Intelligent Dynamic Clock Switch (IDCS) PLL Clock Driver **MPC99J93** The MPC99J93 is a PLL clock driver designed specifically for redundant clock tree designs. The device receives two differential LVPECL clock signals from which it generates 5 new differential LVPECL clock outputs. Two of the output pairs regenerate the input signals frequency and phase while the other three pairs generate 2x, phase aligned clock outputs. #### **Features** - · Fully Integrated PLL - Intelligent Dynamic Clock Switch - · LVPECL Clock Outputs - LVCMOS Control I/O - 3.3 V Operation - · 32-Lead LQFP Packaging - 32-Lead Pb-Free Package Available #### **Functional Description** The MPC99J93 Intelligent Dynamic Clock Switch (IDCS) circuit continuously monitors both input CLK signals. Upon detection of a failure (CLK stuck HIGH or LOW for at least 1 period), the INP_BAD for that CLK will be latched (H). If that CLK is the primary clock, the IDCS will switch to the good secondary clock and phase/frequency alignment will occur with minimal output phase disturbance. The typical phase bump caused by a failed clock is eliminated. (See Application Information section). INTELLIGENT DYNAMIC CLOCK SWITCH PLL CLOCK DRIVER FA SUFFIX 32-LEAD LQFP PACKAGE CASE 873A-03 AC SUFFIX 32-LEAD LQFP PACKAGE Pb-FREE PACKAGE CASE 873A-03 Figure 2. 32-Lead Pinout (Top View) **Table 1. Pin Descriptions** | Pin Name | I/O | Pin Definition | |--------------------------|------------------------------|--| | CLK0, CLK0
CLK1, CLK1 | LVPECL Input
LVPECL Input | Differential PLL clock reference (CLK0 pulldown, CLK0 pullup) Differential PLL clock reference (CLK1 pulldown, CLK1 pullup) | | Ext_FB, Ext_FB | LVPECL Input | Differential PLL feedback clock (Ext_FB pulldown, Ext_FB pullup) | | Qa0:1, Qa0:1 | LVPECL Output | Differential 1x output pairs. Connect one QAx pair to Ext_FB. | | Qb0:2, Qb0:2 | LVPECL Output | Differential 2x output pairs | | Inp0bad | LVCMOS Output | Indicates detection of a bad input reference clock 0 with respect to the feedback signal. The output is active HIGH and will remain HIGH until the alarm reset is asserted | | Inp1bad | LVCMOS Output | Indicates detection of a bad input reference clock 1 with respect to the feedback signal. The output is active HIGH and will remain HIGH until the alarm reset is asserted | | Clk_Selected | LVCMOS Output | '0' if clock 0 is selected, '1' if clock 1 is selected | | Alarm_Reset | LVCMOS Input | '0' will reset the input bad flags and align Clk_Selected with Sel_Clk. The input is "one-shotted" ($50k\Omega$ pullup) | | Sel_Clk | LVCMOS Input | '0' selects CLK0, '1' selects CLK1 (50kΩ pulldown) | | Manual_Override | LVCMOS Input | '1' disables internal clock switch circuitry (50kΩ pulldown) | | PLL_En | LVCMOS Input | '0' bypasses selected input reference around the phase-locked loop (50kΩ pullup) | | MR | LVCMOS Input | '0' resets the internal dividers forcing Q outputs LOW. Asynchronous to the clock (50 k Ω pullup) | | V _{CCA} | Power Supply | PLL power supply | | V _{CC} | Power Supply | Digital power supply | | GNDA | Power Supply | PLL ground | | GND | Power Supply | Digital ground | Table 2. Absolute Maximum Ratings⁽¹⁾ | Symbol | Characteristics | Min | Max | Unit | Condition | |------------------|---------------------|------|----------------------|------|-----------| | V _{CC} | Supply Voltage | -0.3 | 3.9 | V | | | V _{IN} | DC Input Voltage | -0.3 | V _{CC} +0.3 | V | | | V _{OUT} | DC Output Voltage | -0.3 | V _{CC} +0.3 | V | | | I _{IN} | DC Input Current | | ±20 | mA | | | I _{OUT} | DC Output Current | | ±50 | mA | | | T _S | Storage Temperature | -65 | 125 | °C | | ^{1.} Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied. **Table 3. General Specifications** | Symbol | Characteristics | Min | Тур | Max | Unit | Condition | |-------------------|--|------|--|--|---|--| | V _{TT} | Output Termination Voltage | | V _{CC} – 2 | | V | | | MM | ESD Protection (Machine model) | 175 | | | V | | | HBM | ESD Protection (Human body model) | 1500 | | | V | | | CDM | ESD Protection (Charged device model) | 1000 | | | V | | | LU | Latch-Up Immunity | 100 | | | mA | | | C _{IN} | Input Capacitance | | 4.0 | | pF | Inputs | | θЈΑ | Thermal Resistance Junction to Ambient JESD 51-3, single layer test board JESD 51-6, 2S2P multilayer test board | | 83.1
73.3
68.9
63.8
57.4
59.0
54.4
52.5
50.4
47.8 | 86.0
75.4
70.9
65.3
59.6
60.6
55.7
53.8
51.5
48.8 | °C/W °C/W °C/W °C/W °C/W °C/W °C/W °C/W | Natural convection
100 ft/min
200 ft/min
400 ft/min
800 ft/min
Natural convection
100 ft/min
200 ft/min
400 ft/min
800 ft/min | | $\theta_{\sf JC}$ | Thermal Resistance Junction to Case | | 23.0 | 26.3 | °C/W | MIL-SPEC 883E
Method 1012.1 | | T _J | Operating Junction Temperature ⁽¹⁾ (continuous operation) MTBF = 9.1 years | | | 110 | °C | | ^{1.} Operating junction temperature impacts device life time. Maximum continuous operating junction temperature should be selected according to the application life time requirements (See application note AN1545 for more information). The device AC and DC parameters are specified up to 110°C junction temperature allowing the MPC99J93 to be used in applications requiring industrial temperature range. It is recommended that users of the MPC99J93 employ thermal modeling analysis to assist in applying the junction temperature specifications to their particular application. Table 4. DC Characteristics (V_{CC} = 3.3 V ± 5%, T_A = -40° to +85°C) | Symbol | Characteristics | Min | Тур | Max | Unit | Condition | |---------------------|---|-----------------------|-----------------------|-----------------------|------|--| | LVCMOS C | ontrol Inputs (MR, PLL_En, Sel_Clk, Ma | n_Override, Alarm | _Reset) | • | | | | V _{IH} | Input High Voltage | 2.0 | | V _{CC} + 0.3 | V | | | V _{IL} | Input Low Voltage | | | 0.8 | V | | | I _{IN} | Input Current ⁽¹⁾ | | | ±100 | μА | V _{IN} = V _{CC} or GND | | LVCMOS C | ontrol Outputs (Clk_selected, Inp0bad, In | np1bad) | | | • | | | V _{OH} | Output High Voltage | 2.0 | | | V | I _{OH} = -24 mA | | V _{OL} | Output Low Voltage | | | 0.55 | V | I _{OL} = 24 mA | | LVPECL Clo | ock Inputs (CLK0, CLK1, Ext_FB) ⁽²⁾ | | | | • | | | V _{PP} | DC Differential Input Voltage ⁽³⁾ | 0.1 | | 1.3 | V | Differential operation | | V _{CMR} | Differential Cross Point Voltage ⁽⁴⁾ | V _{CC} -1.8 | | V _{CC} -0.3 | V | Differential operation | | I _{IN} | Input Current ⁽¹⁾ | | | ±100 | μΑ | V _{IN} = V _{CC} or GND | | LVPECL Clo | ock Outputs (QA[1:0], QB[2:0]) | • | • | • | | | | V _{OH} | Output High Voltage | V _{CC} -1.20 | V _{CC} -0.95 | V _{CC} -0.70 | V | Termination 50 Ω to V_{TT} | | V _{OL} | Output Low Voltage | V _{CC} -1.90 | V _{CC} -1.75 | V _{CC} -1.45 | V | Termination 50 Ω to V_{TT} | | Supply Curr | ent | • | • | • | • | • | | I _{GND} | Maximum Power Supply Current | | | 180 | mA | GND pins | | I _{CC_PLL} | Maximum PLL Supply Current | | | 15 | mA | V _{CC_PLL} pin | ^{1.} Inputs have internal pull-up/pull-down resistors affecting the input current. ^{2.} Clock inputs driven by differential LVPECL compatible signals. ^{3.} V_{PP} is the minimum differential input voltage swing required to maintain AC characteristics. ^{4.} V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} (DC) range and the input swing lies within the V_{PP} (DC) specification. Table 5. AC Characteristics (V_{CC} = 3.3 V \pm 5%, T_A = -40°C to +85°C)⁽¹⁾ | Symbol | Characteristics | Min | Тур | Max | Unit | Condition | |---------------------------------|--|----------------------|------------------------|------------------------|----------------------|--------------------------| | f _{ref} | Input Reference Frequency ÷4 feedback | 50 | | 90 | MHz | PLL locked | | f _{VCO} | VCO Frequency Range ⁽²⁾ ÷4 feedback | 200 | | 360 | MHz | | | f _{MAX} | Output Frequency QA[1:0] QB[2:0] | 50
100 | | 90
180 | MHz
MHz | PLL locked | | f _{refDC} | Reference Input Duty Cycle | 25 | | 75 | % | | | t _(∅) | Propagation Delay SPO, static phase offset ⁽³⁾ CLK0, CLK1 to any Q | -0.15
0.9 | | +0.17
1.8 | ns
ns | PLL_EN = 1
PLL_EN = 0 | | V _{PP} | Differential Input Voltage ⁽⁴⁾ (peak-to-peak) | 0.25 | | 1.3 | V | | | V_{CMR} | Differential Input Crosspoint Voltage ⁽⁵⁾ | V _{CC} -1.7 | | V _{CC} -0.3 | V | | | t _{sk(O)} | Output-to-Output Skew within QA[2:0] or QB[1:0] within device | | | 50
80 | ps
ps | | | $\Delta_{ m per/cycle}$ | Rate of Change of Period QA[1:0] ⁽⁶⁾ QB[2:0] ⁽⁶⁾ QA[1:0] ⁽⁷⁾ QB[2:0] ⁽⁷⁾ | | 20
10
200
100 | 50
25
400
200 | ps
ps
ps
ps | | | DC | Output Duty Cycle | 45 | 50 | 55 | % | | | t _{JIT(CC)} | Cycle-to-Cycle Jitter RMS (1 σ) | | 25 | | ps | | | t _{LOCK} | Maximum PLL Lock Time | | | 10 | ms | | | t _r , t _f | Output Rise/Fall Time | 0.05 | | 0.70 | ns | 20% to 80% | - 1. AC characteristics apply for parallel output termination of 50 Ω to V_{CC} 2 V. - 2. The input reference frequency must match the VCO lock range divided by the feedback divider ratio (FB): f_{ref} = f_{VCO} ÷ FB. - 3. CLK0, CLK1 to Ext_FB. - 4. V_{PP} is the minimum differential input voltage swing required to maintain AC characteristics including SPO and device-to-device skew. Applicable to CLK0, CLK1 and Ext_FB. - 5. V_{CMR} (AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V_{CMR} (AC) range and the input swing lies within the V_{PP} (AC) specification. Violation of V_{CMR} (AC) or V_{PP} (AC) impacts the SPO, device and part-to-part skew. Applicable to CLK0, CLK1 and Ext_FB. - 6. Specification holds for a clock switch between two input signals (CLK0, CLK1) no greater than 400 ps out of phase. Delta period change per cycle is averaged over the clock switch excursion. - 7. Specification holds for a clock switch between two input signals (CLK0, CLK1) at any phase difference (±180°). Delta period change per cycle is averaged over the clock switch excursion. #### APPLICATIONS INFORMATION The MPC99J93 is a dual clock PLL with on-chip Intelligent Dynamic Clock Switch (IDCS) circuitry. #### **Definitions** **primary clock:** The input CLK selected by Sel_Clk. **secondary clock:** The input CLK NOT selected by Sel_Clk. PLL reference signal: The CLK selected as the PLL reference signal by Sel_Clk or IDCS. (IDCS can override Sel_Clk). #### **Status Functions** **Clk_Selected:** Clk_Selected (L) indicates CLK0 is selected as the PLL reference signal. Clk_Selected (H) indicates CLK1 is selected as the PLL reference signal. **INP_BAD:** Latched (H) when it's CLK is stuck (H) or (L) for at least one Ext_FB period (Pos to Pos or Neg to Neg). Cleared (L) on assertion of Alarm Reset. #### **Control Functions** **Sel_Clk**: Sel_Clk (L) selects CLK0 as the primary clock. Sel_Clk (H) selects CLK1 as the primary clock. **Alarm_Reset:** Asserted by a negative edge. Generates a one-shot reset pulse that clears INPUT_BAD latches and Clk_Selected latch. **PLL_En:** While (L), the PLL reference signal is substituted for the VCO output. **MR:** While (L), internal dividers are held in reset which holds all Q outputs LOW. #### Man Override (H) (IDCS is disabled, PLL functions normally). PLL reference signal (as indicated by Clk_Selected) will always be the CLK selected by Sel_Clk. The status function INP_BAD is active in Man Override (H) and (L). #### Man Override (L) (IDCS is enabled, PLL functions enhanced). The first CLK to fail will latch it's INP_BAD (H) status flag and select the other input as the Clk_Selected for the PLL reference clock. Once latched, the Clk_Selected and INP_BAD remain latched until assertion of Alarm_Reset which clears all latches (INP_BADs are cleared and Clk_Selected = Sel_Clk). NOTE: If both CLKs are bad when Alarm_Reset is asserted, both INP_BADs will be latched (H) after one Ext_FB period and Clk_Selected will be latched (L) indicating CLK0 is the PLL reference signal. While neither INP_BAD is latched (H), the Clk_Selected can be freely changed with Sel_Clk. Whenever a CLK switch occurs, (manually or by IDCS), following the next negative edge of the newly selected PLL reference signal, the next positive edge pair of Ext_FB and the newly selected PLL reference signal will slew to alignment. To calculate the overall uncertainty between the input CLKs and the outputs from multiple MPC99J93's, the following procedure should be used. Assuming that the input CLKs to all MPC9993's are exactly in phase, the total uncertainty will be the sum of the static phase offset, max I/O jitter, and output to output skew. During a dynamic switch, the output phase between two devices may be increased for a short period of time. If the two input CLKs are 400ps out of phase, a dynamic switch of an MPC99J93 will result in an instantaneous phase change of 400ps to the PLL reference signal without a corresponding change in the output phase (due to the limited response of the PLL). As a result, the I/O phase of a device, undergoing this switch, will initially be 400ps and diminish as the PLL slews to its new phase alignment. This transient timing issue should be considered when analyzing the overall skew budget of a system. #### Hot insertion and withdrawal In PECL applications, a powered up driver will experience a low impedance path through an MPC99J93 input to its powered down $V_{\rm CC}$ pins. In this case, a 100 ohm series resistance should be used in front of the input pins to limit the driver current. The resistor will have minimal impact on the rise and fall times of the input signals. #### **Acquiring Frequency Lock** - While the MPC99J93 is receiving a valid CLK signal, assert Man Override HIGH. - The PLL will phase and frequency lock within the specified lock time. - Apply a HIGH to LOW transition to Alarm_Reset to reset Input Bad flags. - De-assert Man_Override LOW to enable Intelligent Dynamic Clock Switch mode. #### **PACKAGE DIMENSIONS** **CASE 873A-03 ISSUE B** 32-LEAD LQFP PACKAGE **PLATING** - NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DATUM PLANE H. 4. DIMENSIONS AND TO BE DETERMINED AT DATUM PLANE C. 5. DIMENSIONS DAND E TO BE DETERMINED AT SEATING PLANE C. 5. DIMENSION DES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM BO DIMENSION BY MORE THAN 0.08-mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION. 20.7-mm. 6. DIMENSIONS DI AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25-mm PER SIDE. DI AND E1 ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH. 8. THOSE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1-mm AND 0.25-mm FROM DETWEEN DETWEEN 0.1-mm AND 0.25-mm FROM THE DETWEEN 0.1-mm AND 0.25-mm FROM THE | | MILLIMETERS | | | | | |-----|-------------|------|--|--|--| | DIM | MIN | MAX | | | | | Α | 1.40 | 1.60 | | | | | A1 | 0.05 | 0.15 | | | | | A2 | 1.35 | 1.45 | | | | | b | 0.30 | 0.45 | | | | | b1 | 0.30 | 0.40 | | | | | С | 0.09 | 0.20 | | | | | c1 | 0.09 | 0.16 | | | | | D | 9.00 BSC | | | | | | D1 | 7.00 BSC | | | | | | е | 0.80 BSC | | | | | | Е | 9.00 | BSC | | | | | E1 | 7.00 | BSC | | | | | L | 0.50 | 0.70 | | | | | L1 | 1.00 REF | | | | | | q | 0° | 7* | | | | | q1 | 12 REF | | | | | | R1 | 0.08 | 0.20 | | | | | R2 | 0.08 | | | | | | S | 0.20 REF | | | | | ### Innovate with IDT and accelerate your future networks. Contact: ## www.IDT.com #### For Sales 800-345-7015 408-284-8200 Fax: 408-284-2775 #### **For Tech Support** netcom@idt.com 480-763-2056 #### **Corporate Headquarters** Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.) #### Asia Pacific and Japan Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505 #### Europe IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339 © 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA