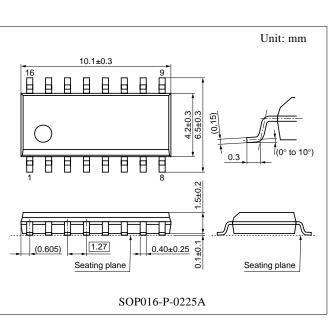
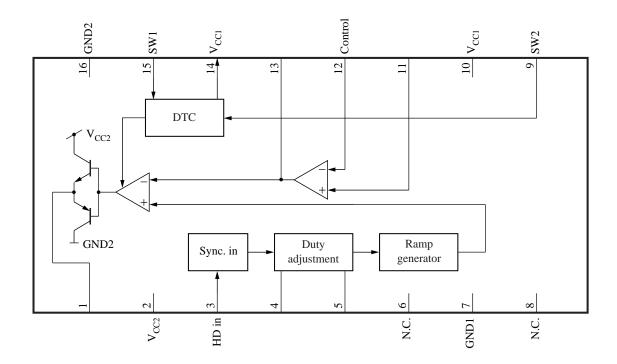
AN5757S

CRT horizontal deflection voltage control IC

Overview


The AN5757S is an IC for PWM-system CRT horizontal deflection voltage control. It can be used for horizontal frequency from 20 kHz to 140 kHz and applicable from a popular type monitor to high precision monitor. Its SO-16-pin package enables the users to desigh the sets simple and efficient.

Features


- PWM output
- Built-in thermal protection circuit (cut off both upper and lower push-pull output transistor)
- Soft start function
- Built-in error amp.

Applications

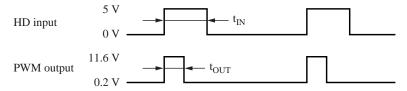
• CRT monitors

Block Diagram

Pin Descriptions

Pin No.	Description	Pin No.	Description
1	PWM output	9	On/off SW input2 (SW2)
2	Power supply for output (V _{CC2})	10	Power supply (V _{CC1})
3	Horizontal synchronous input (HD in)	11	IN+
4	Duty adjustment (capacitor)	12	IN-
5	Duty adjustment (resistor)	13	NF
6	N.C.	14	Capacitor for DTC
7	GND1	15	On/off SW input1 (SW1)
8	N.C.	16	GND2

Absolute Maximum Ratings


Parameter	Symbol	Rating	Unit
Supply voltage	V _{CC1}	13.2	v
	V _{CC2}	13.2	
Supply current	I _{CC1}	6.3	mA
	I _{CC2}	15.0	
Output current	I ₁	±150	mA
Power dissipation *2	P _D	198	mW
Operating ambient temperature *1	T _{opr}	-20 to +70	°C
Storage temperature *1	T _{stg}	-55 to +125	°C

Note) *1: Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for $T_a = 25^{\circ}C$. *2: The power dissipation shown is for the IC package in free air at $T_a = 70^{\circ}C$.

Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	V_{CC1} , V_{CC2}	11.0 to 13.0	V
HD input	V ₃	0 to V ₁₀	V
SW1 input	V _{I15}	0 to V ₁₀	V
SW2 input	V ₁₉	0 to V ₁₀	V
Max. duty adjustment voltage	V ₅	0 to 6	V
Error amp. positive input	V ₁₁	0 to 6	V
Error amp. negative input	V ₁₂	0 to 6	V
Max. output current of PWM output	I _{1(max)}	-150 to +150	mA

Note) '+' denotes current flowing into the IC, and '-' denotes current flowing out of the IC.

 $\begin{array}{l} \mbox{Minimum width } (t_{OUT\ min}) \mbox{ of the } t_{OUT} \\ \mbox{can be adjusted at pin 5.} \\ \mbox{Use it to get } t_{OUT\ min} < t_{IN} \\ \mbox{Output stops at } t_{OUT\ min} \geq t_{IN} \end{array}$

Electrical Characteristics at $T_a = 25^{\circ}C$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Power supply current	I _{CC1}	$V_{CC} = 12 V, V_{9, 15} = 5 V,$ $V_3 = 5 V, V_{11} = 0 V$	2.0	4.0	6.0	mA
Power supply current for output	I _{CC2}	$V_{CC} = 12 V, V_{9, 15} = 5 V,$ $V_3 = 5 V, V_{11} = 0 V$	6.0	10.0	14.0	mA
Duty						
Pin voltage of duty adjustment resistor pin	V ₅₋₇	$V_{CC} = 12 V,$ $V_3 = 0 V$	2.0	3.0	4.0	V
Pin current (for discharge) of duty adjustment capacitor pin	1 _{4D}	$V_{CC} = 12 V,$ $V_3 = 0 V, V_4 = 1 V$	3.0			mA
Pin current (for charge) of duty adjustment capacitor pin	1 _{4C}	$V_{CC} = 12 V,$ $V_3 = 5 V, V_4 = 1 V$	-60	-45	-30	μA
High-level of duty adjustment capacitor pin	V _{4-7H}	$V_{CC} = 12 V,$ $V_3 = 5 V$	3.2	3.7	4.2	V
Low-level of duty adjustment capacitor pin	V _{4-7L}	$V_{CC} = 12 V,$ $V_3 = 0 V$	0		0.15	V
DTC						
SW2 pin current H	I _{9H}	$V_{CC} = 12 V, V_3 = 5 V,$ $V_9 = 12 V$	200	300	400	μA
SW2 pin current M	I _{9M}	$V_{CC} = 12 V, V_3 = 5 V,$ $V_9 = 5 V$	45	70	95	μA
SW2 pin current L	I _{9L}	$V_{CC} = 12 V, V_3 = 5 V,$ $V_9 = 0 V$	-5	_	0	μA
SW1 pin current H	I _{15H}	$V_{CC} = 12 V, V_3 = 5 V,$ $V_{15} = 12 V$	200	300	400	μA
SW1 pin current M	I _{15M}	$V_{CC} = 12 V, V_3 = 5 V,$ $V_{15} = 5 V$	45	70	95	μA
SW1 pin current L	I _{15L}	$V_{CC} = 12 V, V_3 = 5 V,$ $V_{15} = 0 V$	-5	_	0	μA
Pin current (discharge) of DTC capacitor pin	I _{14D}	$V_{CC} = 12 V, V_{14} = 5 V,$ $V_{9, 15} = 12 V$	60	90	120	μA
Pin current (charge) of DTC capacitor pin	I _{14C}	$V_{CC} = 12 V, V_{14} = 10 V,$ $V_{9, 15} = 0 V$	-15	-8	-1	mA
High-level of DTC capacitor pin	V _{14-7H}	$V_{CC} = 12 V,$ $V_{9, 15} = 0 V$	11.5			V
Low-level of DTC capacitor pin	V _{14-7L}	$V_{CC} = 12 V,$ $V_{9, 15} = 12 V$	0	—	0.15	V

\blacksquare Electrical Characteristics at T_a = 25°C (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
PWM output						
High-level of PWM output pin (no load)	V _{1-16H1}	$V_{CC} = 12 \text{ V}, V_3 = 0 \text{ V},$ pin 1: Open	11.0			V
Low-level of PWM output pin (no load)	V _{1-16L1}	$V_{CC} = 12 \text{ V}, V_3 = 5 \text{ V},$ pin 1: Open	0		1.0	V
High-level of PWM output pin (with load)	V _{1-16H2}	$V_{CC} = 12 \text{ V}, V_3 = 0 \text{ V},$ $I_1 = -150 \text{ mA}$	8.0	10.0	11.5	V
Low-level of PWM output pin (with load)	V _{1-16L2}	$V_{CC} = 12 \text{ V}, V_3 = 5 \text{ V},$ $I_1 = +150 \text{ mA}$	0.5	1.5	2.5	V

• Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
HD input frequency	f ₃	$V_{CC} = 12 V,$ $V_{9, 15} = 12 V, V_{11} = 0 V$	20		140	kHz
HD input threshold value	V _{3TH}	$V_{CC} = 12 V,$ $V_{9, 15} = 12 V, V_{11} = 0 V$	0.6	1	1.4	V
Open gain of error amp.	А	$V_{CC} = 12 V$		80		dB
Current capability of PWM output pin	I ₁	$V_{CC} = 12 V$	-150		+150	mA
Operation start voltage	V _{10-7N}	$V_{11} = 0 V, V_3 = 5 V$	8.1	8.5	8.9	V
Operation stop voltage	V _{10-7F}	$V_{11} = 0 V, V_3 = 5 V$	6.1	6.5	6.9	V
SW1 threshold value	V _{S15}	$V_{CC} = 12 V, V_{11} = 0 V,$ $V_3 = 5 V$	1.1	1.5	1.9	V
SW2 threshold value	V _{S9}	$V_{CC} = 12 V, V_{11} = 0 V,$ $V_3 = 5 V$	1.1	1.5	1.9	V

Terminal Equivalent Circuits

Pin No.	Equivalent circuit	Description	Waveform
1		PWM output: Pin for output	11 V 1 V
2	2 V _{CC2}	Power supply for output: Power supply for PWM output Apply DC 12 V.	DC 12 V

Pin No. Equivalent circuit Description Waveform 3 Horizontal synchronizing signal CC1 CC1 input: 5 V 100 µA Input pin of horizontal synchronizing signal $20 \text{ k}\Omega$ Detection level is 1 V. 1 V 0 V 1 V $\frac{1}{1}$ $\tau \tau$ 4 For duty adjustment (capacitor): $V_{CC1} \neq V_{CC1}$ HD Duty can be adjusted by Ø↓50 μA attaching a capacitor between the pin and GND. (4)If capacitance is raised, duty Pin 4 ⊥ 20 pF becomes small. 777 5 DC Duty adjustment (resistor): V_{CC1} CC1 0.5 V to 5.0 V variable Duty can be adjusted by 🖞 45 kΩ attaching a resistor between the pin and GND. (5 V_{th} If resistance is lowered, duty becomes large. 15 kΩ t = t6 N.C.: Pin for N.C. 7 0 V GND1: (7)Pin for GND TT8 N.C.: Pin for N.C. 9 Switch input2 for on/off: Pin 9 Pin 1 V_{CC1} CC1 On/off switch pin for PWM 0 V \rightarrow High (11 V) 50 μA output 2 V or more \rightarrow Low (1 V) On at 2 V or more and off at $30 k\Omega$ 0 V. (Threshold level: 1.5 V) 22 10 Power supply: DC 12 V V_{CC1} (10)Power supply pin Apply DC 12 V.

Terminal Equivalent Circuits (continued)

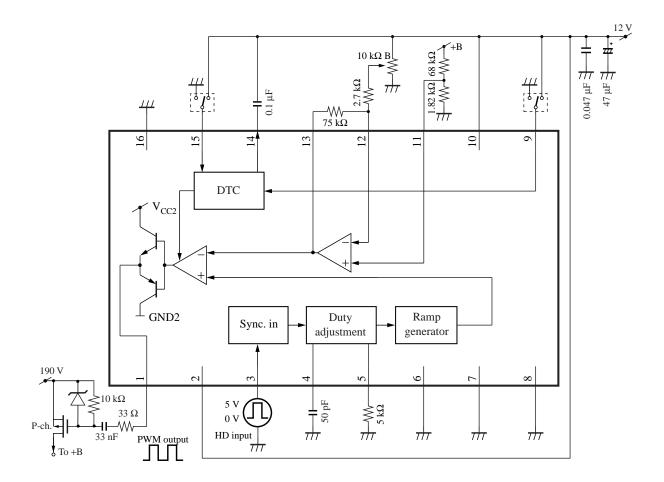
Pin No.	Equivalent circuit	Description	Waveform
11	V _{CC1} V _{CC1} V _{CC1} 50 μA	IN+: Input pin for + side input pin for error amp.	
12	Pin 11, 12	IN–: Input pin for – side input pin for error amp.	
13	$\begin{array}{c} \begin{array}{c} \\ \hline \\ $	NF: Output pin for error amp.	
14	14	Capacitor for DTC: Capacitor pin to determine a soft start time If capacitance is raised, time becomes long.	
15	15	Switch input1 for on/off: On/off switch pin for PWM output. On at 2 V or more and off at 0 V. (Threshold level: 1.5 V)	Pin 15Pin 1 $0 V$ \rightarrow High (11 V) $2 V$ or more \rightarrow Low (1 V)
16	(16)	GND2 Pin for GND.	0 V

Terminal Equivalent Circuits (continued)

■ Usage Notes

• Allowable mode of short-circuit between pins

Short circuit allowable pins are marked with \bullet symbol.


It has been confirmed that a typical IC sample does not break down even if pins are short-circuitted for one second.

It has been confirmed that a typical IC sample does not emitting smoke and fire even if pins are short-circuitted for ten seconds. This is not inspected for all ICs.

The mark \times shows that a breakdown may be caused if the pins are short-circuitted. Full care must be taken on using the IC.

1		_														
2																
3	•	•														
4	•	•	•		_											
5																
6	•	•	•	•	•											
7	•	×	•	•	•	•										
8	•	•	•	•	•	•	•									
9	•	•	•	•	•	•	•	•								
10	•	•	•	•	•	•	×	•	•							
11	•	•	•	•	•	•	•	•	•	•						
12	•	•	•	•	•	•	•	•	•	•	•					
13	•	•	•	•	•	•	•	•	•	•	•	•				
14	•	•	•	•	•	•	•	•	•	•	•	•	•			
15	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
16		×	•	•	•	•	•	•	•	×	•	•	•	•	•	
Pin No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

■ Application Circuit Example

Note) When both of the pin 4 and the pin 5 are open, minimum pulse width of PWM output is $2.0 \ \mu s$.