# LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver 

## General Description

The MAX9322 low-skew 1:15 differential clock driver reproduces or divides one of two differential input clocks at 15 differential outputs. An input multiplexer selects from one of two input clocks with input switching frequency in excess of 1.0 GHz . The 15 outputs are arranged in four banks with 2, 3, 4, and 6 outputs, respectively. Each output bank is individually programmable to provide a divide-by-1 or divide-by-2 frequency function.
The MAX9322 operates in LVPECL systems with a +2.375 V to +3.8 V supply or in LVECL systems with a -2.375 V to -3.8 V supply. $\mathrm{A} \mathrm{V}_{\mathrm{BB}}$ reference output provides compatibility with single-ended clock input signals and a master reset input provides a simultaneous reset on all outputs.
The MAX9322 is available in 52-pin TQFP and 68-pin QFN packages and is specified for operation over $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. For $1: 10$ clock drivers, refer to the MAX9311/MAX9313 data sheet. For 1:5 clock drivers, refer to the MAX9316 data sheet.
$\qquad$
Precision Clock Distribution
Low-Jitter Data Repeaters
Central-Office Backplane Clock Distribution
DSLAM Backplane
Base Stations
ATE

Typical Operating Circuit


- 1.2ps (RMS) Maximum Random Jitter
- 300mV Differential Output at 1.0 GHz
- 900ps Propagation Delay
- Selectable Divide-by-1 or Divide-by-2 Frequency Outputs
- Multiplexed 2:1 Input Function
- LVECL Operation from VEE $=-2.375 \mathrm{~V}$ to -3.8 V
- LVPECL Operation from VCC $=+2.375 \mathrm{~V}$ to +3.8 V
- ESD Protection: > 2kV Human Body Model

Ordering Information

| PART | TEMP RANGE | PIN- <br> PACKAGE |
| :--- | :--- | :--- |
| MAX9322ECY | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 52 TQFP |
| MAX9322ETK* | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 68 QFN |

*Future product-contact factory for availability.
Pin Configurations


Pin Configurations continued at end of data sheet.

## LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver

## ABSOLUTE MAXIMUM RATINGS




Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC ELECTRICAL CHARACTERISTICS

 the lower of $\left(\mathrm{V}_{C C}-\mathrm{V}_{\mathrm{EE}}\right)$ and 3 V . Typical values are at $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IHD }}=\mathrm{V}_{\text {CC }}-1 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$.) (Notes 1-4)

| PARAMETER | SYMBOL | CONDITIONS | $-40^{\circ} \mathrm{C}$ |  |  | $+25^{\circ} \mathrm{C}$ |  |  | $+85^{\circ} \mathrm{C}$ |  |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP | MAX | MIN | TYP | MAX | MIN | TYP | MAX |  |
| SINGLE-ENDED INPUT (MR, FSEL_, CLK_SEL) |  |  |  |  |  |  |  |  |  |  |  |  |
| Input High Voltage | $\mathrm{V}_{\mathrm{IH} 1}$ | Figure 1 | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.155 \end{aligned}$ |  | $\begin{aligned} & \text { VCc - } \\ & 0.88 \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{C C}- \\ & 1.155 \end{aligned}$ |  | $\begin{aligned} & V_{C C}- \\ & 0.88 \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.155 \end{aligned}$ |  | $\begin{aligned} & V_{C C}- \\ & 0.88 \end{aligned}$ | V |
| Input Low Voltage | VIL1 | Figure 1 | $\begin{gathered} V_{C C}- \\ 1.81 \end{gathered}$ |  | $\mathrm{V}_{\mathrm{CC}}-$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.81 \end{gathered}$ |  | $\begin{aligned} & V_{C C}- \\ & \hline 150 \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.81 \end{gathered}$ |  | $\begin{aligned} & V_{C C}- \\ & 1.505 \end{aligned}$ | V |
| Input Current | lin1 | MR, FSEL_, CLK_SEL $=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$ | -15 |  | +150 | -15 |  | +150 | -15 |  | +150 | $\mu \mathrm{A}$ |
| DIFFERENTIAL INPUT (CLK_, $\overline{\text { CLK__ }}$ ) $^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| Single-Ended Input High Voltage | $\mathrm{V}_{\mathrm{IH} 2}$ | Figure 1 | $\begin{aligned} & V_{c c}- \\ & 1.155 \end{aligned}$ |  | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.88 \end{gathered}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.155 \end{aligned}$ |  | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.88 \end{gathered}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}- \\ & 1.155 \end{aligned}$ |  | $\begin{gathered} \text { VCC - } \\ 0.88 \end{gathered}$ | V |
| Single-Ended Input Low Voltage | VIL2 | Figure 1 | $\begin{array}{\|c\|} \hline V_{C C}- \\ 1.81 \end{array}$ |  | $\begin{aligned} & V_{C C}- \\ & 1.505 \end{aligned}$ | $\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{Cc}}- \\ 1.81 \end{array}$ |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}- \\ & 1.505 \end{aligned}$ | $\begin{array}{\|c\|} \hline \mathrm{V}_{\mathrm{Cc}}- \\ 1.81 \end{array}$ |  | $\begin{aligned} & \text { VCC - } \\ & 1.505 \end{aligned}$ | V |
| High Voltage of Differential Input | VIHD |  | $\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1.2 \end{gathered}$ |  | $V_{\text {cc }}$ | $\begin{gathered} \hline \mathrm{V}_{\mathrm{EE}}+ \\ 1.2 \end{gathered}$ |  | VCC | $\begin{gathered} \mathrm{V}_{\mathrm{EE}}+ \\ 1.2 \end{gathered}$ |  | VCC | V |
| Low Voltage of Differential Input | VILD |  | $V_{\text {EE }}$ |  | $\begin{aligned} & V_{C C}- \\ & 0.095 \end{aligned}$ | VEE |  | $\begin{aligned} & V_{C C}- \\ & 0.095 \end{aligned}$ | $V_{\text {EE }}$ |  | $\begin{aligned} & V_{C C}- \\ & 0.095 \end{aligned}$ | V |

# LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver 

## DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\left(V_{C C}-V_{E E}\right)=2.375 \mathrm{~V}\right.$ to 3.8 V , outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{VCC}_{C C}-2 \mathrm{~V}$; CLK_SEL, FSEL_ $=$ high or low; $\mathrm{MR}=\operatorname{low}$; $\operatorname{IVIDI}=0.095 \mathrm{~V}$ to the lower of $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ and 3V. Typical values are at $\left(\mathrm{VCC}-\mathrm{V}_{\mathrm{EE}}\right)=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IHD}}=\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{ILD}}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$.) (Notes 1-4)

| PARAMETER | SYMBOL | CONDITIONS | $-40^{\circ} \mathrm{C}$ |  |  | $+25^{\circ} \mathrm{C}$ |  |  | $+85^{\circ} \mathrm{C}$ |  |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP | MAX | MIN | TYP | MAX | MIN | TYP | MAX |  |
| Differential Input Voltage | $\begin{aligned} & \mathrm{V}_{\text {IHD }}- \\ & \mathrm{V}_{\text {ILD }} \end{aligned}$ | $\begin{aligned} & \text { For } V_{C C}-V_{E E} \\ & <3.0 \mathrm{~V} \end{aligned}$ | 0.095 |  | $\begin{aligned} & \hline V_{C C}- \\ & V_{\mathrm{EE}} \end{aligned}$ | 0.095 |  | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}- \\ & \mathrm{V}_{\mathrm{EE}} \end{aligned}$ | 0.095 |  | $\begin{aligned} & \hline V_{\mathrm{CC}}- \\ & \mathrm{V}_{\mathrm{EE}} \end{aligned}$ | V |
|  |  | $\begin{aligned} & \text { For } V_{C C}-V_{E E} \\ & \geq 3.0 \mathrm{~V} \end{aligned}$ | 0.095 |  | 3.0 | 0.095 |  | 3.0 | 0.095 |  | 3.0 |  |
| Input Current | IIN2 | $\begin{aligned} & \text { CLK_, }^{\text {CLK }}= \\ & \mathrm{V}_{\text {IHD }} \text { or } \mathrm{V}_{\text {ILD }} \end{aligned}$ | -150 |  | +150 | -150 |  | +150 | -150 |  | +150 | $\mu \mathrm{A}$ |
| OUTPUTS (Q_, $\overline{\mathbf{Q}}_{-}$) |  |  |  |  |  |  |  |  |  |  |  |  |
| Single-Ended Output High Voltage | VOH | Figure 1 | $\begin{aligned} & V_{C C}- \\ & 1.085 \end{aligned}$ |  | $\begin{aligned} & V_{C C}- \\ & 0.880 \end{aligned}$ | $\begin{aligned} & V_{C C}- \\ & 1.025 \end{aligned}$ |  | $\begin{aligned} & V_{C C}- \\ & 0.880 \end{aligned}$ | $\begin{aligned} & V_{C C}- \\ & 1.025 \end{aligned}$ |  | $\begin{aligned} & V_{C C}- \\ & 0.880 \end{aligned}$ | V |
| Single-Ended Output Low Voltage | Vol | Figure 1 | $\begin{aligned} & V_{C C}- \\ & 1.810 \end{aligned}$ |  | $\begin{gathered} V_{\mathrm{CC}}- \\ 1.52 \end{gathered}$ | $\begin{aligned} & V_{C C}- \\ & 1.810 \end{aligned}$ |  | $\begin{aligned} & V_{C C}- \\ & 1.620 \end{aligned}$ | $\begin{aligned} & V_{C C}- \\ & 1.810 \end{aligned}$ |  | $\begin{aligned} & V_{C C}- \\ & 1.620 \end{aligned}$ | V |
| Differential Output Voltage | VOH - <br> VoL | Figure 1 | 500 |  |  | 600 |  |  | 600 |  |  | mV |
| REFERENCE |  |  |  |  |  |  |  |  |  |  |  |  |
| Reference Voltage Output | VBB | $\begin{aligned} & \mathrm{IBB}= \pm 0.5 \mathrm{~mA} \\ & \text { (Note 5) } \end{aligned}$ | $\begin{gathered} V_{C C}- \\ 1.41 \end{gathered}$ |  | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.25 \end{gathered}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.41 \end{gathered}$ |  | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.25 \end{gathered}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.41 \end{gathered}$ |  | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.25 \end{gathered}$ | V |
| SUPPLY |  |  |  |  |  |  |  |  |  |  |  |  |
| Supply Current | IeE | (Note 6) |  | 50 | 85 |  | 66 | 115 |  | 80 | 130 | mA |

## LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver

## AC ELECTRICAL CHARACTERISTICS

$\left(\left(V_{C C}-V_{E E}\right)=2.375 \mathrm{~V}\right.$ to 3.8 V ; outputs loaded with $50 \Omega \pm 1 \%$ to $\mathrm{VCC}-2 \mathrm{~V}$; input frequency $\leq 1000 \mathrm{MHz}$; input transition time $=125 \mathrm{ps}$ $(20 \%$ to $80 \%) ; C L K \_S E L, F S E L=$ high or low, $M R=$ low; $\mathrm{V}_{\text {IHD }}=\mathrm{V}_{E E}+1.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\text {ILD }}=\mathrm{V}_{\text {EE }}$ to $\mathrm{V}_{C C}-0.4 \mathrm{~V} ; \mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}=0.4 \mathrm{~V}$ to 1 V . Typical values are at $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IHD}}=\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}, \mathrm{~V}_{\text {ILD }}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$.) (Note 7)

| PARAMETER | SYMBOL | CONDITION | $-40^{\circ} \mathrm{C}$ |  |  | $+25^{\circ} \mathrm{C}$ |  |  | $+85^{\circ} \mathrm{C}$ |  |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP | MAX | MIN | TYP | MAX | MIN | TYP | MAX |  |
| Differential Input-toOutput Delay | tPLHD, tPHLD | Figure 2 | 700 | 900 | 1150 | 725 | 900 | 1180 | 750 | 950 | 1225 | ps |
| Single-Ended CLK_/CLK_ to Output Delay | tPHLS, tPLHS | Figure 1 | 700 | 900 | 1170 | 700 | 900 | 1175 | 725 | 950 | 1250 | ps |
| MR to Output Delay | tPD | Figure 3 | 450 |  | 930 | 450 |  | 930 | 450 |  | 930 | ps |
| Output-to-Output Skew | tskoo | (Note 8) |  |  | 85 |  |  | 56 |  |  | 50 | ps |
| Added Random Jitter | tRJ | $\begin{aligned} & \mathrm{f} / \mathrm{N}=1.0 \mathrm{GHz} \\ & \text { clock pattern } \\ & \text { (Note } 9 \text { ) } \\ & \hline \end{aligned}$ |  |  | 1.2 |  |  | 1.2 |  |  | 1.2 | $\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$ |
| Added <br> Deterministic Jitter | tDJ | 1Gbps 223-1 PRBS pattern (Note 9) |  |  | 61 |  |  | 61 |  |  | 61 | PSP-P |
| Switching Frequency | $f_{\text {max }}$ | VOD $>300 \mathrm{mV}$ | 1.0 |  |  | 1.0 |  |  | 1.0 |  |  | GHz |
| Differential Output Rise and Fall Time (20\% to 80\%) | $t_{R}, t_{F}$ | Figure 2 | 200 | 260 | 400 | 200 | 260 | 400 | 200 | 240 | 400 | ps |

Note 1: Measurements are made with the device in thermal equilibrium.
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
Note 3: Single-ended CLK_, $\overline{C L K}$ input operation is limited to $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=3.0 \mathrm{~V}$ to 3.8 V .
Note 4: DC parameters are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and guaranteed by design over the full operating temperature range.
Note 5: Use $\mathrm{V}_{\mathrm{BB}}$ as a reference for inputs of the same device only.
Note 6: All pins open except $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$.
Note 7: Guaranteed by design and characterization. Limits are set at $\pm 6$ sigma.
Note 8: Measured between outputs of the same parts at the signal crossing points under identical conditions for a same-edge transition.
Note 9: Device jitter added to a jitter-free input signal.

# LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver 

Typical Operating Characteristics
$\left(V_{C C}-V_{E E}=3.3 \mathrm{~V}, \mathrm{~V}_{I H D}=\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{ILD}}=\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ID}}=500 \mathrm{mV}\right.$, CLK_SEL $=0, \mathrm{FSEL}_{-}=0, \mathrm{f}_{\mathrm{IN}}=600 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)



OUTPUT AMPLITUDE, $\mathbf{V}_{\mathbf{O H}} \cdot \mathbf{V}_{\mathbf{O L}}$
vs. FREQUENCY



PROPAGATION DELAY vs. DIFFERENTIAL INPUT VOLTAGE


LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver

Pin Description

| PIN |  | NAME |  |
| :---: | :---: | :---: | :--- |
| TQFP | QFN |  |  |

# LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver 

Pin Description (continued)

| PIN |  | NAME | FUNCTION |
| :---: | :---: | :---: | :---: |
| TQFP | QFN |  |  |
| 19 | 25 | QD3 | Inverting QD3 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 20 | 26 | QD3 | Noninverting QD3 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 21 | 27 | QD2 | Inverting QD2 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 22 | 28 | QD2 | Noninverting QD2 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 23 | 29 | QD1 | Inverting QD1 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 24 | 30 | QD1 | Noninverting QD1 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 25 | 31 | $\overline{\text { QD0 }}$ | Inverting QD0 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 26 | 32 | QD0 | Noninverting QDO Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 28, 29 | $\begin{gathered} 1,17,18,34 \\ 35,38,39 \\ 51,52,68 \end{gathered}$ | N.C. | No Connection. Not internally connected. |
| 31 | 41 | $\overline{\text { QC3 }}$ | Inverting QC3 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 32 | 42 | QC3 | Noninverting QC3 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 33 | 43 | $\overline{\text { QC2 }}$ | Inverting QC2 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 34 | 44 | QC2 | Noninverting QC2 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 35 | 45 | $\overline{\text { QC1 }}$ | Inverting QC1 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 36 | 46 | QC1 | Noninverting QC1 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 37 | 47 | $\overline{\text { QC0 }}$ | Inverting QC0 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2 V . |
| 38 | 48 | QC0 | Noninverting QC0 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 41 | 55 | $\overline{\text { QB2 }}$ | Inverting QB2 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 42 | 56 | QB2 | Noninverting QB2 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 43 | 57 | $\overline{\text { QB1 }}$ | Inverting QB1 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 44 | 58 | QB1 | Noninverting QB1 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 45 | 59 | $\overline{\text { QB0 }}$ | Inverting QB0 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 46 | 60 | QB0 | Noninverting QB0 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 48 | 62 | $\overline{\text { QA1 }}$ | Inverting QA1 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 49 | 63 | QA1 | Noninverting QA1 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| 50 | 64 | $\overline{\mathrm{QAO}}$ | Inverting QA0 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2 V . |
| 51 | 65 | QA0 | Noninverting QA0 Output. Typically terminate with $50 \Omega$ resistor to VCC - 2V. |
| - | EP | VEE | The exposed pad of the QFN package is internally connected to $V_{E E}$. Refer to Application Note HFAN-08.1. |

LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver


Figure 1. Timing Diagram for Single-Ended Inputs


Figure 2. Timing Diagram for Differential Inputs

# LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver 



Figure 3. Timing Diagram for MR

## Detailed Description

The MAX9322 low-skew 1:15 differential clock driver reproduces or divides one of two differential input clocks at 15 differential outputs. An input multiplexer selects from one of two input clocks with input frequency operation in excess of 1.0 GHz . The 15 outputs are arranged into four banks with 2, 3, 4, and 6 outputs, respectively. Each output bank is individually programmable to provide a divide-by-1 or divide-by-2 frequency function.

## LVECL/LVPECL Operation

Output levels are referenced to VCC and are LVPECL or LVECL, depending on the level of the VCC supply. With VCC connected to a positive supply and VEE connected to ground, the outputs are LVPECL. The outputs are LVECL when $\mathrm{V}_{\text {cc }}$ is connected to ground and $\mathrm{V}_{\mathrm{EE}}$ is connected to a negative supply. When interfacing to differential LVPECL signals, the $\mathrm{V}_{\mathrm{Cc}}$ range is 2.375 V to $3.8 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{EE}}=0\right)$, allowing high-performance clock distribution in systems with nominal 2.5 V and 3.3 V supplies. When interfacing to differential LVECL, the VEE range is -2.375 V to $-3.8 \mathrm{~V}(\mathrm{VCC}=0)$.

## Control Inputs (FSEL_, CLK_SEL, MR)

The MAX9322 provides four output banks: A, B, C, and D. Bank A consists of two differential output pairs. Bank B consists of three differential output pairs. Bank C consists of four differential output pairs. Bank D consists of six differential output pairs. FSEL_ selects the output clock frequency for a bank. A low on FSEL_ selects divide-by-1 frequency operation while a high on FSEL_ selects divide-by-2 operation. CLK_SEL selects CLK0 or CLK1 as the input signal. A low on CLK_SEL selects CLKO while a high selects CLK1.
Master reset (MR) enables all outputs. CLK_SEL and FSEL_ are asynchronous. Changes to the control inputs (CLK_SEL, FSEL_) or on power-up cause indeterminate output states requiring a MR assertion to resynchronize any divide-by-2 outputs (Figure 4). A low on MR activates
all outputs for normal operation. A high on MR resets all outputs to differential Iow condition. See Table 1.

## Input Termination Resistors

Differential inputs CLK_ and CLK_ are biased to guarantee a known state (differential low) if the inputs are left open. CLK is internally pulled to $V_{E E}$ through a $75 \mathrm{k} \Omega$ resistor. $\overline{\text { CLK_ }}$ is internally pulled to $\mathrm{V}_{\mathrm{Cc}}$ and to VEE through $75 \mathrm{k} \Omega$ resistors.
Single-ended inputs FSEL_, MR, and CLK_SEL are internally pulled to $\mathrm{V}_{\text {EE }}$ through a $75 \mathrm{k} \Omega$ resistor.

## Differential Clock Input

The MAX9322 accepts two differential or single-ended clock inputs, CLKO/CLKO and CLK1/CLK1. CLK_SEL selects between CLKO/CLKO and CLK1/CLK1. A low on CLK_SEL selects CLKO/CLKO. A high on CLK_SEL selects CLK1/CLK1. See Table 1.
Differential CLK_inputs must be at least $\mathrm{V}_{\mathrm{BB}} \pm 95 \mathrm{mV}$ to switch the outputs to the VOH and VOL levels specified in the DC Electrical Characteristics table. The maximum magnitude of the differential signal applied to the differential clock input is the lower of ( $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ ) and 3.0V. This limit also applies to the difference between any reference voltage input and a single-ended input. Specifications for the high and low voltages of a differential input (VIHD and VILD) and the differential input voltage (VIHD - VILD) apply simultaneously.

## Table 1. Function Table

| PIN | FUNCTION |  |
| :---: | :---: | :---: |
|  | LOW OR OPEN | HIGH |
| FSEL_ | Divide-by-1 | Divide-by-2 |
| CLK_SEL | CLK0 | CLK1 |
| MR $^{*}$ | Active | Reset |

*A master reset is required following power-up or changes to input functions to prevent indeterminant output states.

# LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver 

## Single-Ended Inputs and VBB

The differential clock input can be configured to accept a single-ended input when operating at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=$ 3.0 V to 3.8 V . Connect $\mathrm{V}_{\mathrm{BB}}$ to the inverting or noninverting input of the differential input as a reference for sin-gle-ended operation. The differential CLK_ input is converted to a noninverting, single-ended input by connecting $V_{B B}$ to $\overline{C L K}$ _ and connecting the single-ended input signal to CLK. Similarly, an inverting configuration is obtained by connecting VBB to CLK_ and connecting the single-ended input to CLK_.
The single-ended inputs FSEL_, CLK_SEL, and MR are internally referenced to $V_{B B}$. All single-ended inputs (FSEL_, CLK_SEL, MR, and any CLK_ in single-ended mode) can be driven to $\mathrm{V}_{C C}$ and $\mathrm{V}_{\mathrm{EE}}$ or with a singleended LVPECL/LVECL signal. The single-ended input must be at least $V_{\mathrm{BB}} \pm 95 \mathrm{mV}$ to switch the outputs to the $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{VOL}_{\mathrm{OL}}$ levels specified in the DC Electrical Characteristics table. When using the VBB reference output, bypass $V_{B B}$ with a $0.01 \mu \mathrm{~F}$ ceramic capacitor to $V_{C C}$. Leave $V_{B B}$ open when not used. The $V_{B B}$ reference can source or sink 0.5 mA . Use $\mathrm{V}_{B B}$ as a reference for the same device only.

## Applications Information

## Supply Bypassing

Bypass each $V_{C C}$ and $V_{C C O}$ to $V_{E E}$ with high-frequency surface-mount ceramic $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the $0.01 \mu \mathrm{~F}$ capacitor closest to the device. Use multiple parallel vias to minimize parasitic inductance. When using the $\mathrm{V}_{\mathrm{BB}}$ reference output, bypass $\mathrm{V}_{\mathrm{BB}}$ to $\mathrm{V}_{\mathrm{CC}}$ with a $0.01 \mu \mathrm{~F}$ ceramic capacitor.

Controlled-Impedance Traces
Input and output trace characteristics affect the performance of the MAX9322. Connect input and output signals with $50 \Omega$ characteristic impedance traces. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the $50 \Omega$ characteristic impedance through cables and connectors. Reduce skew within a differential pair by matching the electrical length of the traces.

## Output Termination

Terminate outputs with $50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$ or use an equivalent Thevenin termination. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if QAO is used as a single-ended output, terminate both QAO and $\overline{\text { QAO }}$.


Figure 4. Timing Diagram for MR Resynchronization

# LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver 

Functional Diagram


LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver


## Chip Information

TRANSISTOR COUNT: 2063
PROCESS: Bipolar
$\qquad$

# LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver 

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)


| DIM | MIN | NOM | MAX |
| :--- | :---: | :---: | :---: |
| A | - | - | 1.20 |
| A1 | 0.05 | 0.10 | 0.15 |
| A2 | 0.95 | 1.00 | 1.05 |
| b | 0.22 | 0.32 | 0.38 |
| c | 0.09 | - | 0.20 |
| D | 11.80 | 12.00 | 12.20 |
| D1 | 10.00 BSC |  |  |
| E | 11.80 | 12.00 | 12.20 |
| E1 | 10.00 BSC |  |  |
| e | 0.65 BSC |  |  |
| L | 0.45 | 0.60 | 0.75 |



NOTES:

1. DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH, BUT DO NOT INCLUDE

MOLD PROTRUSION; ALLOWABLE PROTRUSION IS 0.254 MM ON D1 AND E1.
2. DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
3. ALLOWABLE DAMBAR PROTRUSION IS 0.08 MM TOTAL IN EXCESS OF

THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. PROTRUSION NOT TO BE LOCATED ON LOWER RADIUS OR FOOT OF LEAD.
4. DIMENSIONS ARE IN MILLIMETERS.
5. MEETS JEDEC MS-206.

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| TTIE: PACKAGE OUTLINE |  |  |  |
| 52L TQFP, 10x10x1.0 MM |  |  |  |
|  | 21-0146 | ${ }_{\text {A }}^{\text {EVV. }}$ | 1/1 |

## Revision History

Pages changed at Rev 2: 1, 5, 13

