pF Min Typ Propagation Delay 1.5 3.0 A _n , to B _n 1.5 3.5 Propagation Delay 2.5 5.9 A _n , B _n to BPAR, APAR 2.5 5.8 Propagation Delay 2.5 5.4 A _n , B _n to ERRA, ERRB 2.5 5.4 Propagation Delay 1.5 3.7 APAR, BPAR to ERRA, ERRB 1.5 3.7 Propagation Delay 2.0 4.4 ODD/EVEN to APAR, BPAR 2.0 4.4 Propagation Delay 1.8 4.0 ODD/EVEN to ERRA, ERRB 1.8 4.0 Propagation Delay 1.5 3.8 SEL to APAR, BPAR 1.5 3.8 Propagation Delay 1.5 3.8 Propagation Delay 1.5 3.2 LEA, LEB to BPAR, APAR 2.5 5.7 Generate Mode 1.5 3.6 Propagation Delay 1.5 <t< td=""><td> Parameter VCC = +5.0V CL = 50 pF </td><td>V_{CC} = +5.0V V_{CC} = 45.0V V_{CC} = 45.0V V_{CC} = 45.0V C_C = 50 pF C_{CL} = 50 pF Min Min Typ Max Min Propagation Delay 1.5 3.0 5.3 1.5 3.0 1.5 3.0 1.5 3.5 1.5 1.5 3.7 5.3 1.5 1.5 3.7 6.5 1.5 3.7 6.5 1.5 3.7 6.5 1.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.4 7.4 2.0 4.4 7.4 4.2.0 4.0 6.5 1.8 4.0 4.0 4.0 6.5<</td><td> Parameter V_{CC} = +5.0V</td></t<>	Parameter VCC = +5.0V CL = 50 pF	V _{CC} = +5.0V V _{CC} = 45.0V V _{CC} = 45.0V V _{CC} = 45.0V C _C = 50 pF C _{CL} = 50 pF Min Min Typ Max Min Propagation Delay 1.5 3.0 5.3 1.5 3.0 1.5 3.0 1.5 3.5 1.5 1.5 3.7 5.3 1.5 1.5 3.7 6.5 1.5 3.7 6.5 1.5 3.7 6.5 1.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.8 4.2.5 4.4 7.4 2.0 4.4 7.4 4.2.0 4.0 6.5 1.8 4.0 4.0 4.0 6.5<	Parameter V _{CC} = +5.0V

AC Operating Requirements

Symbol	Parameter	V _{CC} =	+25°C +5.0V 50 pF	$T_A = -40^{\circ}$ $V_{CC} = 4$ $C_L =$	Units	
		Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW An,	1.5		1.5		ns
t _S (L)	APAR to LEA or B _n , BPAR to LEB	1.5		1.5		
t _H (H)	Hold Time, HIGH or LOW A _n ,	1.0		1.0		ns
t _H (L)	APAR to LEA or B _n , BPAR to LEB	1.0		1.0		
t _W (H)	Pulse Width, HIGH LEA or LEB	3.0		3.0		ns

Extended AC Electrical Characteristics

(SOIC and PLCC Package)

TFECC Fackage)		T _A = +25°C			C to +85°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		
		V _{CC} = +5.0V	,	V _{CC} = 4	.5V-5.5V	V _{CC} = 4	.5V-5.5V	
Devenuetes		C _L = 50 pF			C _L = 250 pF		C _L = 250 pF	
Parameter	9 Oı			1 Output	Switching	9 Outputs	Switching	Units
		(Note 9)	-	(Not	ie 10)	(Not	e 11)	Ī
	Min	Тур	Max	Min	Max	Min	Max	1
Max Toggle Frequency		100						MHz
Propagation Delay	1.5		6.2	2.0	7.2	2.5	9.5	ns
A _n to B _n	1.5		6.2	2.0	7.2	2.5	9.5	115
Propagation Delay	1.5		6.8	2.0	8.0	2.5	10.0	ns
APAR to BPAR	1.5		6.8	2.0	8.0	2.0	10.0	ı
Propagation Delay	2.5		10.0	3.0	12.5	3.5	13.5	ns
A _n , B _n to BPAR, APAR	2.5		10.0	3.0	12.5	3.5	13.5	1
Propagation Delay		(Note 13)		3.0	12.0	(Not	e 13)	ns
A_n , B_n to \overline{ERRA} , \overline{ERRB}				3.0	12.0			i
Propagation Delay		(Note 13)		2.0	9.0	(Not	e 13)	ns
APAR, BPAR to ERRA, ERRB				2.0	9.0			i
Propagation Delay		(Note 13)		2.5	9.9	(Note 13)		ns
ODD/EVEN to APAR, BPAR				2.5	9.9			i
Propagation Delay		(Note 13)	-	2.0	8.8	(Not	e 13)	ns
ODD/EVEN to ERRA, ERRB				2.0	8.8			i
Propagation Delay		(Note 13)		2.0	9.5	(Not	e 13)	ns
SEL to APAR, BPAR				2.0	9.5			Ī
Propagation Delay	1.5		5.7	2.0	7.9	2.5	10.0	ns
LEA, LEB to B _n , A _n	1.5		5.7	2.0	7.9	2.5	10.0	i
Propagation Delay	1.5		9.5	2.0	12.0	2.5	13.0	ns
LEA, LEB to BPAR, APAR	1.5		9.5	2.0	12.0	2.5	13.0	ı
Propagation Delay		(Note 13)		2.0	11.5	(Not	e 13)	ns
LEA, LEB to ERRA, ERRB				2.0	11.5			ı
Output enable time	1.5		7.0	2.0	8.5	2.5	10.5	
GBA or GAB to A _n ,	1.5		7.0	2.0	8.5	2.5	10.5	ns
APAR or B _n , BPAR								ı
Output disable time	1.0		6.5					
GBA or GAB to A _n ,	1.0		6.5	(Not	e 12)	(Not	e 12)	ns
111								ı
	Propagation Delay A _n to B _n Propagation Delay APAR to BPAR Propagation Delay A _n , B _n to BPAR, APAR Propagation Delay A _n , B _n to ERRA, ERRB Propagation Delay APAR, BPAR to ERRA, ERRB Propagation Delay APAR, BPAR to ERRA, ERRB Propagation Delay APAR, BPAR to ERRA, ERRB Propagation Delay ODD/EVEN to APAR, BPAR Propagation Delay SEL to APAR, BPAR Propagation Delay SEL to APAR, BPAR Propagation Delay LEA, LEB to B _n , A _n Propagation Delay LEA, LEB to BPAR, APAR Propagation Delay LEA, LEB to BPAR, APAR Propagation Delay LEA, LEB to ERRA, ERRB Output enable time GBA or GAB to A _n , APAR or B _n , BPAR Output disable time	Parameter Min Max Toggle Frequency Propagation Delay 1.5 An to Bn 1.5 Propagation Delay 2.5 An, Bn to BPAR, APAR 2.5 Propagation Delay 2.5 An, Bn to ERRA, ERRB Propagation Delay APAR, BPAR to ERRA, ERRB Propagation Delay ODD/EVEN to APAR, BPAR Propagation Delay ODD/EVEN to ERRA, ERRB Propagation Delay SEL to APAR, BPAR 1.5 Propagation Delay 1.5 LEA, LEB to Bn, An 1.5 Propagation Delay 1.5 LEA, LEB to BPAR, APAR 1.5 Propagation Delay 1.5 LEA, LEB to BPAR, APAR 1.5 Propagation Delay 1.5 LEA, LEB to ERRA, ERRB 1.5 Output enable time 1.5 GBA or GAB to An, 1.5 APAR or Bn, BPAR 1.0 Output disable time 1.0 GBA or GAB to An, 1.0	Parameter V _{CC} = +5.0 V	Parameter V _{CC} = +5.0V C _L = 50 pF 9 Outputs Switching (Note 9) Min Typ Max Max Toggle Frequency 100 100	Parameter	Parameter	Parameter	Parameter

Note 9: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 10: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.

Note 11: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load

Note 12: The 3-STATE delay time is dominated by the RC network (500Ω , 250 pF) on the output and has been excluded from the datasheet.

Note 13: Not applicable for multiple output switching.

Extended AC Electrical Characteristics

(SSOP Package)

(SSOF FA			T _A = +25°C		T _A = -40°	C to +85°C	T _A = -40°	C to +85°C	
			$V_{CC} = +5.0V$		$V_{CC}=4$.5V-5.5V	V _{CC} = 4	.5V-5.5V	
Symbol	Parameter		C _L = 50 pF			C _L = 250 pF		C _L = 250 pF	
Зупівої	Farameter	9 0	utputs Switc	hing	1 Output	1 Output Switching		9 Outputs Switching	
			(Note 14)			te 15)	(Not	e 16)	
		Min	Тур	Max	Min	Max	Min	Max	
TOGGLE	Max Toggle Frequency		100						MHz
t _{PLH}	Propagation Delay	1.5		6.7	2.0	7.7	2.5	10.1	ns
t _{PHL}	A _n to B _n	1.5		6.7	2.0	7.7	2.5	10.1	115
t _{PLH}	Propagation Delay	1.5		7.3	2.0	8.5	2.5	10.6	ns
t _{PHL}	APAR to BPAR	1.5		7.3	2.0	8.5	2.0	10.6	
t _{PLH}	Propagation Delay	2.5		10.7	3.0	13.2	3.5	14.3	ns
t _{PHL}	A _n , B _n to BPAR, APAR	2.5		10.7	3.0	13.2	3.5	14.3	
t _{PLH}	Propagation Delay		(Note 18)		3.0	12.9	(Not	e 18)	ns
t _{PHL}	A _n , B _n to ERRA, ERRB				3.0	12.9			
PLH	Propagation Delay		(Note 18)		2.0	9.5	(Not	e 18)	ns
PHL	APAR, BPAR to ERRA, ERRB				2.0	9.5			
PLH	Propagation Delay		(Note 18)		2.5	10.4	(Note 18)		ns
PHL	ODD/EVEN to APAR, BPAR				2.5	10.4			
PLH	Propagation Delay		(Note 18)		2.0	9.3	(Not	e 18)	ns
PHL	ODD/EVEN to ERRA, ERRB				2.0	9.3			
t _{PLH}	Propagation Delay		(Note 18)		2.0	10.0	(Not	e 18)	ns
t _{PHL}	SEL to APAR, BPAR				2.0	10.0			
PLH	Propagation Delay	1.5		6.2	2.0	8.4	2.5	10.6	ns
PHL	LEA, LEB to B _n , A _n	1.5		6.2	2.0	8.4	2.5	10.6	
PLH	Propagation Delay	1.5		10.0	2.0	12.5	2.5	13.6	ns
PHL	LEA, LEB to BPAR, APAR	1.5		10.0	2.0	12.5	2.5	13.6	
PLH	Propagation Delay		(Note 18)		2.0	12.0	(Not	e 18)	ns
PHL	LEA, LEB to ERRA, ERRB				2.0	12.0			
PZH	Output enable time	1.5		7.5	2.0	9.0	2.5	11.1	
PZL	GBA or GAB to A _n ,	1.5		7.5	2.0	9.0	2.5	11.1	ns
	APAR or B _n , BPAR								
PHZ	Output disable time	1.0		7.0	<u> </u>				
PLZ	GBA or GAB to An,	1.0		7.0	(Not	te 17)	(Not	e 17)	ns
	APAR or B _n , BPAR								

Note 14: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 15: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.

Note 16: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load

Note 17: The 3-STATE delay time is dominated by the RC network (500 Ω , 250 pF) on the output and has been excluded from the datasheet.

Note 18: Not applicable for multiple output switching.

Skew

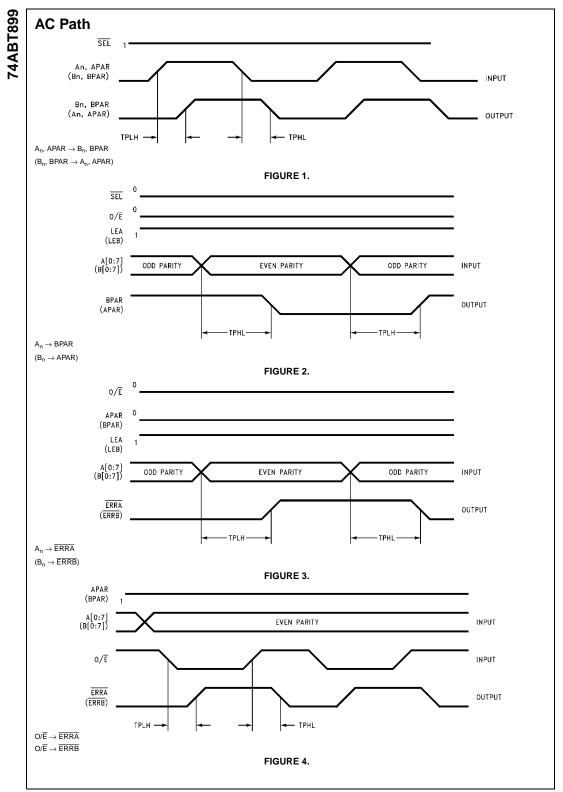
(PLCC package) (Note 2)

Symbol	Parameter	T _A = -40°C to +85°C V _{CC} = 4.5V-5.5V C _L = 50 pF 9 Outputs Switching (Note 19) Max	$T_A = -40$ °C to +85 °C $V_{CC} = 4.5V - 5.5V$ $C_L = 250$ pF 9 Outputs Switching (Note 20)	Units
t _{OSHL} (Note 21)	Pin to Pin Skew HL Transitions	1.0	2.0	ns
t _{OSLH} (Note 21)	Pin to Pin Skew LH Transitions	1.1	2.1	ns
t _{PS} (Note 22)	Duty Cycle LH–HL Skew	2.0	3.5	ns
t _{OST} (Note 21)	Pin to Pin Skew LH/HL Transitions	2.0	3.5	ns
t _{PV} (Note 23)	Device to Device Skew LH/HL Transitions	3.0	4.0	ns

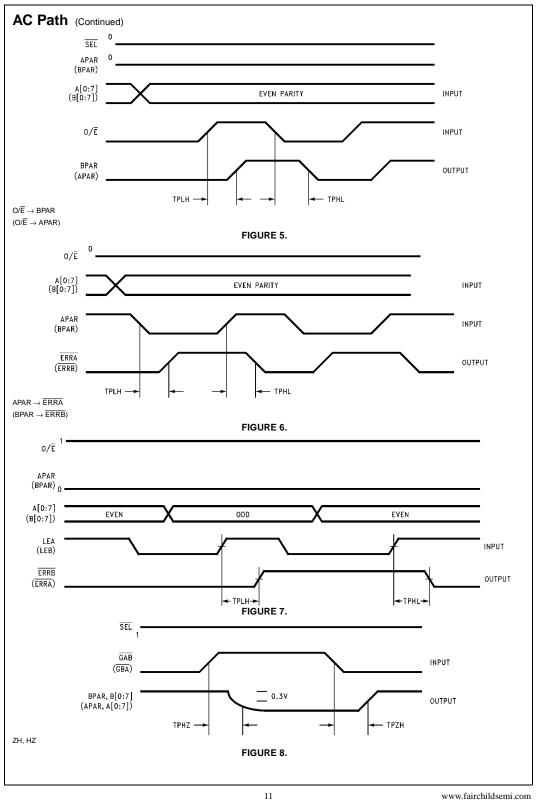
Note 19: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

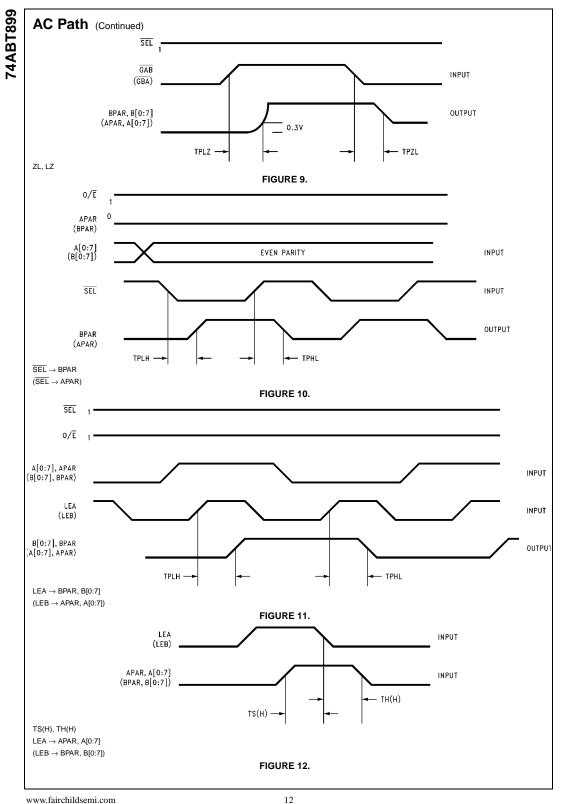
Note 20: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

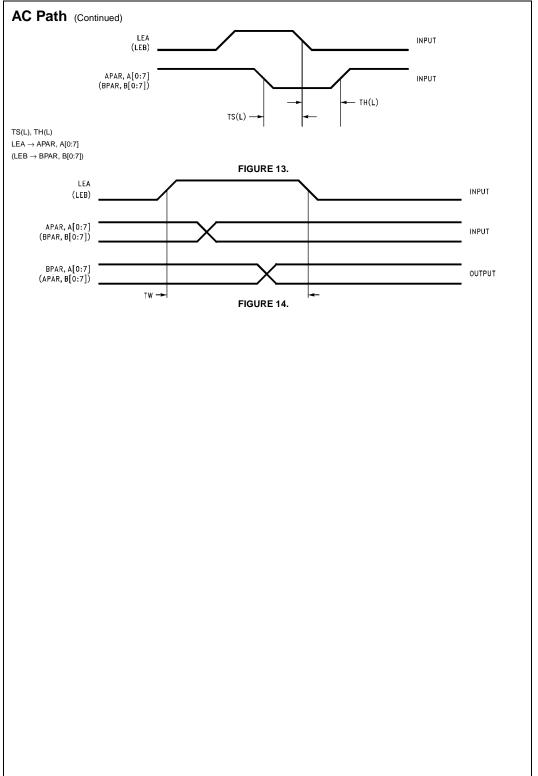
Note 21: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH to LOW (t_{OSHL}), LOW to HIGH (t_{OSLH}), or any combination switching LOW to HIGH and/or HIGH to LOW (t_{OST}). This specification is guaranteed but not tested. Skew applies to propagation delays individually; i.e., A_n to B_n separate from LEA to A_n.

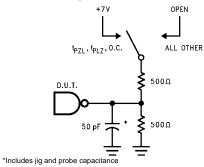

Note 22: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested.

Note 23: Propagation delay variation for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested.


Capacitance


Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Pin Capacitance	5.0	pF	$V_{CC} = 0V$
C _{I/O} (Note 24)	Output Capacitance	11.0	pF	V _{CC} = 5.0V


Note 24: $C_{I/O}$ is measured at frequency, f = 1 MHz, per MIL-STD-883B, Method 3012.


10

AC Loading

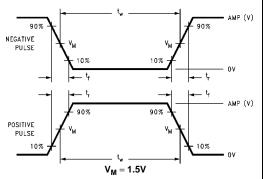


FIGURE 15. Standard AC Test Load

FIGURE 16.

Input Pulse Requirements

Amplitude	Rep. Rate	t _W	t _r	t _f
3.0V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 17. Test Input Signal Requirements

AC Waveforms

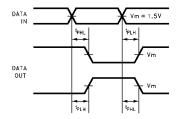


FIGURE 18. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

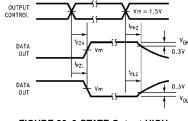


FIGURE 20. 3-STATE Output HIGH and LOW Enable and Disable Times

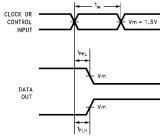


FIGURE 19. Propagation Delay, Pulse Width Waveforms

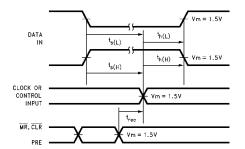
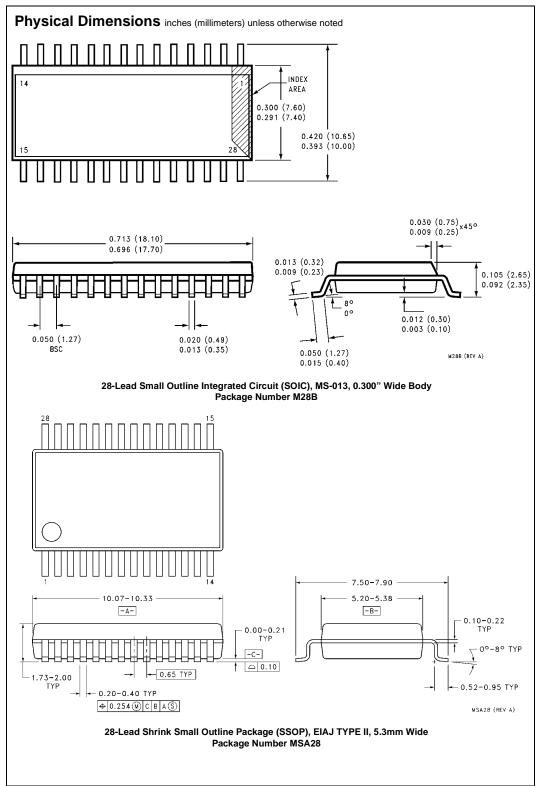
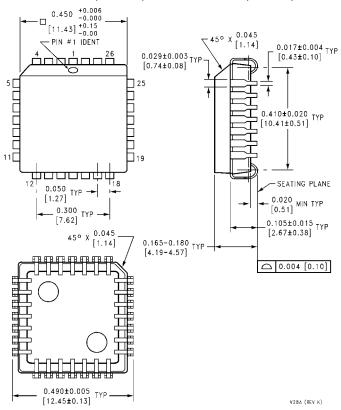




FIGURE 21. Setup Time, Hold Time and Recovery Time Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450" Square Package Number V28A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.