High Frequency Clock Synthesizer

The MC12429 is a general purpose synthesized clock source. Its internal VCO will operate over a range of frequencies from 200 to 400 MHz . The differential PECL output can be configured to be the VCO frequency divided by $1,2,4$, or 8 . With the output configured to divide the VCO frequency by 1 , and with a 16.000 MHz external quartz crystal used to provide the reference frequency, the output frequency can be specified in 1 MHz steps. The PLL loop filter is fully integrated so that no external components are required. The output frequency is configured using a parallel or serial interface.

- 25 to 400 MHz Differential PECL Outputs
- ± 25 ps Peak-to-Peak Output Jitter
- Fully Integrated Phase-Locked Loop
- Minimal Frequency Over-Shoot
- Synthesized Architecture
- Serial 3-Wire Interface
- Parallel Interface for Power-Up
- Quartz Crystal Interface
- 28-Lead PLCC and 32-Lead LQFP Packages
- Operates from 3.3V or 5.0V Power Supply

Functional Description

The internal oscillator uses the external quartz crystal as the basis of its frequency reference. The output of the reference oscillator is divided by 16 before being sent to the phase detector. With a 16 MHz crystal, this provides a reference frequency of 1 MHz . Although this data sheet illustrates functionality only for a 16 MHz crystal, any crystal in the $10-25 \mathrm{MHz}$ range can be used.

The VCO within the PLL operates over a range of 200 to 400 MHz . Its output is scaled by a divider that is configured by either the serial or parallel interfaces. The output of this loop divider is also applied to the phase detector.

The phase detector and loop filter attempt to force the VCO output frequency to be M times the reference frequency by adjusting the VCO control voltage. Note that for some values of M (either too high or too low) the PLL will not achieve loop lock.

The output of the VCO is also passed through an output divider before being sent to the PECL output driver. This output divider (N divider) is configured through either the serial or the parallel interfaces, and can provide one of four division ratios (1, 2, 4, or 8). This divider extends performance of the part while providing a 50% duty cycle.

The output driver is driven differentially from the output divider, and is capable of driving a pair of transmission lines terminated in 50Ω to $V_{C C}-2.0 \mathrm{~V}$. The positive reference for the output driver and the internal logic is separated from the power supply for the phase-locked loop to minimize noise induced jitter.

The configuration logic has two sections: serial and parallel. The parallel interface uses the values at the M[8:0] and $N[1: 0$] inputs to configure the internal counters. Normally, on system reset, the P_LOAD input is held LOW until sometime after power becomes valid. On the LOW-to-HIGH transition of P_LOAD, the parallel inputs are captured. The parallel interface has priority over the serial interface. Internal pullup resistors are provided on the $\mathrm{M}[8: 0]$ and $\mathrm{N}[1: 0]$ inputs to reduce component count in the application of the chip.

The serial interface centers on a fourteen bit shift register. The shift register shifts once per rising edge of the S_CLOCK input. The serial input S_DATA must meet setup and hold timing as specified in the AC Characteristics section of this document. The configuration latches will capture the value of the shift register on the HIGH-to-LOW edge of the S_LOAD input. See the programming section for more information.

The TEST output reflects various internal node values, and is controlled by the T[2:0] bits in the serial data stream. See the programming section for more information.

$\mathbf{N}[\mathbf{1}: \mathbf{0}]$	Output Division
00	1
01	2
10	4
11	8

Figure 1. 28-Lead (Top View)

Figure 2. 32-Lead Pinout (Top View)

PIN DESCRIPTIONS

Pin Name	Function
Inputs	
XTAL1, XTAL2	These pins form an oscillator when connected to an external series-resonant crystal.
S LOAD (Int. Pulldown)	This pin loads the configuration latches with the contents of the shift registers. The latches will be transparent when this signal is HIGH, thus the data must be stable on the HIGH-to-LOW transition of S_LOAD for proper operation.
S DATA (Int. Pulldown)	This pin acts as the data input to the serial configuration shift registers.
S_CLOCK (Int. Pulldown)	This pin serves to clock the serial configuration shift registers. Data from S_DATA is sampled on the rising edge.
$\begin{aligned} & \text { P_LOAD } \\ & \text { (Int. Pullup) } \end{aligned}$	This pin loads the configuration latches with the contents of the parallel inputs. The latches will be transparent when this signalis LOW, thus the parallel data must be stable on the LOW-to-HIGH transition of P_LOAD for proper operation. P_LOAD is state sensitive.
$\begin{aligned} & \text { M[8:0] } \\ & \text { (Int. Pullup) } \end{aligned}$	These pins are used to configure the PLL loop divider. They are sampled on the LOW-to-HIGH transition of P_LOAD. M[8] is the MSB, M[0] is the LSB.
$\begin{aligned} & \hline \begin{array}{l} \mathrm{N}[1: 0] \\ \text { (Int. Pullup) } \end{array} \end{aligned}$	These pins are used to configure the output divider modulus. They are sampled on the LOW-to-HIGH transition of P_LOAD.
OE (Int. Pullup)	Active HIGH Output Enable. The Enable is synchronous to eliminate possibility of runt pulse generation on the FoUT output.
Outputs	
FOUT, FOUT	These differential positive-referenced ECL signals (PECL) are the output of the synthesizer.
TEST	The function of this output is determined by the serial configuration bits T[2:0].
Power	
V_{CC}	This is the positive supply for the internal logic and the output buffer of the chip, and is connected to +3.3 V or 5.0 V $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{PLL} _\mathrm{V}_{\mathrm{CC}}\right)$. Current drain through $\mathrm{V}_{\mathrm{CC}} \approx 85 \mathrm{~mA}$.
PLL_VCC	This is the positive supply for the PLL, and should be as noise-free as possible for low-jitter operation. This supply is connected to +3.3 V or $5.0 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}}=\mathrm{PLL} _\mathrm{V}_{\mathrm{CC}}\right)$. Current drain through PLL_ $\mathrm{V}_{\mathrm{CC}} \approx 15 \mathrm{~mA}$.
GND	These pins are the negative supply for the chip and are normally all connected to ground.

Figure 3. MC12429 Block Diagram (28-Lead PLCC Pinout)

PROGRAMMING INTERFACE

Programming the device amounts to properly configuring the internal dividers to produce the desired frequency at the outputs. The output frequency can by represented by this formula:

$$
\begin{equation*}
\text { FOUT }=(F X T A L \div 16) \times M \div N \tag{1}
\end{equation*}
$$

Where FXTAL^{2} is the crystal frequency, M is the loop divider modulus, and N is the output divider modulus. Note that it is possible to select values of M such that the PLL is unable to achieve loop lock. To avoid this, always make sure that M is selected to be $200 \leq \mathrm{M} \leq 400$ for a 16 MHz input reference.

Assuming that a 16 MHz reference frequency is used the above equation reduces to:

$$
\text { FOUT }=M \div N
$$

Substituting the four values for $N(1,2,4,8)$ yields:
TABLE A: Output Frequency Range

N	FOUT	OUTPUT FREQUENCY RANGE
1	M	$200-400 \mathrm{MHZ}$
2	$\mathrm{M} / 2$	$100-200 \mathrm{MHZ}$
4	$\mathrm{M} / 4$	$50-100 \mathrm{MHZ}$
8	$\mathrm{M} / 8$	$25-50 \mathrm{MHZ}$

From these ranges the user will establish the value of N required, then the value of M can be calculated based on the appropriate equation above. For example if an output frequency of 131 MHz was desired the following steps would be taken to identify the appropriate M and N values. 131 MHz falls within the frequency range set by an N value of 2 so N $[1: 0]=01$. For $N=2$ FOUT $=M \div 2$ and $M=2 \times$ FOUT. Therefore $M=131 \times 2=262$, so $M[8: 0]=100000110$. Following this same procedure a user can generate any whole frequency desired between 25 and 400 MHz . Note that for $\mathrm{N}>2$ fractional values of FOUT can be realized. The size of the programmable frequency steps (and thus the indicator of the fractional output frequencies acheivable) will be equal to $\mathrm{FXTAL} \div 16 \div \mathrm{N}$.

For input reference frequencies other than 16 MHz the set of appropriate equations can be deduced from equation 1. For computer applications another useful frequency base would be 16.666 MHz . From this reference one can generate a family of output frequencies at multiples of the 33.333 MHz PCl clock. As an example to generate a 133.333 MHz clock from a 16.666 MHz reference the following M and N values would be used:

$$
\text { FOUT }=16.666 \div 16 \times M \div \mathrm{N}=1.0416 \times \mathrm{M} \div \mathrm{N}
$$

Let $N=2, \quad M=133.3333 \div 1.0416 \times 2=256$
The value for M falls within the constraints set for PLL stability, therefore $\mathrm{N}[1: 0]=01$ and $\mathrm{M}[8: 0\}=10000000$. If the value for M fell outside of the valid range a different N value would be selected to try to move M in the appropriate direction.

The M and N counters can be loaded either through a parallel or serial interface. The parallel interface is controlled via the P_{-}LOAD signal such that a LOW to HIGH transition will latch the information present on the M[8:0] and $\mathrm{N}[1: 0]$ inputs into the M and N counters. When the $\mathrm{P}_{\text {_LOAD signal is }}$ LOW the input latches will be transparent and any changes on the $\mathrm{M}[8: 0$] and $\mathrm{N}[1: 0]$ inputs will affect the FOUT output pair. To use the serial port the S_CLOCK signal samples the information on the S_DATA line and loads it into a 14 bit shift register. Note that the P_LOAD signal must be HIGH for the serial load operation to function. The Test register is loaded with the first three bits, the N register with the next two and the M register with the final eight bits of the data stream on the S_DATA input. For each register the most significant bit is loaded first (T2, N1 and M8). A pulse on the S_LOAD pin after the shift register is fully loaded will transfer the divide values into the counters. The HIGH to LOW transition on the S_LOAD input will latch the new divide values into the counters. Figure 4 illustrates the timing diagram for both a parallel and a serial load of the MC12429 synthesizer.

M[8:0] and N[1:0] are normally specified once at power-up through the parallel interface, and then possibly again through the serial interface. This approach allows the application to come up at one frequency and then change or fine-tune the clock as the ability to control the serial interface becomes available.

The TEST output provides visibility for one of the several internal nodes as determined by the T[2:0] bits in the serial configuration stream. It is not configurable through the parallel interface. Although it is possible to select the node
that represents FOUT, the CMOS output may not be able to toggle fast enough for some of the higher output frequencies. The T2, T1 and T0 control bits are preset to ' 000 ' when P_LOAD is LOW so that the PECL FOUT outputs are as jitter-free as possible. Any active signal on the TEST output pin will have detrimental affects on the jitter of the PECL output pair. In normal operations, jitter specifications are only guaranteed if the TEST output is static. The serial configuration port can be used to select one of the alternate functions for this pin.

Most of the signals available on the TEST output pin are useful only for performance verification of the MC12429 itself. However the PLL bypass mode may be of interest at the board level for functional debug. When T[2:0] is set to 110 the MC12429 is placed in PLL bypass mode. In this mode the S_CLOCK input is fed directly into the M and N dividers. The N divider drives the FOUT differential pair and the M counter drives the TEST output pin. In this mode the S_CLOCK input could be used for low speed board level functional test or debug. Bypassing the PLL and driving FOUT directly gives the user more control on the test clocks sent through the clock tree. Figure 5 shows the functional setup of the PLL bypass mode. Because the S_CLOCK is a CMOS level the input frequency is limited to 250 MHz or less. This means the fastest the FOUT pin can be toggled via the S_CLOCK is 125 MHz as the minimum divide ratio of the N counter is 2. Note that the M counter output on the TEST output will not be a 50% duty cycle due to the way the divider is implemented.

T2	T1	T0	TEST (Pin 20)
0	0	0	SHIFT REGISTER OUT
0	0	1	HIGH
0	1	0	FREF
0	1	1	M COUNTER OUT
1	0	0	FOUT
1	0	1	LOW
1	1	0	MCNT
1	1	1	FOUT/4

- T2=T1=1, T0=0: Test Mode (PLL bypass)
- SCLOCK is selected, MCNT is on TEST output, SCLOCK DIVIDE BY N is on FOUT pin

PLOADB acts as reset for test pin latch. When latch reset T2 data is shifted out TEST pin.
Figure 5. Serial Test Clock Block Diagram (PLL bypass)

DC CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 5 \%$)

Symbol	Characteristic	$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$70^{\circ} \mathrm{C}$			Unit	Condition
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
V_{IH}	Input HIGH Voltage	2.2			2.2			2.2			V	
V_{IL}	Input LOW Voltage			0.8			0.8			0.8	V	
IIN	Input Current			1.0			1.0			1.0	mA	
VOH	Output HIGH Voltage TEST	2.5			2.5			2.5			V	$\mathrm{IOH}=-0.8 \mathrm{~mA}$
V OL	Output LOW Voltage TEST			0.4			0.4			0.4	V	$\mathrm{IOL}=0.8 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage ${ }^{1}$. FOUT, FOUT	2.28		2.60	2.32		2.49	2.38		2.565	V	$\mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V}^{2}$.
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage ${ }^{\text {1. F FOUT, FOUT }}$	1.35		1.67	1.35		1.67	1.35		1.70	V	$\mathrm{V}_{\mathrm{CCO}}=3.3 \mathrm{~V}^{2}$.
${ }^{\text {ICC }}$	Power Supply Current $\begin{array}{r}\text { VCC } \\ \text { PLL_VCC }\end{array}$		85 15	$\begin{array}{\|c\|} \hline 100 \\ 20 \end{array}$		85 15	$\begin{aligned} & 100 \\ & 20 \end{aligned}$		85 15	$\begin{aligned} & 100 \\ & 20 \end{aligned}$	mA	

1. 50Ω to $V_{C C}-2.0 \mathrm{~V}$ termination.
2. Output levels will vary $1: 1$ with $V_{C C O}$ variation.

DC CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$)

Symbol	Characteristic	$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$70^{\circ} \mathrm{C}$			Unit	Condition
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
V_{IH}	Input HIGH Voltage	3.5			3.5			3.5			V	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8			0.8			0.8	V	
IIN	Input Current			1.0			1.0			1.0	mA	
V_{OH}	Output HIGH Voltage TEST	2.5			2.5			2.5			V	$1 \mathrm{OH}=-0.8 \mathrm{~mA}$
V_{OL}	Output LOW Voltage TEST			0.4			0.4			0.4	V	$\mathrm{IOL}=0.8 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage ${ }^{1 .}$. FOUT, FOUT	3.98		4.30	4.02		4.19	4.08		4.265	V	$\mathrm{V}_{\mathrm{CCO}}=5.0 \mathrm{~V}^{2}$.
V OL	Output LOW Voltage ${ }^{1 .}$. FOUT, FOUT	3.05		3.37	3.05		3.37	3.05		3.40	V	$\mathrm{V}_{\mathrm{CCO}}=5.0 \mathrm{~V}^{2}$.
ICC	Power Supply Current $\begin{array}{rr}\mathrm{V}_{\text {CC }} \\ & \text { PLL_ }{ }_{\text {CC }}\end{array}$		85 15	$\begin{array}{\|c\|} \hline 100 \\ 20 \end{array}$		85 15	100 20		85 15	$\begin{aligned} & 100 \\ & 20 \end{aligned}$	mA	

1. 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$ termination.
2. Output levels will vary $1: 1$ with $\mathrm{V}_{\mathrm{CCO}}$ variation.

AC CHARACTERISTICS $\left(T_{A}=0^{\circ}\right.$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ to $5.0 \mathrm{~V} \pm 5 \%$)

Symbol	Characteristic	Min	Max	Unit	Condition
$\mathrm{F}_{\text {MAXI }}$	Maximum Input Frequency $\begin{array}{r}\text { S_CLOCK } \\ \text { Xtal Oscillator }\end{array}$	10	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	MHz	Note 3.
FMAXO	Maximum Output Frequency	$\begin{gathered} 200 \\ 25 \end{gathered}$	$\begin{aligned} & 400 \\ & 400 \end{aligned}$	MHz	Note 4.
tlock	Maximum PLL Lock Time		10	ms	
tjitter	Period Deviation (Peak-to-Peak)		± 25	ps	Note 4., See Applications Section
t_{s}	Setup Time S_DATA to S_CLOCK S_CLOCK to M, N So $M+L O A D$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$		ns	
$t_{\text {h }}$	$\begin{array}{rr}\text { Hold Time } & \begin{array}{r}\text { S_DATA to S_CLOCK } \\ M, N \text { to P_LOAD }\end{array}\end{array}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$		ns	
tpwmin $^{\text {d }}$	Minimum Pulse Width $\quad \frac{\text { S LOAD }}{\text { P_LOAD }}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$		ns	Note 4.
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Output Rise/Fall FOUT	300	800	ps	20\%-80\%, Note 4.

3. 10 MHz is the maximum frequency to load the feedback devide registers. S_CLOCK can be switched at higher frequencies when used as a test clock in TEST_MODE 6.
4. 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$ pulldown.

APPLICATIONS INFORMATION

Using the On-Board Crystal Oscillator

The MC12429 features a fully integrated on-board crystal oscillator to minimize system implementation costs. The oscillator is a series resonant, multivibrator type design as opposed to the more common parallel resonant oscillator design. The series resonant design provides better stability and eliminates the need for large on chip capacitors. The oscillator is totally self contained so that the only external component required is the crystal. As the oscillator is somewhat sensitive to loading on its inputs the user is advised to mount the crystal as close to the MC12429 as possible to avoid any board level parasitics. To facilitate co-location surface mount crystals are recommended, but not required. Because the series resonant design is affected by capacitive loading on the xtal terminals loading variation introduced by crystals from different vendors could be a potential issue. For crystals with a higher shunt capacitance it may be required to place a resistance across the terminals to suppress the third harmonic. Although typically not required it is a good idea to layout the PCB with the provision of adding this external resistor. The resistor value will typically be between 500 and $1 \mathrm{~K} \Omega$.

The oscillator circuit is a series resonant circuit and thus for optimum performance a series resonant crystal should be used. Unfortunately most crystals are characterized in a parallel resonant mode. Fortunately there is no physical difference between a series resonant and a parallel resonant crystal. The difference is purely in the way the devices are
characterized. As a result a parallel resonant crystal can be used with the MC12429 with only a minor error in the desired frequency. A parallel resonant mode crystal used in a series resonant circuit will exhibit a frequency of oscillation a few hundred ppm lower than specified, a few hundred ppm translates to kHz inaccuracies. In a general computer application this level of inaccuracy is immaterial. Table 1 below specifies the performance requirements of the crystals to be used with the MC12429.

Table 1. Recommended Crystal Specifications

Parameter	Value
Crystal Cut	Fundamental AT Cut
Resonance	Series Resonance ${ }^{*}$
Frequency Tolerance	$\pm 75 \mathrm{ppm}$ at $25^{\circ} \mathrm{C}$
Frequency/Temperature Stability	$\pm 150 \mathrm{pm} 0$ to $70^{\circ} \mathrm{C}$
Operating Range	0 to $70^{\circ} \mathrm{C}$
Shunt Capacitance	$5-7 \mathrm{pF}$
Equivalent Series Resistance (ESR)	50 to 80Ω
Correlation Drive Level	$100 \mu \mathrm{~W}$
Aging	$5 \mathrm{ppm} / \mathrm{Yr}$ (First 3 Years)

[^0]
Power Supply Filtering

The MC12429 is a mixed analog/digital product and as such it exhibits some sensitivities that would not necessarily be seen on a fully digital product. Analog circuitry is naturally susceptible to random noise, especially if this noise is seen on the power supply pins. The MC12429 provides separate power supplies for the digital ciruitry $\left(\mathrm{V}_{\mathrm{CC}}\right)$ and the internal PLL (PLL_VCC) of the device. The purpose of this design technique is to try and isolate the high switching noise digital outputs from the relatively sensitive internal analog phase-locked loop. In a controlled environment such as an evaluation board this level of isolation is sufficient. However, in a digital system environment where it is more difficult to minimize noise on the power supplies a second level of isolation may be required. The simplest form of isolation is a power supply filter on the PLL_VCC pin for the MC12429.

Figure 6 illustrates a typical power supply filter scheme. The MC12429 is most susceptible to noise with spectral content in the 1 KHz to 1 MHz range. Therefore the filter should be designed to target this range. The key parameter that needs to be met in the final filter design is the DC voltage drop that will be seen between the VCC supply and the PLL_VCC pin of the MC12429. From the data sheet the IPLL_VCC current (the current sourced through the PLL_VCC pin) is typically 15 mA (20 mA maximum), assuming that a minimum of 3.0 V must be maintained on the PLL_VCC pin very little DC voltage drop can be tolerated when a $3.3 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ supply is used. The resistor shown in Figure 6 must have a resistance of $10-15 \Omega$ to meet the voltage drop criteria. The RC filter pictured will provide a broadband filter with approximately 100:1 attenuation for noise whose spectral content is above 20 KHz . As the noise frequency crosses the series resonant point of an individual capacitor it's overall impedance begins to look inductive and thus increases with increasing frequency. The parallel capacitor combination shown ensures that a low impedance path to ground exists for frequencies well above the bandwidth of the PLL.

Figure 6. Power Supply Filter
A higher level of attenuation can be acheived by replacing the resistor with an appropriate valued inductor. Figure 6 shows a $1000 \mu \mathrm{H}$ choke, this value choke will show a significant impedance at 10 KHz frequencies and above. Because of the current draw and the voltage that must be maintained on the PLL_VCC pin a low DC resistance
inductor is required (less than 15Ω). Generally the resistor/capacitor filter will be cheaper, easier to implement and provide an adequate level of supply filtering.

The MC12429 provides sub-nanosecond output edge rates and thus a good power supply bypassing scheme is a must. Figure 7 shows a representaive board layout for the MC12429. There exists many different potential board layouts and the one pictured is but one. The important aspect of the layout in Figure 7 is the low impedance connections between VCC and GND for the bypass capacitors. Combining good quality general purpose chip capacitors with good PCB layout techniques will produce effective capacitor resonances at frequencies adequate to supply the instantaneous switching current for the 12429 outputs. It is imperative that low inductance chip capacitors are used; it is equally important that the board layout does not introduce back all of the inductance saved by using the leadless capacitors. Thin interconnect traces between the capacitor and the power plane should be avoided and multiple large vias should be used to tie the capacitors to the buried power planes. Fat interconnect and large vias will help to minimize layout induced inductance and thus maximize the series resonant point of the bypass capacitors.

Figure 7. PCB Board Layout for MC12429 (28 PLCC)
Note the dotted lines circling the crystal oscillator connection to the device. The oscillator is a series resonant circuit and the voltage amplitude across the crystal is relatively small. It is imperative that no actively switching signals cross under the crystal as crosstalk energy coupled to these lines could significantly impact the jitter of the device. Special attention should be paid to the layout of the crystal to ensure a stable, jitter free interface between the crystal and the on-board oscillator. Note the provisions for placing a resistor across the crystal oscillator terminals as discussed in the crystal oscillator section of this data sheet.

Although the MC12429 has several design features to minimize the susceptibility to power supply noise (isolated power and grounds and fully differential PLL) there still may
be applications in which overall performance is being degraded due to system power supply noise. The power supply filter and bypass schemes discussed in this section should be adequate to eliminate power supply noise related problems in most designs.

Jitter Performance of the MC12429

The MC12429 exhibits long term and cycle-to-cycle jitter which rivals that of SAW based oscillators. This jitter performance comes with the added flexibility one gets with a synthesizer over a fixed frequency oscillator.

Figure 8. RMS PLL Jitter versus VCO Frequency

Figure 8 illustrates the RMS jitter performance of the MC12429 across its specified VCO frequency range. Note that the jitter is a function of both the output frequency as well as the VCO frequency, however the VCO frequency shows a much stronger dependence. The data presented has not been compensated for trigger jitter, this fact provides a measure of guardband to the reported data.

The typical method of measuring the jitter is to accumulate a large number of cycles, create a histogram of the edge placements and record peak-to-peak as well as standard deviations of the jitter. Care must be taken that the measured edge is the edge immediately following the trigger edge. All of the jitter data reported on the MC12429 was collected in this manner.

Figure 9 shows the jitter as a function of the output frequency. For the 12429 this information is probably of more importance. The flat line represents an RMS jitter value that corresponds to an 8 sigma ± 25 ps peak-to-peak long term period jitter. The graph shows that for output frequencies from 87.5 to 400 MHz the jitter falls within the $\pm 25 \mathrm{ps}$ peak-to-peak specification. The general trend is that as the output frequency is decreased the output edge jitter will increase.

Figure 9. RMS Jitter versus Output Frequency

The jitter data presented should provide users with enough information to determine the effect on their overall timing budget. The jitter performance meets the needs of most system designs while adding the flexibility of frequency margining and field upgrades. These features are not available with a fixed frequency SAW oscillator.

OUTLINE DIMENSIONS

OUTLINE DIMENSIONS

Revision History

Revision	Min	Date
Rev 6	06/00	PECL V_{OH} and V_{OL} values in DC output characteristics table were changed from 100E to 10E $(10 \mathrm{H})$ style. Output levels represent a greater differential output swing and reflect actual temperature dependency. PECL compatibility of output levels is fully maintained. Control input V_{IH} and V_{IL} values in DC characteristic table were changed. The control input logic threshold is approximately $\mathrm{V}_{\mathrm{CC}} / 2$. N -divider values and reference frequency divider were updated on the datasheet to reflect actual device architecture without affecting device functionality.

Abstract

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (凶4) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

Technical Information Center: 1-800-521-6274
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu. Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334

HOME PAGE: http://www.motorola.com/semiconductors/

[^0]: * See accompanying text for series versus parallel resonant

