# mos integrated circuit $\mu \mathbf{PD78P098A}$

### 8-BIT SINGLE-CHIP MICROCONTROLLER

The  $\mu$ PD78P098A is a member of the  $\mu$ PD78098 subseries of the 78K/0 series products, in which the onchip mask ROM of the  $\mu$ PD78098A is replaced with one-time PROM.

Because a program can be written by the user, the  $\mu$ PD78P098A is ideal for evaluation of a system under development, small-scale production of a variety of systems, and early start of production of a system.

## The functions are explained in detail in the following manuals. Be sure to read these manuals when designing your system.

μPD78098 Subseries User's Manual : IEU-1381 78K/0 Series User's Manual - Instruction: U12326E

### FEATURES

- Pin-compatible with mask ROM model (except VPP pin)
- Internal PROM: 60K bytes<sup>Note 1</sup>
- Internal high-speed RAM : 1024 bytes
- Buffer RAM : 32 bytes
- Internal expansion RAM : 2048 bytes<sup>Note 2</sup>
- Operating voltage same as mask ROM model (VDD = 2.7 to 5.5 V)
- Supports QTOP<sup>™</sup> microcontroller
- Notes 1. The internal PROM capacity can be changed by using the memory size select register(IMS).
  - 2. Internal expansion RAM capacity can be changed by using the internal expansion RAM size select register(IXS).
- **Remark** "QTOP microcontroller" is a generic name for one-time PROM-containing microcontrollers totally supported by NEC's writing service (writing, marking, screening, and inspection).

### - The $\mu$ PD78P098A differs from the mask ROM model in the following points: -

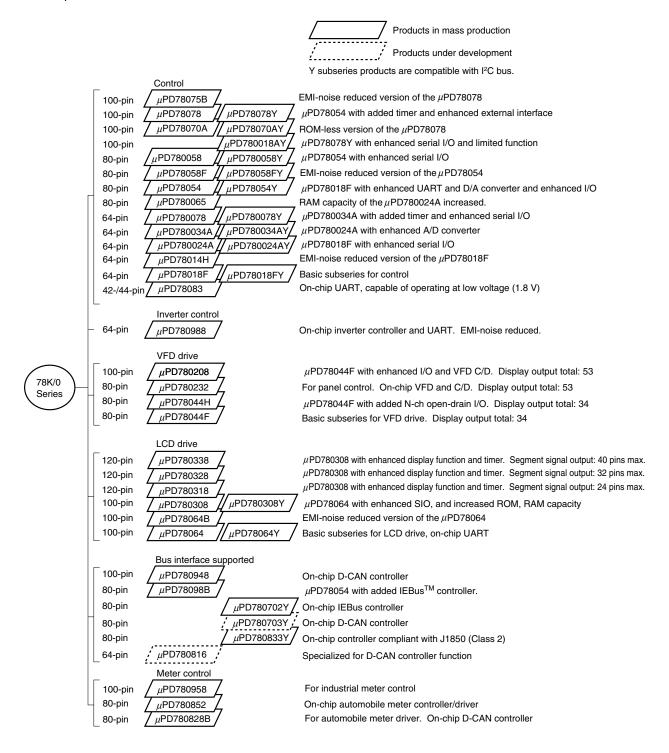
- The memory can be mapped in the same manner as the mask ROM model by using the memory size select register(IMS) and internal expansion RAM size select register(IXS).
- The P60 through P63 pins are not provided with pull-up resistors.

.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

### **ORDERING INFORMATION**

Part Number


\*

Package

 $\mu$  PD78P098AGC-8BT 80-pin plastic QFP (14 × 14)

### ★ 78K/0 SERIES LINEUP

The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.



**Remark** VFD (Vacuum Fluorescent Display) is referred to as FIP<sup>™</sup> (Fluorescent Indicator Panel) in some documents, but the functions of the two are the same.

The major functional differences among the subseries are shown below.

|                        | Function       | ROM                 |       | Tin    | ner   |      | 8-Bit | 10-Bit | 8-Bit | Serial Interface                | I/O | VDD           | External     |
|------------------------|----------------|---------------------|-------|--------|-------|------|-------|--------|-------|---------------------------------|-----|---------------|--------------|
| Subseries              | Name           | Capacity<br>(Bytes) | 8-Bit | 16-Bit | Watch | WDT  | A/D   | A/D    | D/A   |                                 |     | MIN.<br>Value | Expansior    |
| Control                | μPD78075B      | 32 K to 40 K        | 4 ch  | 1 ch   | 1 ch  | 1 ch | 8 ch  | -      | 2 ch  | 3 ch (UART: 1 ch)               | 88  | 1.8 V         | $\checkmark$ |
|                        | μPD78078       | 48 K to 60 K        |       |        |       |      |       |        |       |                                 |     |               |              |
|                        | μPD78070A      | _                   |       |        |       |      |       |        |       |                                 | 61  | 2.7 V         |              |
|                        | µPD780058      | 24 K to 60 K        | 2 ch  |        |       |      |       |        |       | 3 ch (time-division UART: 1 ch) | 68  | 1.8 V         |              |
|                        | $\mu$ PD78058F | 48 K to 60 K        |       |        |       |      |       |        |       | 3 ch (UART: 1 ch)               | 69  | 2.7 V         |              |
|                        | μPD78054       | 16 K to 60 K        |       |        |       |      |       |        |       |                                 |     | 2.0 V         |              |
|                        | μPD780065      | 40 K to 48 K        |       |        |       |      |       |        | -     | 4 ch (UART: 1 ch)               | 60  | 2.7 V         |              |
|                        | µPD780078      | 48 K to 60 K        |       | 2 ch   |       |      | -     | 8 ch   |       | 3 ch (UART: 2 ch)               | 52  | 1.8 V         |              |
|                        | μPD780034A     | 8 K to 32 K         |       | 1 ch   |       |      |       |        |       | 3 ch (UART: 1 ch)               | 51  |               |              |
|                        | μPD780024A     |                     |       |        |       |      | 8 ch  | -      |       |                                 |     |               |              |
|                        | μPD78014H      |                     |       |        |       |      |       |        |       | 2 ch                            | 53  |               |              |
|                        | $\mu$ PD78018F | 8 K to 60 K         |       |        |       |      |       |        |       |                                 |     |               |              |
|                        | μPD78083       | 8 K to 16 K         |       | _      | -     |      |       |        |       | 1 ch (UART: 1 ch)               | 33  |               | -            |
| Inverter<br>control    | μPD780988      | 16 K to 60 K        | 3 ch  | Note   | -     | 1 ch | -     | 8 ch   | -     | 3 ch (UART: 2 ch)               | 47  | 4.0 V         | V            |
| VFD                    | µPD780208      | 32 K to 60 K        | 2 ch  | 1 ch   | 1 ch  | 1 ch | 8 ch  | -      | -     | 2 ch                            | 74  | 2.7 V         | -            |
| drive                  | µPD780232      | 16 K to 24 K        | 3 ch  | -      | -     |      | 4 ch  |        |       |                                 | 40  | 4.5 V         |              |
|                        | $\mu$ PD78044H | 32 K to 48 K        | 2 ch  | 1 ch   | 1 ch  |      | 8 ch  |        |       | 1 ch                            | 68  | 2.7 V         |              |
|                        | $\mu$ PD78044F | 16 K to 40 K        |       |        |       |      |       |        |       | 2 ch                            |     |               |              |
| LCD                    | µPD780338      | 48 K to 60 K        | 3 ch  | 2 ch   | 1 ch  | 1 ch | -     | 10 ch  | 1 ch  | 2 ch (UART: 1 ch)               | 54  | 1.8 V         | -            |
| drive                  | µPD780328      |                     |       |        |       |      |       |        |       |                                 | 62  |               |              |
|                        | μPD780318      |                     |       |        |       |      |       |        |       |                                 | 70  |               |              |
|                        | µPD780308      | 48 K to 60 K        | 2 ch  | 1 ch   |       |      | 8 ch  | -      | -     | 3 ch (time-division UART: 1 ch) | 57  | 2.0 V         |              |
|                        | μPD78064B      | 32 K                |       |        |       |      |       |        |       | 2 ch (UART: 1 ch)               |     |               |              |
|                        | μPD78064       | 16 K to 32 K        |       |        |       |      |       |        |       |                                 |     |               |              |
| Bus                    | µPD780948      | 60 K                | 2 ch  | 2 ch   | 1 ch  | 1 ch | 8 ch  | -      | -     | 3 ch (UART: 1 ch)               | 79  | 4.0 V         | $\checkmark$ |
| interface<br>supported | μPD78098B      | 40 K to 60 K        |       | 1 ch   |       |      |       |        | 2 ch  |                                 | 69  | 2.7 V         | _            |
|                        | μPD780816      | 32 K to 64 K        |       | 2 ch   |       |      | 12 ch |        | _     | 2 ch (UART: 1 ch)               | 46  | 4.0 V         |              |
| Meter<br>control       | μPD780958      | 48 K to 60 K        | 4 ch  | 2 ch   | _     | 1 ch | _     | _      | _     | 2 ch (UART: 1 ch)               | 69  | 2.2 V         | _            |
| Dash                   | μPD780852      | 32 K to 40 K        | 3 ch  | 1 ch   | 1 ch  | 1 ch | 5 ch  | -      | -     | 3 ch (UART: 1 ch)               | 56  | 4.0 V         | -            |
| board<br>control       | μPD780828B     | 32 K to 60 K        |       |        |       |      |       |        |       | 2 ch (UART: 1 ch)               | 59  | 1             |              |

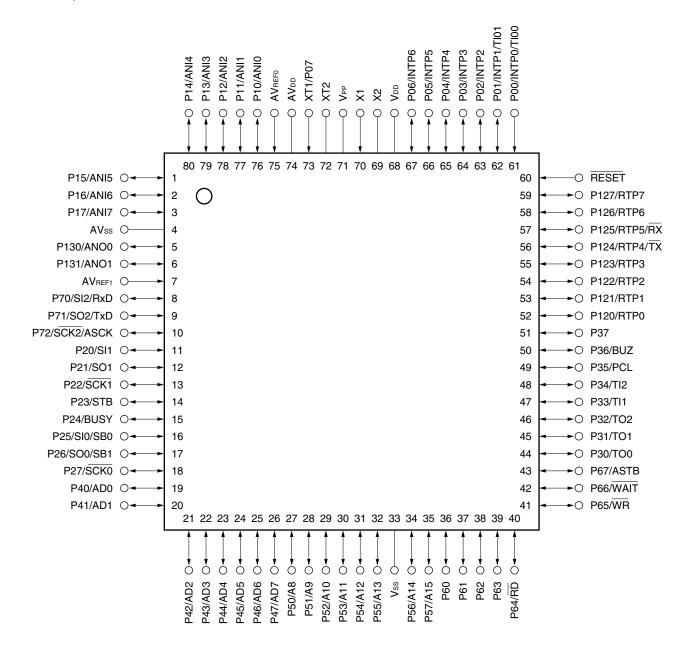
**Note** 16-bit timer: 2 channels

10-bit timer: 1 channel

### **Functional Outline**

|                 | Item                   | Function                                                                    |  |  |  |  |
|-----------------|------------------------|-----------------------------------------------------------------------------|--|--|--|--|
| Internal mem    | ory                    | PROM : 60K bytes <sup>Note 1</sup>                                          |  |  |  |  |
|                 |                        | • RAM                                                                       |  |  |  |  |
|                 |                        | Internal high-speed RAM : 1024 bytes                                        |  |  |  |  |
|                 |                        | Buffer RAM : 32 bytes                                                       |  |  |  |  |
|                 |                        | Internal expansion RAM : 2048 bytes <sup>Note 2</sup>                       |  |  |  |  |
| Memory space    | ce                     | 64K bytes                                                                   |  |  |  |  |
| General-purp    | ose register           | 8 bits $\times$ 32 registers (8 bits $\times$ 8 registers $\times$ 4 banks) |  |  |  |  |
| Instruction     |                        | Variable instruction execution time                                         |  |  |  |  |
| cycle           | With main system clock | 0.5 μs/1.0 μs/2.0 μs/4.0 μs/8.0 μs/16.0 μs (at 6.0 MHz)                     |  |  |  |  |
|                 | With subsystem clock   | 122 μs (at 32.768 kHz)                                                      |  |  |  |  |
| Instruction se  | et•                    | 16-bit operation                                                            |  |  |  |  |
|                 |                        | Multiplication/division (8 bits × 8 bits, 16 bits ÷ 8 bits)                 |  |  |  |  |
|                 |                        | Bit manipulation (set, reset, test, Boolean operation)                      |  |  |  |  |
|                 |                        | BCD adjustment, etc.                                                        |  |  |  |  |
| I/O port        |                        | Total : 69                                                                  |  |  |  |  |
|                 |                        | CMOS input : 2                                                              |  |  |  |  |
|                 |                        | • CMOS I/O : 63                                                             |  |  |  |  |
|                 |                        | N-ch open-drain I/O : 4                                                     |  |  |  |  |
| IEBus control   | ller                   | Effective transmission rate: 3.9 kbps/17 kbps/26 kbps                       |  |  |  |  |
| A/D converte    | r                      | 8-bit resolution × 8 channels                                               |  |  |  |  |
| D/A converte    | r                      | 8-bit resolution $\times$ 2 channels                                        |  |  |  |  |
| Serial interfac | ce                     | 3-line/SBI/2-line mode selectable : 1 channel                               |  |  |  |  |
|                 |                        | 3-line mode (with function to automatically transfer/                       |  |  |  |  |
|                 |                        | receive 32 bytes max.) : 1 channel                                          |  |  |  |  |
|                 |                        | 3-line/UART mode selectable : 1 channel                                     |  |  |  |  |
| Timer           |                        | 16-bit timer/event counter : 1 channel                                      |  |  |  |  |
|                 |                        | 8-bit timer/event counter : 2 channels                                      |  |  |  |  |
|                 |                        | Watch timer : 1 channel                                                     |  |  |  |  |
|                 |                        | Watchdog timer : 1 channel                                                  |  |  |  |  |
| Timer output    |                        | 3 (14-bit PWM output: 1)                                                    |  |  |  |  |
| Clock output    |                        | 15.6 kHz, 31.3 kHz, 62.5 kHz, 125 kHz, 250 kHz, 500 kHz, 1.0 MHz, 2.0 MHz,  |  |  |  |  |
|                 |                        | 4.0 MHz (with 6.0-MHz main system clock)                                    |  |  |  |  |
|                 |                        | 32.768 kHz (with 32.768-kHz subsystem clock)                                |  |  |  |  |
| Buzzer outpu    | ıt                     | 977 Hz, 1.95 kHz, 3.9 kHz, 7.8 kHz (with 6.0-MHz main system clock)         |  |  |  |  |

**Notes 1.** The internal PROM capacity can be changed by using the memory size select register (IMS).


2. 0 or 2048 bytes can be selected by using the internal expansion RAM size select register (IXS).

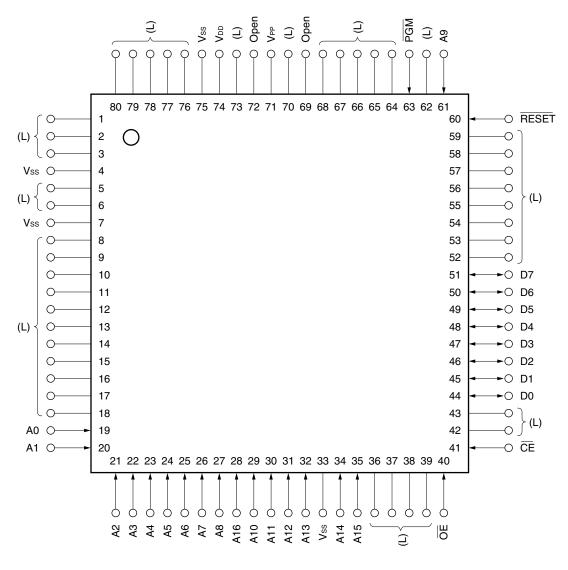
|   | Item                             |                    | Function                              |
|---|----------------------------------|--------------------|---------------------------------------|
|   | Vector Maskable interrupt        |                    | Internal: 14, external: 7             |
|   | interrupt Non-maskable interrupt |                    | Internal: 1                           |
|   |                                  | Software interrupt | 1                                     |
|   | Test input                       |                    | Internal: 1, external: 1              |
|   | Operating voltage                |                    | V <sub>DD</sub> = 2.7 to 5.5 V        |
| * | Package                          |                    | • 80-pin plastic QFP (14 $\times$ 14) |

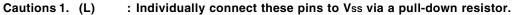
### **PIN CONFIGURATION (Top View)**

### (1) Normal operation mode

• 80-pin plastic QFP (14  $\times$  14)  $\mu$ PD78P098AGC-8BT



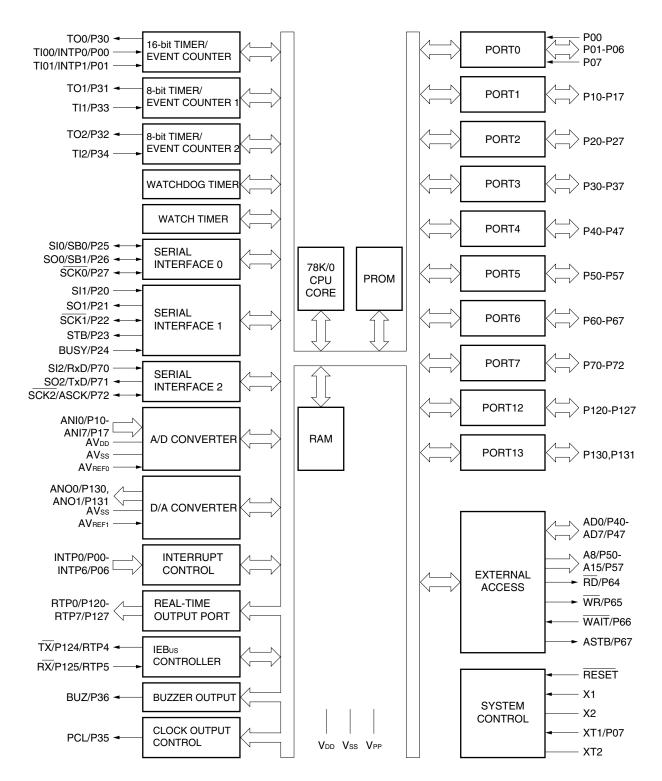

### Cautions 1. Directly connect the VPP pin to Vss.


- 2. Connect the AVDD pin to VDD.
- 3. Connect the AVss pin to Vss.

| P00-P07 :     | Port0                      | RX         | : | Receive Data (IEBus Controller)  |
|---------------|----------------------------|------------|---|----------------------------------|
| P10-P17 :     | Port1                      | TX         | : | Transmit Data (IEBus Controller) |
| P20-P27 :     | Port2                      | PCL        | : | Programmable Clock               |
| P30-P37 :     | Port3                      | BUZ        | : | Buzzer Clock                     |
| P40-P47 :     | Port4                      | STB        | : | Strobe                           |
| P50-P57 :     | Port5                      | BUSY       | : | Busy                             |
| P60-P67 :     | Port6                      | AD0-AD7    | : | Address/Data Bus                 |
| P70-P72 :     | Port7                      | A8-A15     | : | Address Bus                      |
| P120-P127 :   | Port12                     | RD         | : | Read Strobe                      |
| P130, P131 :  | Port13                     | WR         | : | Write Strobe                     |
| RTP0-RTP7 :   | Real-Time Output Port      | WAIT       | : | Wait                             |
| INTP0-INTP6 : | Interrupt from Peripherals | ASTB       | : | Address Strobe                   |
| TI00, TI01 :  | Timer Input                | X1, X2     | : | Crystal (Main System Clock)      |
| TI1, TI2 :    | Timer Input                | XT1, XT2   | : | Crystal (Subsystem Clock)        |
| TO0-TO2 :     | Timer Output               | RESET      | : | Reset                            |
| SB0, SB1 :    | Serial Bus                 | ANIO-ANI7  | : | Analog Input                     |
| SI0-SI2 :     | Serial Input               | ANO0, ANO1 | : | Analog Output                    |
| SO0-SO2 :     | Serial Output              | AVDD       | : | Analog Power Supply              |
| SCK0-SCK2 :   | Serial Clock               | AVss       | : | Analog Ground                    |
| RxD :         | Receive Data (UART)        | AVREF0, 1  | : | Analog Reference Voltage         |
| TxD :         | Transmit Data (UART)       | Vdd        | : | Power Supply                     |
| ASCK :        | Asynchronous Serial Clock  | Vpp        | : | Programming Power Supply         |
|               |                            | Vss        | : | Ground                           |

★

- (2) PROM programming mode
  - 80-pin plastic QFP (14  $\times$  14)  $\mu$ PD78P098AGC-8BT






- 2. Vss : Connect this pin to ground.
- 3. RESET : Keep this pin to the low level.
- 4. Open : Connect nothing to these pins.

| A0-A16 | : Address Bus   | RESET | : Reset                    |
|--------|-----------------|-------|----------------------------|
| D0-D7  | : Data Bus      | Vdd   | : Poewr Supply             |
| CE     | : Chip Enable   | Vpp   | : Programming Power Supply |
| ŌĒ     | : Output Enable | Vss   | : Ground                   |
| PGM    | : program       |       |                            |

### **BLOCK DIAGRAM**



### TABLE OF CONTENTS

| 1. | DIFFERENCES BETWEEN $\mu$ PD78P098A AND MASK ROM MODEL | 12 |
|----|--------------------------------------------------------|----|
| 2. | PIN FUNCTIONS                                          | 13 |
|    | 2.1 Pins in Normal Operation Mode                      |    |
|    | 2.2 Pins in PROM Programming Mode                      |    |
|    | 2.3 Pin I/O Circuits and Handling of Unused Pins       | 17 |
| 3. | MEMORY SIZE SELECT REGISTER (IMS)                      | 21 |
| 4. | INTERNAL EXPANSION RAM SIZE SELECT REGISTER (IXS)      | 22 |
| 5. | PROM PROGRAMMING                                       | 23 |
|    | 5.1 Operation Modes                                    | 23 |
|    | 5.2 PROM Writing Procedure                             | 25 |
|    | 5.3 PROM Read Procedure                                | 29 |
| 6. | SCREENING OF ONE-TIME PROM MODEL                       | 30 |
| 7. | ELECTRICAL SPECIFICATIONS                              | 31 |
| 8. | PACKAGE DRAWINGS                                       | 65 |
| 9. | RECOMMENDED SOLDERING CONDITIONS                       | 66 |
| AF | PENDIX A. DEVELOPMENT TOOLS                            | 67 |
| AF | PENDIX B. RELATED DOCUMENTS                            | 71 |

 $\star$ 

### 1. DIFFERENCES BETWEEN $\mu$ PD78P098A AND MASK ROM MODEL

 The μPD78P098A is provided with a one-time PROM to which a program can be written only once. The functions of the μPD78P098A, except the PROM specification and the mask option of P60 through P63 pins, can be set to be the same as those of the mask ROM model by using the memory size select register and internal expansion RAM size select register.

Table 1-1 shows the differences between the  $\mu$ PD78P098A and mask ROM model.

### Table 1-1. Differences between $\mu \text{PD78P098A}$ and Mask ROM Model

| Item                        | μPD78P098A                    | Mask ROM Model                                     |
|-----------------------------|-------------------------------|----------------------------------------------------|
| IC pin                      | Not provided                  | Provided                                           |
| VPP pin                     | Provided                      | Not provided                                       |
| Mask option of P60-P63 pins | Pull-up resistor not provided | Pull-up resistor can be provided by<br>mask option |

Cautions 1. The internal ROM capacity of the  $\mu$ PD78P098A can be changed by using the memory size select register. The internal PROM capacity is set to 60K bytes at RESET.

2. The internal expansion RAM capacity of the  $\mu$ PD78P098A can be changed by using the internal expansion RAM size select register.

The internal expansion RAM capacity is set to 2K bytes at RESET.

### 2. PIN FUNCTIONS

### 2.1 Pins in Normal Operation Mode

### (1) Port pins (1/2)

| Pin Name              | I/O   |                        | Function                                     | At Reset | Shared with: |
|-----------------------|-------|------------------------|----------------------------------------------|----------|--------------|
| P00                   | Input | Port 0.                | Input only                                   | Input    | INTP0/TI00   |
| P01                   | I/O   | 8-bit I/O port         | Can be set in input or output mode in 1-bit  | Input    | INTP1/TI01   |
| P02                   | 1     |                        | units.                                       |          | INTP2        |
| P03                   | 1     |                        | When used as an input port, a pull-up        |          | INTP3        |
| P04                   | 1     |                        | resistor can be connected via software.      |          | INTP4        |
| P05                   | 1     |                        |                                              |          | INTP5        |
| P06                   | 1     |                        |                                              |          | INTP6        |
| P07 <sup>Note 1</sup> | Input |                        | Input only                                   | Input    | XT1          |
| P10-P17               | I/O   | Port 1.                |                                              | Input    | ANI0-ANI7    |
|                       |       | 8-bit I/O port.        |                                              |          |              |
|                       |       | Can be set in input or | output mode in 1-bit units.                  |          |              |
|                       |       | When used as an inpu   | it port, a pull-up resistor can be connected |          |              |
|                       |       | via software. Note 2   |                                              |          |              |
| P20                   | I/O   | Port 2.                |                                              | Input    | SI1          |
| P21                   | 1     | 8-bit I/O port.        |                                              |          | SO1          |
| P22                   | 1     | Can be set in input or | output mode in 1-bit units.                  |          | SCK1         |
| P23                   | 1     | When used as an inpu   | it port, a pull-up resistor can be connected |          | STB          |
| P24                   | 1     | via software.          |                                              |          | BUSY         |
| P25                   | 1     |                        |                                              |          | SI0/SB0      |
| P26                   | 1     |                        |                                              |          | SO0/SB1      |
| P27                   | 1     |                        |                                              |          | SCK0         |
| P30                   | I/O   | Port 3.                |                                              | Input    | TO0          |
| P31                   | 1     | 8-bit I/O port.        |                                              |          | TO1          |
| P32                   | 1     | Can be set in input or | output mode in 1-bit units.                  |          | TO2          |
| P33                   | 1     | When used as an inpu   | it port, a pull-up resistor can be connected |          | TI1          |
| P34                   | 1     | via software.          |                                              |          | TI2          |
| P35                   | 1     |                        |                                              |          | PCL          |
| P36                   | 1     |                        |                                              |          | BUZ          |
| P37                   | 1     |                        |                                              |          | _            |

**Notes 1.** When using the P07/XT1 pin as an input port pin, set bit 6 (FRC) of the processor clock control register to 1 and do not use the feedback resistor of the subsystem clock oscillation circuit.

2. When using the P10/ANI0 through P17/ANI7 pins as analog input pins of the A/D converter, the pull-up resistors are automatically disconnected.

### (1) Port pins (2/2)

| Pin Name   | I/O |                          | Function                                    | At Reset | Shared with: |
|------------|-----|--------------------------|---------------------------------------------|----------|--------------|
| P40-P47    | I/O | Port 4.                  |                                             | Input    | AD0-AD7      |
|            |     | 8-bit I/O port.          |                                             |          |              |
|            |     | Can be set in input or   | output mode in 8-bit units.                 |          |              |
|            |     | When used as an inpu     | t port, a pull-up resistor can be connected |          |              |
|            |     | via software.            |                                             |          |              |
|            |     | Test input flag (KRIF) i | is set to 1 at falling edge of this port.   |          |              |
| P50-P57    | I/O | Port 5.                  |                                             | Input    | A8-A15       |
|            |     | 8-bit I/O port.          |                                             |          |              |
|            |     | Can directly drive LED   |                                             |          |              |
|            |     | Can be set in input or   | output mode in 1-bit units.                 |          |              |
|            |     | When used as an inpu     | t port, a pull-up resistor can be connected |          |              |
|            |     | via software.            |                                             |          |              |
| P60        | I/O | Port 6.                  | N-ch open-drain I/O port.                   | Input    | -            |
| P61        |     | 8-bit I/O port.          | Can directly drive LED.                     |          |              |
| P62        |     | Can be set in input or   |                                             |          |              |
| P63        |     | output mode in 1-bit     |                                             |          |              |
| P64        |     | units.                   | When used as an input port, a pull-up Input | Input    | RD           |
| P65        |     |                          | resistor can be connected via software.     |          | WR           |
| P66        |     |                          |                                             |          | WAIT         |
| P67        |     |                          |                                             |          | ASTB         |
| P70        | I/O | Port 7.                  |                                             | Input    | SI2/RxD      |
| P71        |     | 3-bit I/O port.          |                                             |          | SO2/TxD      |
| P72        |     | Can be set in input or   | output mode in 1-bit units.                 |          | SCK2/ASCK    |
|            |     | When used as an inpu     | t port, a pull-up resistor can be connected |          |              |
|            |     | via software.            |                                             |          |              |
| P120-P123  | I/O | Port 12.                 |                                             | Input    | RTP0-RTP3    |
| P124       |     | 8-bit I/O port.          |                                             |          | RTP4/TX      |
| P125       |     | Can be set in input or   | output mode in 1-bit units.                 |          | RTP5/RX      |
| P126, P127 |     | When used as an inpu     | t port, a pull-up resistor can be connected |          | RTP6, RTP7   |
|            |     | via software.            |                                             |          |              |
| P130, P131 | I/O | Port 13.                 |                                             | Input    | ANO0, ANO1   |
|            |     | 2-bit I/O port.          |                                             |          |              |
|            |     | Can be set in input or   | output mode in 1-bit units.                 |          |              |
|            |     | When used as an inpu     | t port, a pull-up resistor can be connected |          |              |
|            |     | via software.            |                                             |          |              |

### (2) Pins other than port pins (1/2)

| Pin Name   | I/O    | Function                                                                    | At Reset | Shared with: |
|------------|--------|-----------------------------------------------------------------------------|----------|--------------|
| INTP0      | Input  | External interrupt input whose valid edge can be specified (rising          | Input    | P00/TI00     |
| INTP1      |        | edge, falling edge, and both rising and falling edges).                     |          | P01/TI01     |
| INTP2      |        |                                                                             |          | P02          |
| INTP3      |        |                                                                             |          | P03          |
| INTP4      |        |                                                                             |          | P04          |
| INTP5      |        |                                                                             |          | P05          |
| INTP6      |        |                                                                             |          | P06          |
| SI0        | Input  | Serial data input to serial interface.                                      | Input    | P25/SB0      |
| SI1        |        |                                                                             |          | P20          |
| SI2        |        |                                                                             |          | P70/RxD      |
| SO0        | Output | Serial data output from serial interface.                                   | Input    | P26/SB1      |
| SO1        |        |                                                                             |          | P21          |
| SO2        |        |                                                                             |          | P71/TxD      |
| SB0        | I/O    | Serial data input/output of serial interface.                               | Input    | P25/SI0      |
| SB1        |        |                                                                             |          | P26/SO0      |
| SCK0       | I/O    | Serial clock input/output of serial interface.                              | Input    | P27          |
| SCK1       |        |                                                                             |          | P22          |
| SCK2       |        |                                                                             |          | P72/ASCK     |
| STB        | Output | Strobe signal output for serial interface automatic transmission/reception. | Input    | P23          |
| BUSY       | Input  | Busy input for serial interface automatic transmission/reception.           | Input    | P24          |
| RxD        | Input  | Serial data input to asynchronous serial interface.                         | Input    | P70/SI2      |
| TxD        | Output | Serial data output from asynchronous serial interface.                      | Input    | P71/SO2      |
| ASCK       | Input  | Serial clock input to asynchronous serial interface.                        | Input    | P72/SCK2     |
| TI00       | Input  | External count clock input to 16-bit timer (TM0).                           | Input    | P00/INTP0    |
| TI01       |        | Capture trigger signal input to capture register (CR00).                    | _        | P01/INTP1    |
| TI1        |        | External count clock input to 8-bit timer (TM1).                            | _        | P33          |
| TI2        |        | External count clock input to 8-bit timer (TM2).                            | _        | P34          |
| TO0        | Output | 16-bit timer output (shared with 14-bit PWM output).                        | Input    | P30          |
| TO1        |        | 8-bit timer output (TM1).                                                   | _        | P31          |
| TO2        |        | 8-bit timer output (TM2)                                                    | _        | P32          |
| PCL        | Output | Clock output (for trimming of main system clock and subsystem               | Input    | P35          |
|            |        | clock)                                                                      |          |              |
| BUZ        | Output | Buzzer output                                                               | Input    | P36          |
| RTP0-RTP3  | Output | Real-time output port outputting data in synchronization with               | Input    | P120-P123    |
| RTP4       |        | trigger.                                                                    |          | P124/TX      |
| RTP5       |        |                                                                             |          | P125/RX      |
| RTP6, RTP7 |        |                                                                             |          | P126, P127   |
| TX         | Output | Data output for IEBus controller.                                           | Input    | P124/RTP4    |
| RX         | Input  | Data input for IEBus controller.                                            | Input    | P125/RTP5    |

### (2) Pins other than port pins (2/2)

| Pin Name           | I/O    | Function                                                        | At Reset | Shared with: |
|--------------------|--------|-----------------------------------------------------------------|----------|--------------|
| AD0-AD7            | I/O    | Low-order address/data bus when external memory is connected.   | Input    | P40-P47      |
| A8-A15             | Output | High-order address bus when external memory is connected.       | Input    | P50-P57      |
| RD                 | Output | Strobe signal output for read operation on external memory.     | Input    | P64          |
| WR                 |        | Strobe signal output for write operation on external memory.    | Input    | P65          |
| WAIT               | Input  | Wait state insertion for external memory access.                | Input    | P66          |
| ASTB               | Output | Strobe output to externally latch address information output to | Input    | P67          |
|                    |        | ports 4 and 5 to access external memory.                        |          |              |
| ANI0-ANI7          | Input  | Analog input of A/D converter.                                  | Input    | P10-P17      |
| ANO0, ANO1         | Output | Analog output of D/A converter.                                 | Input    | P130, P131   |
| AV <sub>REF0</sub> | Input  | Reference voltage input of A/D converter.                       | -        | -            |
| AV <sub>REF1</sub> | Input  | Reference voltage input of D/A converter.                       | -        | -            |
| AVDD               | -      | Analog power supply of A/D converter. Connected to VDD.         | -        | -            |
| AVss               | -      | Ground of A/D converter. Connected to Vss.                      | -        | -            |
| RESET              | Input  | System reset input.                                             | -        | -            |
| X1                 | Input  | Crystal connection for main system clock oscillation.           | -        | -            |
| X2                 | -      |                                                                 | -        | -            |
| XT1                | Input  | Crystal connection for subsystem clock oscillation.             | Input    | P07          |
| XT2                | -      |                                                                 | _        | -            |
| VDD                | -      | Positive power supply.                                          | -        | -            |
| Vpp                | -      | High-voltage application for program write/verify. Directly     | -        | -            |
|                    |        | connected to Vss in normal operation mode.                      |          |              |
| Vss                | -      | Ground.                                                         | -        | _            |

### 2.2 Pins in PROM Programming Mode

| Pin Name | I/O   | Function                                                                                                                       |
|----------|-------|--------------------------------------------------------------------------------------------------------------------------------|
| RESET    | Input | PROM programming mode setting.                                                                                                 |
|          |       | When +5 V or +12.5 V is applied to the $V_{PP}$ pin, and low level is applied to the $\overrightarrow{\text{RESET}}$ pin, PROM |
|          |       | programming mode is set.                                                                                                       |
| Vpp      | Input | PROM programming mode setting and high voltage application for program write/verify.                                           |
| A0-A16   | Input | Address bus.                                                                                                                   |
| D0-D7    | I/O   | Data bus.                                                                                                                      |
| CE       | Input | PROM enable input/program pulse input.                                                                                         |
| ŌĒ       | Input | Read strobe input to PROM.                                                                                                     |
| PGM      | Input | Program/program inhibit input in PROM programming mode.                                                                        |
| Vdd      | -     | Positive power supply.                                                                                                         |
| Vss      | -     | Ground.                                                                                                                        |

### 2.3 Pin I/O Circuits and Handling of Unused Pins

Table 2-1 shows the types of the I/O circuits for the various pins and handling of unused pins. For the configuration of the various I/O circuits, refer to Figure 2-1.

| Pin Name          | I/O Circuit Type | I/O   | Recommended Connection When Not Used                                     |
|-------------------|------------------|-------|--------------------------------------------------------------------------|
| P00/INTP0/TI00    | 2                | Input | Connect to Vss.                                                          |
| P01/INTP1/TI01    | 8-A              | I/O   | Individually connect to Vss via resistor.                                |
| P02/INTP2         |                  |       |                                                                          |
| P03/INTP3         |                  |       |                                                                          |
| P04/INTP4         |                  |       |                                                                          |
| P05/INTP5         |                  |       |                                                                          |
| P06/INTP6         |                  |       |                                                                          |
| P07/XT1           | 16               | Input | Connect to VDD or Vss.                                                   |
| P10/ANI0-P17/ANI7 | 11               | I/O   | Individually connect to $V_{\text{DD}}$ or $V_{\text{SS}}$ via resistor. |
| P20/SI1           | 8-A              |       |                                                                          |
| P21/SO1           | 5-A              |       |                                                                          |
| P22/SCK1          | 8-A              |       |                                                                          |
| P23/STB           | 5-A              |       |                                                                          |
| P24/BUSY          | 8-A              |       |                                                                          |
| P25/SI0/SB0       | 10-A             |       |                                                                          |
| P26/SO0/SB1       |                  |       |                                                                          |
| P27/SCK0          |                  |       |                                                                          |
| P30/TO0           | 5-A              |       |                                                                          |
| P31/TO1           |                  |       |                                                                          |
| P32/TO2           |                  |       |                                                                          |
| P33/TI1           | 8-A              |       |                                                                          |
| P34/TI2           |                  |       |                                                                          |
| P35/PCL           | 5-A              |       |                                                                          |
| P36/BUZ           |                  |       |                                                                          |
| P37               |                  |       |                                                                          |
| P40/AD0-P47/AD7   | 5-E              |       | Individually connect to VDD via resistor.                                |
| P50/A8-P57/A15    | 5-A              |       | Individually connect to VDD or VSS via resistor.                         |
| P60-P63           | 13-D             |       | Individually connect to VDD via resistor.                                |
| P64/RD            | 5-A              |       | Individually connect to VDD or VSS via resistor.                         |
| P65/WR            |                  |       |                                                                          |
| P66/WAIT          |                  |       |                                                                          |
| P67/ASTB          |                  |       |                                                                          |

| Pin Name             | I/O Circuit Type | I/O   | Recommended Connection When Not Used                       |
|----------------------|------------------|-------|------------------------------------------------------------|
| P70/SI2/RxD          | 8-A              | I/O   | Individually connect to $V_{DD}$ or $V_{SS}$ via resistor. |
| P71/SO2/TxD          | 5-A              |       |                                                            |
| P72/SCK2/ASCK        | 8-A              |       |                                                            |
| P120/RTP0-P123/RTP3  | 5-A              |       |                                                            |
| P124/RTP4/TX         |                  |       |                                                            |
| P125/RTP5/RX         |                  |       |                                                            |
| P126/RTP6, P127/RTP7 |                  |       |                                                            |
| P130/ANO0, P131/ANO1 | 12-A             |       | Individually connect to Vss via resistor.                  |
| RESET                | 2                | Input | _                                                          |
| XT2                  | 16               | -     | Open                                                       |
| AVREFO               | _                |       | Connect to Vss.                                            |
| AV <sub>REF1</sub>   |                  |       | Connect to VDD.                                            |
| AVDD                 |                  |       |                                                            |
| AVss                 |                  |       | Connect to Vss.                                            |
| Vpp                  |                  |       | Directly connect to Vss.                                   |

Table 2-1. I/O Circuit Type of Each Pin (2/2)

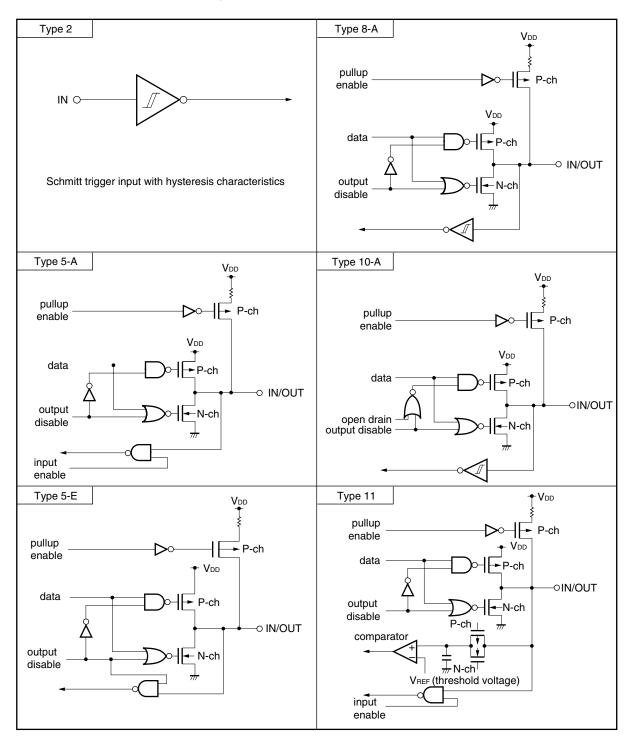
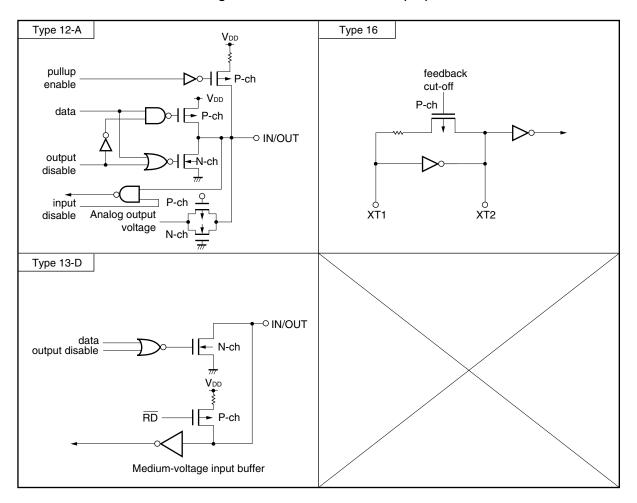
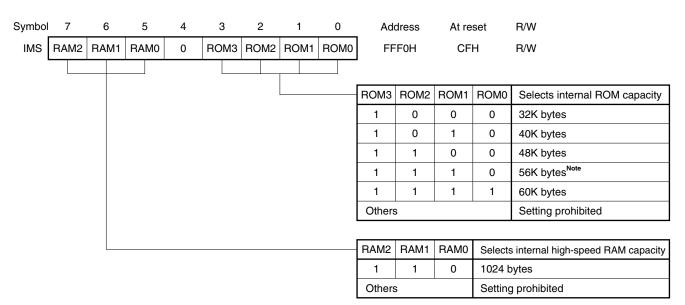



Figure 2-1. I/O Circuits of Pins (1/2)





Figure 2-1. I/O Circuits of Pins (2/2)

### 3. MEMORY SIZE SELECT REGISTER (IMS)

This register specifies via software that part of the internal memory is not used. By using this register, the internal memory (ROM) of the  $\mu$ PD78P098A can be mapped in the same manner as a mask ROM model.

IMS is set by an 8-bit memory manipulation instruction.

The contents of this register are set to CFH at RESET.



### Figure 3-1. Format of the Memory Size Select Register

Note When using the external device expansion function, set the internal PROM capacity to 56K bytes or less.

Table 3-1 shows the value settings of IMS to map the memory of the  $\mu$ PD78P098A in the same manner as the respective mask ROM models.

| Mask ROM Model | IMS Value Setting |
|----------------|-------------------|
| μPD78094       | C8H               |
| μPD78095       | САН               |
| μPD78096       | ССН               |
| μPD78098A      | CFH               |

Table 3-1. Value Settings of the Memory Size Select Register

### 4. INTERNAL EXPANSION RAM SIZE SELECT REGISTER (IXS)

This register specifies the internal expansion RAM capacity via software. By using this register, the internal expansion RAM of the  $\mu$ PD78P098A can be mapped in the same manner as a mask ROM model.

IXS is set by an 8-bit memory manipulation instruction.

The contents of this register are set to 08H at  $\overline{\text{RESET}}$ .

### Figure 4-1. Format of Internal Expansion RAM Size Select Register



Table 4-1 shows the value settings of IXS to map the internal expansion RAM of the  $\mu$ PD78P098A in the same manner as the respective mask ROM models.

Table 4-1. Value Settings of Internal Expansion RAM Size Select Register

| Mask ROM Model | IXS Value Setting   |
|----------------|---------------------|
| μPD78094       | 0CH <sup>Note</sup> |
| μPD78095       |                     |
| μPD78096       |                     |
| μPD78098A      | 08H                 |

Note Even when a program for the  $\mu$ PD78P098A in which "MOV IXS, #0CH" is coded is executed on the  $\mu$ PD78094, 78095, or 78096, operation is unaffected.

### 5. PROM PROGRAMMING

The  $\mu$ PD78P098A is provided with a 60K-byte PROM as a program memory. When programming this memory, it must be set in the PROM programming mode by using the VPP and **RESET** pins. For the handling of the unused pins, refer to (2) **PROM programming mode** in **PIN CONFIGURATION (Top View)**.

# Caution Write the program to address in the range 0000H through EFFFH (specify the last address as EFFFH). A program cannot be written with a PROM programmer that cannot specify write addresses.

### 5.1 Operation Modes

When +5 V or +12.5 V is applied to the VPP pin and low level is applied to the  $\overline{\text{RESET}}$  pin, the PROM programming mode is set. In this mode, the operation modes shown in Table 5-1 can be selected by using the  $\overline{\text{CE}}$ ,  $\overline{\text{OE}}$ , and  $\overline{\text{PGM}}$  pins.

The contents of the PROM can be read in the read mode.

|                 | Pin | RESET | Vpp     | VDD    | CE | ŌĒ | PGM | D0-D7          |
|-----------------|-----|-------|---------|--------|----|----|-----|----------------|
| Operation Mode  |     |       |         |        |    |    |     |                |
| Page data latch |     | L     | +12.5 V | +6.5 V | Н  | L  | Н   | Data input     |
| Page write      |     |       |         |        | Н  | н  | L   | High impedance |
| Byte write      |     |       |         |        | L  | Н  | L   | Data input     |
| Program verify  |     |       |         |        | L  | L  | Н   | Data output    |
| Program inhibit |     |       |         |        | ×  | Н  | Н   | High impedance |
|                 |     |       |         |        | ×  | L  | L   |                |
| Read            |     |       | +5 V    | +5 V   | L  | L  | н   | Data output    |
| Output disable  |     |       |         |        | L  | Н  | х   | High impedance |
| Standby         |     |       |         |        | Н  | ×  | ×   | High impedance |

### Table 5-1. Operation Modes in PROM Programming Mode

Remark X: L or H

### (1) Read mode

This mode is set when both the  $\overline{CE}$  and  $\overline{OE}$  pins are made low.

### (2) Output disable mode

When the  $\overline{OE}$  pin is made high, data output goes into a high-impedance state, and the output disable mode is set.

If two or more  $\mu$ PD78P098As are connected to the data bus, therefore, data can be read from any one of the devices by controlling the  $\overline{OE}$  pin.

### (3) Standby mode

The standby mode is set when the  $\overline{CE}$  pin is made high. In this mode, data output goes into a high-impedance state regardless of the status of the  $\overline{OE}$  pin.

### (4) Page data latch mode

The page data latch mode is set when the  $\overline{CE}$  and  $\overline{PGM}$  pins are made high and the  $\overline{OE}$  pin is made low at the beginning of the page write mode.

In this mode, data of 1 page and 4 bytes is latched to the internal address/data latch circuit.

### (5) Page write mode

Page write is executed by applying a 0.1-ms program pulse (active low) to the  $\overrightarrow{PGM}$  pin with the  $\overrightarrow{CE}$  and  $\overrightarrow{OE}$  pins made high after addresses and data of 1 page and 4 bytes have been latched in the page data latch mode. After that, the program can be verified by making both the  $\overrightarrow{CE}$  and  $\overrightarrow{OE}$  pins low. If the program cannot be written by one program pulse, writing and verifying are repeated X times (X ≤ 10).

### (6) Byte write mode

Byte write is executed by applying a 0.1-ms program pulse (active low) to the  $\overrightarrow{PGM}$  pin with the  $\overrightarrow{CE}$  pin made low and  $\overrightarrow{OE}$  pin high. The program is verified by later making the  $\overrightarrow{OE}$  pin low. If the program cannot be written by one program pulse, writing and verifying are repeated X times (X ≤ 10).

### (7) Program verify mode

Program verify mode is set when the  $\overline{CE}$  and  $\overline{OE}$  pins are made low and the  $\overline{PGM}$  pin is made high. After writing the program, check in this mode whether the program has been correctly written.

### (8) Program inhibit mode

This mode is used to write a program to one of two or more  $\mu$ PD78P098As with the  $\overline{OE}$ , V<sub>PP</sub>, and D0 through D7 pins connected in parallel.

To write a program, the page write or byte write mode described above is used. At this time, the program is not written to those devices whose  $\overline{PGM}$  pin is made high.

### 5.2 PROM Writing Procedure

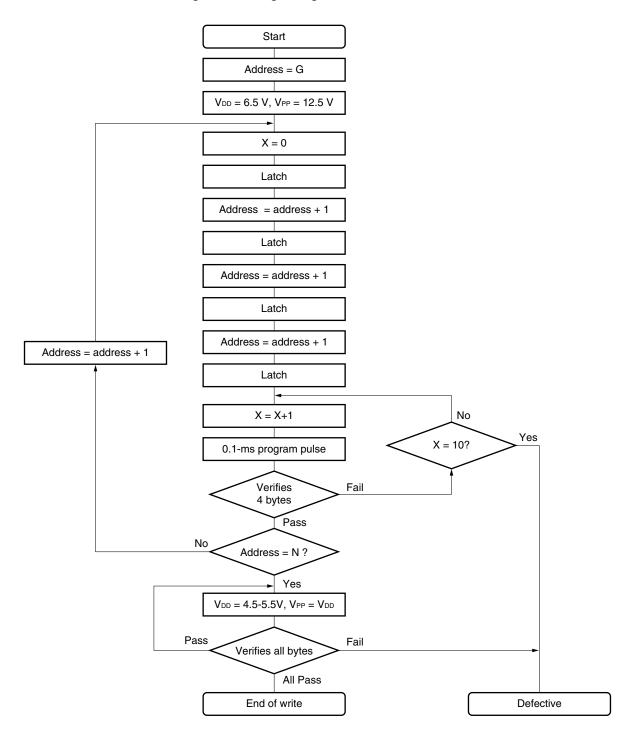



Figure 5-1. Page Program Mode Flowchart

G = start address

N = end address of program

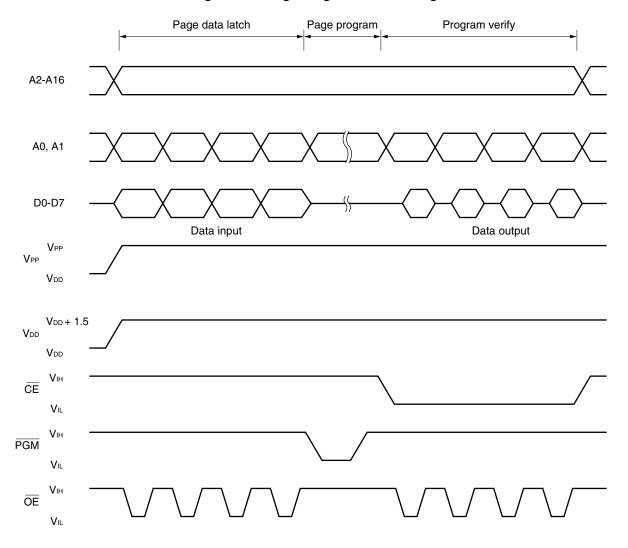



Figure 5-2. Page Program Mode Timing

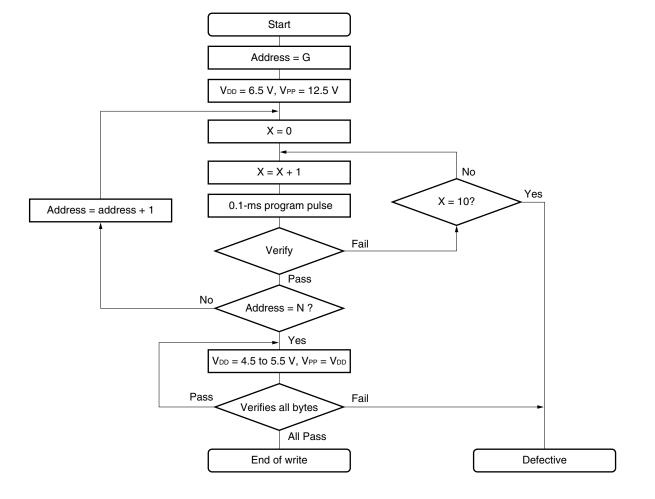
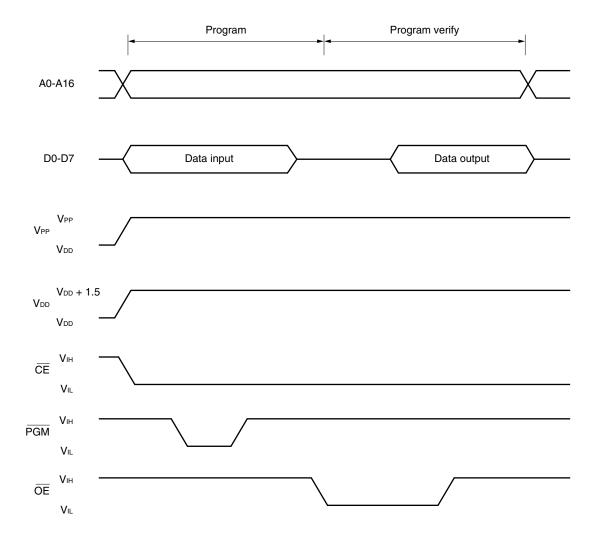




Figure 5-3. Byte Program Mode Flowchart

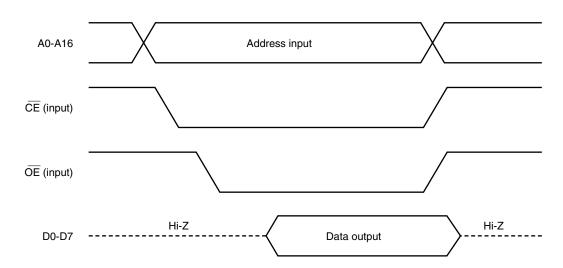
G = start address

N = end address of program



### Figure 5-4. Byte Program Mode Timing

Cautions 1. Apply VDD before VPP and turn off VDD after VPP.


- 2. Keep VPP from going above +13.5 V, including overshoot.
- 3. If the device is inserted into or pulled out of the socket while +12.5 V is applied to VPP, the reliability may be adversely affected.

### 5.3 PROM Read Procedure

The contents of the PROM can be read out to the external data bus (D0 through D7) in the following procedure:

- (1) Fix the RESET pin to the low level. Supply +5 V to the VPP pin. Process the unused pins as described in
   (2) PROM programming mode in PIN CONFIGURATION (Top View).
- (2) Supply +5 V to the VDD and VPP pins.
- (3) Input the address of the data to be read to the A0 through A16 pins.
- (4) The read mode is set.
- (5) Data is output to the D0 through D7 pins.

Figure 5-5 shows the timing of steps (2) through (5) above.



### Figure 5-5. PROM Read Timing

### 6. SCREENING OF ONE-TIME PROM MODEL

★ The one-time PROM model (µPD78P098AGC-8BT) cannot be completely tested by NEC before shipment. It is recommended that screening be implemented to verify the PROM after data has been written to the PROM and the device has been stored under the following conditions:

| Storage Temperature | Storage Time |
|---------------------|--------------|
| 125 °C              | 24 hours     |

NEC provides a writing, marking, screening, and verifying service for one-time PROMs, called QTOP microcontroller. This service for the  $\mu$ PD78P098A is in preparation. For details, consult NEC.

### 7. ELECTRICAL SPECIFICATIONS

### ABSOLUTE MAXIMUM RATINGS (T<sub>A</sub> = $25^{\circ}$ C)

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | Test Conditions                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Parameter         Symbol         Test Conditions         Rating           Supply voltage         Voo         -0.3 to +10.5         -0.3 to +13.5           Supply voltage         AVac         -0.3 to Vac +0.3         -0.3 to Vac +0.3           AVac         -0.3 to Vac +0.3         -0.3 to Vac +0.3         -0.3 to Vac +0.3           AVac         -0.3 to Vac +0.3         -0.3 to Vac +0.3         -0.3 to Vac +0.3           AVer         -0.3 to P7, P10 to P17, P20 to P27, P30 to P37, P40 to 47, P50 to P57, P40 to P47, P30 to P37, P40 to 47, P50 to P57, P40 to P47, P30 to P37, P56, P57, P60 to P55, P10 to P17         -0.3 to Vac +0.3           Output voltage         Vot         P10 to P17 to P10 to P10, P20 to P27, P40 to P47, P50 to P57, P50 | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vpp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V    |
| Supply voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AVDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.3 to V <sub>DD</sub> +0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $e = \frac{V_{DD}}{V_{PP}} = \frac{V_{DD}}{V_{PP}} = \frac{V_{DD}}{V_{PP}} = \frac{V_{DD}}{V_{REF0}} = \frac{V_{D2}}{V_{REF1}} = \frac{V_{D2}}{V_{D3}} = \frac{V_{D3}}{V_{D3}} = \frac{V_{D3}}{V_{D3}$ |                              |                                      | -0.3 to V <sub>DD</sub> +0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AV <sub>REF1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.3 to V <sub>DD</sub> +0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.3 to +7.0         -0.3 to +13.5         -0.3 to Vod +0.3         -0.3 to +0.3         P27,         P64 to P67,         , P131,         -0.3 to +0.3         gmode         -0.3 to +16         ig mode         -0.3 to +10.3         AVss -0.3 to AVREFO +0.3         AVss -0.3 to AVREFO +0.3         -10         P56, P57,         -15         40 to P47,         -15         k value         30         .s. value         100         .s. value         70         k value         100         .s. value         20         k value       20         .s. value       20         .s. value       50         .s. 20       -40 to +85         -65 to +150 | V    |
| Input voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VI1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P30 to P37, F<br>P70 to P72, | P40 to 47, P50 to<br>P120 to P127, I | P57, P64 to P67,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | –0.3 to V <sub>DD</sub> +0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V    |
| Supply voltage  Supply voltage  Input voltage  Output voltage  Analog input voltage  Output current high  Output current low  Operating ambient temperature  Storage temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vı2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P60 to P63                   | N-ch open dra                        | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | –0.3 to +16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vıз                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A9                           | PROM program                         | mming mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.3 to +13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V    |
| Output voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.3 to V <sub>DD</sub> +0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V    |
| Analog input voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Van                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P10 to P17                   | Analog input p                       | ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AVss -0.3 to AVREF0 +0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V    |
| Supply voltage  Supply voltage  Input voltage  Output voltage  Analog input voltage  Output current high  Output current low  Operating ambient temperature  Storage temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 pin                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mA   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Іон                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                                      | P37, P56, P57,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mA   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | current high Iон Tota<br>P60<br>Tota<br>P50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mA   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 nin                        |                                      | Peak value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mA   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 pin                        |                                      | R.m.s. value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mA   |
| VDD           VPP           AVDD           AVDD           AVREF0           AVREF1           AVSS           Input voltage           V11           V12           V13           Output voltage           V0           Analog input voltage           Van           Output current high           IoH           Output current high           IoH           Storage temperature           Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total for P5                 | 0 to P55                             | Peak value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mA   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | R.m.s. value                         | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total for P56,               | P57, P60 to P63                      | -0.3 to +7.0           -0.3 to +13.5           -0.3 to Voo +0.3           -ch open drain           -0.3 to Voo +0.3           rech open drain           -0.3 to Voo +0.3           nalog input pins           AVss -0.3 to AVnereo           -10           P06, P30 to P37, P56, P57,<br>20 to P127           -10           P06, P30 to P37, P56, P57,<br>20 to P127           -15           P17, P20 to P27, P40 to P47,<br>0 to P72, P130, P131           Peak value           30           R.m.s. value           70           R.m.s. value           70           P68           Peak value           100           R.m.s. value           70           P06, P0 | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mA   |
| Output current low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OL <sup>Note</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                      | R.m.s. value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mA   |
| Input voltage Output voltage Output current high Output current low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                      | Peak value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mA   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                      | R.m.s. value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mA   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                      | Peak value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mA   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                                      | R.m.s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mA   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -40 to +85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | °C   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tstg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -65 to +150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | °C   |
| Total power dissipation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mW   |

Note The r.m.s. value should be calculated as follows: [R.m.s. value] = [Peak value]  $x \sqrt{Duty}$ 

Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter, or even momentarily. In other words, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.

**Remark** Unless specified otherwise, dual-function pin characteristics are the same as port pin characteristics. Data Sheet U10203EJ2V0DS

| Resonator         | Recommended Circuit | Parameter                                       | Test Conditions                                            | MIN. | TYP. | MAX. | Unit |
|-------------------|---------------------|-------------------------------------------------|------------------------------------------------------------|------|------|------|------|
| Ceramic resonator |                     | Oscillatior frequency<br>(fx) <sup>Note1</sup>  | VDD = Oscillation voltage range                            | 1.0  | 6.0  | 6.29 | MHz  |
|                   |                     | Oscillatior stabilization time <sup>Note2</sup> | After VDD has reached MIN.<br>of oscillation voltage range |      |      | 4    | ms   |
|                   |                     | Oscillatior frequency<br>(fx) <sup>Note1</sup>  |                                                            | 1.0  | 6.0  | 6.29 | MHz  |
| Crystal resonator |                     | Oscillatior stabilization time <sup>Note2</sup> | VDD = 4.5 to 5.5 V                                         |      |      | 10   | ms   |
|                   |                     |                                                 |                                                            |      |      | 30   | me   |
| External clock    | X1 X2               | X1 input frequency<br>(fx) <sup>Note1</sup>     |                                                            | 1.0  | 6.0  | 6.29 | MHz  |
|                   |                     | X1 input high-/low-level                        | When fxx = fx                                              | 85   |      | 500  | ns   |
|                   |                     | width (txн/txL)                                 | Other than above                                           | 72   |      | 500  | ns   |

### MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS ( $T_A = -40$ to $+85^{\circ}C$ , $V_{DD} = 2.7$ to 5.5 V)

- Notes 1. Only the oscillator characteristics are shown. See the AC characteristics for instruction execution times.
   2. This is the time required for oscillation to stabilize after a reset or STOP mode release.
- Cautions 1. When the main system clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a broken line to prevent the influence of wiring capacitance, etc.
  - The wiring should be kept as short as possible.
  - No other signal lines should be crossed.
  - Keep away from lines carrying a high fluctuating current.
  - The oscillator capacitor grounding point should always be at the same potential as Vss.
  - Do not connect to a ground pattern carrying a high current.
  - A signal should not be taken from the oscillator.
  - 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.
- ★ **Remark** For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

### SUBSYSTEM CLOCK OSILLATOR CHARACTERISTICS (TA = -40 to +85°C, VDD = 2.7 to 5.5 V)

| Resonator         | Recommended Circuit                     | Parameter                                                    | Test Conditions    | MIN. | TYP.   | MAX. | Unit |
|-------------------|-----------------------------------------|--------------------------------------------------------------|--------------------|------|--------|------|------|
| Crystal resonator | V <sub>PP</sub> XT2 XT1<br>R2<br>↓<br>□ | Oscillation frequency<br>(f <sub>XT</sub> ) <sup>Note1</sup> |                    | 32   | 32.768 | 35   | MHz  |
|                   |                                         | Oscillation stabilization                                    | VDD = 4.5 to 5.5 V |      | 1.2    | 2    | s    |
|                   | 7777                                    | time <sup>Note2</sup>                                        |                    |      |        | 10   | 5    |
| External clock    | XT2 XT1                                 | X1 input frequency<br>(f <sub>XT</sub> ) <sup>Note1</sup>    |                    | 32   |        | 100  | kHz  |
|                   |                                         | X1 input high-/low-level<br>width (txTH/tXTL)                |                    | 5    |        | 15   | μs   |

Notes 1. Only the oscillator characteristics are shown. See the AC characteristics for instruction execution times.
 This is the time required for oscillation to stabilize after power (VDD) is turned on.

### Cautions 1. When the subsystem clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a broken line to prevent the influence of wiring capacitance, etc.

- The wiring should be kept as short as possible.
- No other signal lines should be crossed.
- Keep away from lines carrying a high fluctuating current.
- The oscillator capacitor grounding point should always be at the same potential as Vss.
- Do not connect to a ground pattern carrying a high current.
- A signal should not be taken from the oscillator.
- 2. The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption current, and is more prone to misoperation due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.
- ★ Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

| Parameter                   | Symbol |                                               | Test Conditions                                                                                                                   | MIN. | TYP. | MAX. | Unit |
|-----------------------------|--------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| Input capacitance           | CIN    | f = 1 MHz Unmeasured pins                     | returned to 0 V.                                                                                                                  |      |      | 15   | pF   |
| Input/output<br>capacitance | Сю     | f = 1 MHz<br>Unmeasured pins returned<br>to 0 | P01 to P06, P10 to P17, P20 to P27,<br>P30 to P37, P40 to P47, P50 to P57,<br>P64 to P67, P70 to P72, P120 to P127,<br>P130, P131 |      |      | 15   | pF   |
|                             |        |                                               | P60 to P63                                                                                                                        |      |      | 20   | pF   |

### CAPACITANCE (TA = $25^{\circ}$ C, VDD = Vss = 0 V)

Remark Unless specified otherwise, dual-function pin characteristics are the same as port pin characteristics.

### DC CHARACTERISTICS (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 2.7 to 5.5 V)

| Parameter           | Symbol                                                     | Conditior                                                                                                                | S                                                                           | MIN.     | TYP.                                                                                                                                                                                                                                                                                                                  | MAX.                                                                                                                                                                                                    | Unit |
|---------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Input voltage high  | VIH1                                                       | P10 to P17, P21, P23, P30 to P32, P35 to P37, P40 to P47,<br>P50 to P57, P64 to P67, P71, P120 to P127, P130, P131       |                                                                             |          |                                                                                                                                                                                                                                                                                                                       | Vdd                                                                                                                                                                                                     | V    |
|                     | VIH2                                                       | P00 to P06, P20, P22, P24 to P27<br>RESET                                                                                | 7, P33, P34, P70, P72,                                                      | 0.8 Vdd  | .7 VDD       VDD         .8 VDD       VDD         .8 VDD       VDD         .7 VDD       15         DD-0.5       VDD         .8 VDD       VDD         .9 VDD       VDD         0       0.3 VDD         0       0.2 VDD         0       0.2 VDD         0       0.2 VDD         0       0.1 VDD         0       0.1 VDD | V                                                                                                                                                                                                       |      |
|                     | Vінз                                                       | P60 to P63, N-ch open drain                                                                                              |                                                                             | 0.7 Vdd  |                                                                                                                                                                                                                                                                                                                       | ۷                                                                                                                                                                                                       |      |
|                     | VIH4                                                       | X1, X2                                                                                                                   |                                                                             |          |                                                                                                                                                                                                                                                                                                                       | VDD                                                                                                                                                                                                     | ۷    |
|                     | VIH5                                                       | XT1/P07, XT2                                                                                                             | $4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$                | 0.8 Vdd  |                                                                                                                                                                                                                                                                                                                       | VDD                                                                                                                                                                                                     | ۷    |
|                     |                                                            |                                                                                                                          | $2.7~V \leq V_{\text{DD}} < 4.5~V$                                          | 0.9 Vdd  |                                                                                                                                                                                                                                                                                                                       | VDD                                                                                                                                                                                                     | ۷    |
| VIL2                | VIL1                                                       | P10 to P17, P21, P23, P30 to P32, P35 to P37, P40 to P47,<br>P50 to P57, P64 to P67, P71, P120 to P127, P130, P131       |                                                                             |          |                                                                                                                                                                                                                                                                                                                       | 0.3 Vdd                                                                                                                                                                                                 | V    |
|                     | VIL2                                                       | P00 to P06, P20, P22, P24 to P27, P33, P34, P70, P72, RESET                                                              |                                                                             |          |                                                                                                                                                                                                                                                                                                                       | 0.2 Vdd                                                                                                                                                                                                 | V    |
|                     | VIL3                                                       | P60 to P63, N-ch open drain                                                                                              | $4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$                | 0        |                                                                                                                                                                                                                                                                                                                       | 0.3 Vdd                                                                                                                                                                                                 | ۷    |
|                     | $2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.5 \text{ V}$ 0 |                                                                                                                          | 0.2 Vdd                                                                     | ۷        |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         |      |
|                     | VIL4                                                       | X1, X2                                                                                                                   |                                                                             |          |                                                                                                                                                                                                                                                                                                                       | 0.4                                                                                                                                                                                                     | V    |
|                     | VIL5                                                       | XT1/P07, XT2                                                                                                             | V <sub>DD</sub> = 4.5 to 5.5 V                                              | 0        |                                                                                                                                                                                                                                                                                                                       | 0.2 Vdd                                                                                                                                                                                                 | V    |
|                     |                                                            |                                                                                                                          |                                                                             | 0        |                                                                                                                                                                                                                                                                                                                       | 0.1 VDD                                                                                                                                                                                                 | V    |
| Output voltage high | Vон1                                                       | V <sub>DD</sub> = 4.5 to 5.5 V, Iон = -1 mA                                                                              |                                                                             | Vdd -1.0 |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | V    |
|                     |                                                            | Іон = -100 µА                                                                                                            |                                                                             | Vdd -0.5 |                                                                                                                                                                                                                                                                                                                       | 0.3 VDD         0.2 VDD         0.3 VDD         0.3 VDD         0.3 VDD         0.3 VDD         0.3 VDD         0.3 VDD         0.1 VDD         0.1 VDD         0.1 VDD         0.1 VDD         0.1 VDD | ۷    |
| Output voltage low  | V <sub>OL1</sub>                                           | P50 to P57, P60 to P63                                                                                                   | $V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$<br>$I_{OL} = 15 \text{ mA}$       |          | 0.4                                                                                                                                                                                                                                                                                                                   | 2.0                                                                                                                                                                                                     | V    |
|                     |                                                            | P01 to P06, P10 to P17,<br>P20 to P27, P30 to P37,<br>P40 to P47, P64 to P67,<br>P70 to P72, P120 to P127,<br>P130, P131 | $V_{DD} = 4.5 \text{ to } 5.5 \text{ V},$<br>IoL = 1.6 mA                   |          |                                                                                                                                                                                                                                                                                                                       | 0.4                                                                                                                                                                                                     | V    |
|                     | Vol2                                                       | SB0, SB1, SCK0                                                                                                           | $V_{DD}$ = 4.5 to 5.5 V,<br>Open drain, at pulled<br>up (R = 1 k $\Omega$ ) |          |                                                                                                                                                                                                                                                                                                                       | 0.2 Vdd                                                                                                                                                                                                 | V    |
|                     | Vol3                                                       | lo∟ = 400 μA                                                                                                             | μ = 400 μΑ                                                                  |          |                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                                                                                                                     | V    |

Remark Unless specified otherwise, dual-function pin characteristics are the same as port pin characteristics.

### DC CHARACTERISTICS (T<sub>A</sub> = -40 to $+85^{\circ}$ C, V<sub>DD</sub> = 2.7 to 5.5 V)

| Parameter                     | Symbol | Test Conditions                                                                                                                              |                                                                                                                                          | MIN. | TYP. | MAX.               | Unit |
|-------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------|------|--------------------|------|
| Input leakage<br>current high | ILIH1  | VIN = VDD                                                                                                                                    | P00 to P06, P10 to P17, P20 to P27,<br>P30 to P37, P40 to P47, P50 to P57,<br>P60 to P67, P70 to P72,<br>P120 to P127, P130, P131, RESET |      |      | 3                  | μΑ   |
|                               | ILIH2  |                                                                                                                                              | X1, X2, XT1/P07, XT2                                                                                                                     |      |      | 20                 | μA   |
|                               | Ілнз   | V <sub>IN</sub> = 15V                                                                                                                        | P60 to P63                                                                                                                               |      |      | 80                 | μA   |
| Input leakage<br>current low  | ILIL1  | V <sub>IN</sub> = 0 V                                                                                                                        | P00 to P06, P10 to P17, P20 to P27,<br>P30 to P37, P40 to P47, P50 to P57,<br>P60 to P67, P70 to P72,<br>P120 to P127, P130, P131, RESET |      |      | -3                 | μΑ   |
|                               | ILIL2  |                                                                                                                                              | X1, X2, XT1/P07, XT2                                                                                                                     |      |      | -20                | μA   |
|                               | ILIL3  |                                                                                                                                              | P60 to P63                                                                                                                               |      |      | -3 <sup>Note</sup> | μA   |
| Output leakage current high   | Ігон   | V <sub>OUT</sub> = V <sub>DD</sub>                                                                                                           |                                                                                                                                          |      |      | 3                  | μA   |
| Output leakage current low    | Ilol   | Vout = 0 V                                                                                                                                   |                                                                                                                                          |      |      | -3                 | μA   |
| Software pull-up<br>resistor  | R      | VIN = 0 V, P01 to P06, P10 to P17,<br>P20 to P27, P30 to P37, P40 to P47,<br>P50 to P57, P64 to P67, P70 to P72,<br>P120 to P127, P130, P131 | $4.5 \leq V_{\text{DD}} \leq 5.5 \text{ V}$                                                                                              | 15   | 40   | 90                 | kΩ   |
|                               |        |                                                                                                                                              | $2.7 \leq V_{\text{DD}} < 4.5 \text{ V}$                                                                                                 | 20   |      | 500                | kΩ   |

**Note** For P60-P63, a low-level input leak current of  $-200 \ \mu$ A (MAX.) flows only during the 1.5 clocks (no-wait time) after an instruction has been executed to read out port 6 (P6) or port mode register 6 (PM6). Outside the period of 1.5 clocks following execution a read-out instruction, the current is  $-3 \ \mu$ A (MAX.).

Remark Unless specified otherwise, dual-function pin characteristics are the same as port pin characteristics.

### DC CHARACTERISTICS (T<sub>A</sub> = -40 to $+85^{\circ}$ C, V<sub>DD</sub> = 2.7 to 5.5 V)

| Parameter                        | Symbol | Test Conditions                                                                 |                                                        |  | TYP. | MAX. | Unit |
|----------------------------------|--------|---------------------------------------------------------------------------------|--------------------------------------------------------|--|------|------|------|
| Supply current <sup>Note 1</sup> | IDD1   | 5.0 MHz crystal oscillation operating mode                                      | $V_{\text{DD}} = 5.0V \pm 10\%^{\text{Note6}}$         |  | 5    | 15   | mA   |
|                                  |        | (fxx = 2.5 MHz) <sup>Note2</sup>                                                | $V_{\text{DD}} = 3.0V \pm 10\%^{\text{Note7}}$         |  | 0.7  | 2.7  | mA   |
|                                  |        | 5.0 MHz crystal oscillation operating mode                                      | $V_{\text{DD}} = 5.0V \pm 10\%^{\text{Note6}}$         |  | 9    | 30   | mA   |
|                                  |        | (fxx = 5.0 MHz) <sup>Note3</sup>                                                | $V_{\text{DD}} = 3.0V \pm 10\%^{\text{Note7}}$         |  | 1    | 3.7  | mA   |
|                                  |        | 6.29 MHz crystal oscillation operating mode<br>(fxx = 2.1 MHz) <sup>Note4</sup> | $V_{\text{DD}} = 5.0 \text{V} \pm 10\%^{\text{Note6}}$ |  | 4.8  | 17.4 | mA   |
|                                  |        | 6.29 MHz crystal oscillation operating mode (fxx = 4.19 MHz) <sup>Note5</sup>   | V <sub>DD</sub> = 5.0V±10% <sup>Note6</sup>            |  | 8.5  | 28.5 | mA   |

- **Notes 1.** Currents AV<sub>REF0</sub>, AV<sub>REF1</sub>, AV<sub>DD</sub>, and the port current (including the current flowing in the internal pull-up resistor) are not included.
  - 2. When bit 0 of clock switchover selection register 1 has been set to 0, bit 0 of clock switchover selection register 2 has been set to 0, and the oscillator mode selection register has been set to 00H.
  - **3.** When bit 0 of clock switchover selection register 1 has been set to 0, bit 0 of clock switchover selection register 2 has been set to 0, and the oscillator mode selection register has been set to 01H.
  - 4. When bit 0 of clock switchover selection register 1 has been set to 1, bit 0 of clock switchover selection register 2 has been set to 0, and the oscillator mode selection register has been set to 00H. Indicates only the power supply current characteristic. For IEBus ratings, refer to the IEBus controller characteristics.
  - 5. When bit 0 of clock switchover selection register 1 has been set to 1, bit 0 of clock switchover selection register 2 has been set to 0, and the oscillator mode selection register has been set to 01H. Indicates only the power supply current characteristic. For IEBus ratings, refer to the IEBus controller characteristics.
  - 6. When in high-speed mode (when the processor clock control register has been set to 00H).
  - 7. When in low-speed mode (when the processor clock control register has been set to 04H).

Remark fxx: Main system clock frequency

36

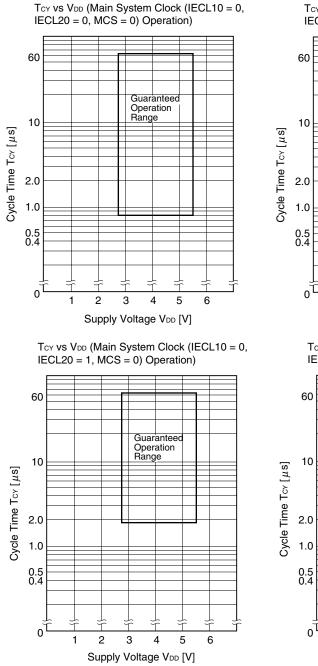
| Parameter            | Symbol | Test Conditions                                                              |                                              | MIN.                       | TYP. | MAX. | Unit |    |
|----------------------|--------|------------------------------------------------------------------------------|----------------------------------------------|----------------------------|------|------|------|----|
| Supply currentNote 1 | IDD2   | 5.0 MHz crystal oscillation HALT mode                                        | VDD = 5.0V±10% <sup>Note 7</sup>             |                            | 1.5  | 4.5  | mA   |    |
|                      |        | (fxx = 2.5 MHz) <sup>Note 2</sup>                                            | V <sub>DD</sub> = 3.0V±10% <sup>Note 8</sup> |                            | 0.5  | 1.5  | mA   |    |
|                      |        | 5.0 MHz crystal oscillation HALT mode                                        | V <sub>DD</sub> = 5.0V±10% <sup>Note 7</sup> |                            | 1.8  | 5.4  | mA   |    |
|                      |        | (fxx = 5.0 MHz) <sup>Note 3</sup>                                            | V <sub>DD</sub> = 3.0V±10% <sup>Note 8</sup> |                            | 0.7  | 2.1  | mA   |    |
|                      |        | 6.29 MHz crystal oscillation HALT mode<br>(fxx = 2.1 MHz) <sup>Note 4</sup>  | V <sub>DD</sub> = 5.0V±10%Note 7             |                            | 1.5  | 4.5  | mA   |    |
|                      |        | 6.29 MHz crystal oscillation HALT mode<br>(fxx = 4.19 MHz) <sup>Note 5</sup> | V <sub>DD</sub> = 5.0V±10% <sup>Note 7</sup> |                            | 1.8  | 5.4  | mA   |    |
|                      | Іддз   | 32.768 kHz crystal oscillation operating                                     | V <sub>DD</sub> = 5.0V±10%                   |                            | 135  | 270  | μA   |    |
|                      |        |                                                                              | mode <sup>Note 6</sup>                       | V <sub>DD</sub> = 3.0V±10% |      | 95   | 190  | μA |
|                      | IDD4   | 32.768 kHz crystal oscillation HALT                                          | V <sub>DD</sub> = 5.0V±10%                   |                            | 25   | 55   | μA   |    |
|                      |        | mode <sup>Note 6</sup>                                                       | V <sub>DD</sub> = 3.0V±10%                   |                            | 5    | 15   | μA   |    |
|                      | Idd5   | XT1 = 0 V<br>STOP mode                                                       | VDD = 5.0V±10%                               |                            | 1    | 30   | μA   |    |
|                      |        | Feedback resistor used                                                       | V <sub>DD</sub> = 3.0V±10%                   |                            | 0.5  | 10   | μA   |    |
|                      | IDD6   | XT1 = 0 V                                                                    | V <sub>DD</sub> = 5.0V±10%                   |                            | 0.1  | 30   | μΑ   |    |
|                      |        | STOP mode<br>Feedback resistor not used                                      | V <sub>DD</sub> = 3.0V±10%                   |                            | 0.05 | 10   | μΑ   |    |

#### DC CHARACTERISTICS (T<sub>A</sub> = -40 to $+85^{\circ}$ C, V<sub>DD</sub> = 2.7 to 5.5 V)

**Notes 1.** Currents AV<sub>REF0</sub>, AV<sub>REF1</sub>, AV<sub>DD</sub>, and the port current (including the current flowing in the internal pull-up resistor) are not included.

- 2. When bit 0 of clock switchover selection register 1 has been set to 0, bit 0 of clock switchover selection register 2 has been set to 0, and the oscillator mode selection register has been set to 00H.
- **3.** When bit 0 of clock switchover selection register 1 has been set to 0, bit 0 of clock switchover selection register 2 has been set to 0, and the oscillator mode selection register has been set to 01H.
- 4. When bit 0 of clock switchover selection register 1 has been set to 1, bit 0 of clock switchover selection register 2 has been set to 0, and the oscillator mode selection register has been set to 00H. Indicates only the power supply current characteristic. For IEBus ratings, refer to the IEBus controller characteristics.
- 5. When bit 0 of clock switchover selection register 1 has been set to 1, bit 0 of clock switchover selection register 2 has been set to 0, and the oscillator mode selection register has been set to 01H. Indicates only the power supply current characteristic. For IEBus ratings, refer to the IEBus controller characteristics.
- 6. When the main system clock is stopped.
- 7. When in high-speed mode (when the processor clock control register has been set to 00H).
- 8. When in low-speed mode (when the processor clock control register has been set to 04H).
- Remark fxx : Main system clock frequency

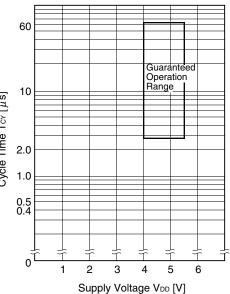
### AC CHARACTERISTICS

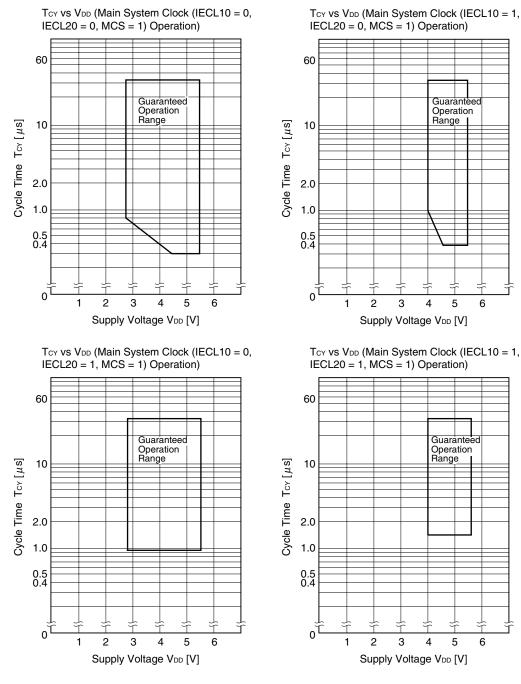

#### (1) Basic Operation (T<sub>A</sub> = -40 to $+85^{\circ}$ C, V<sub>DD</sub> = 2.7 to 5.5 V)

| Parameter             | Symbol          |                                       | Test Conditions                             |                                                           | MIN.                | TYP. | MAX. | Unit |
|-----------------------|-----------------|---------------------------------------|---------------------------------------------|-----------------------------------------------------------|---------------------|------|------|------|
| Cycle time            | Тсү             | Operating on main                     | fxx = fx/3                                  | $4.0~V \le V_{\text{DD}} \le 5.5~V$                       | 0.95                |      | 64   | μs   |
| (minimum instruction  |                 | system clock                          | fxx = fx/6                                  | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$                     | 1.91                |      | 64   | μs   |
| execution timke)      |                 | (MCS = 0 <sup>Note 1</sup> )          | $f_{xx} = f_{x/9}$                          | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$                     | 2.86                |      | 64   | μs   |
|                       |                 |                                       | $f_{xx} = f_{x/2}$                          | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$                     | 0.8                 |      | 64   | μs   |
|                       |                 | Operating on main                     | fxx = 2fx/3                                 | $4.5~V \le V_{\text{DD}} \le 5.5~V$                       | 0.48                |      | 32   | μs   |
|                       |                 | system clock                          |                                             | $4.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$ | 0.95                |      | 32   | μs   |
|                       |                 | (MCS = 1 <sup>Note 2</sup> )          | fxx = fx/3                                  | $2.7~V \le V_{\text{DD}} \le 5.5~V$                       | 0.95                |      | 32   | μs   |
|                       |                 |                                       | fxx = 2fx/9                                 | $4.0~V \le V_{\text{DD}} \le 5.5~V$                       | 1.43                |      | 32   | μs   |
|                       |                 |                                       | fxx = fx                                    | $4.5~V \le V_{\text{DD}} \le 5.5~V$                       | 0.4                 |      | 32   | μs   |
|                       |                 |                                       |                                             | $2.7~V \leq V_{\text{DD}} < 4.5~V$                        | 0.8                 |      | 32   | μs   |
|                       |                 | Operating on subsystem                | clock                                       |                                                           | 114                 | 122  | 125  | μs   |
| TI00 input            | <b>t</b> тіноо, | $3.5~V \le V_{\text{DD}} \le 5.5~V$   |                                             | Note3<br>2/fsam+0.1                                       |                     |      | μs   |      |
| high-/low-level width | <b>t</b> ⊤iLoo  | $2.7~V \leq V_{\text{DD}} < 3.5~V$    |                                             |                                                           | Note3<br>2/fsam+0.2 |      |      | μs   |
| TI01 input            | t⊤iH01,         |                                       |                                             |                                                           | 10                  |      |      | μs   |
| high-/low-level width | ttilo1          |                                       |                                             |                                                           |                     |      |      |      |
| TI1, TI2 input        | tTI1            | $4.5~V \leq V_{\text{DD}} \leq 5.5~V$ |                                             |                                                           | 0                   |      | 4    | MHz  |
| frequency             |                 |                                       |                                             |                                                           | 0                   |      | 275  | kHz  |
| TI1, TI2 input        | tтıнı,          | $4.5~V \leq V_{\text{DD}} \leq 5.5~V$ |                                             |                                                           | 100                 |      |      | ns   |
| high-/low-level width | t⊤i∟1           |                                       |                                             |                                                           | 1.8                 |      |      | μs   |
| Interrupt input       | tınтн,          | INTP0                                 | $3.5 V \le V_{DD} \le$                      | 5.5 V                                                     | Note3<br>2/fsam+0.1 |      |      | μs   |
| high-/low-level width | tint∟           |                                       | $2.7 \text{ V} \leq \text{V}_{\text{DD}} <$ | 3.5 V                                                     | Note3<br>2/fsam+0.2 |      |      | μs   |
|                       |                 | INTP1 to INTP6                        |                                             |                                                           | 10                  |      |      | μs   |
|                       |                 | KR0 to KR7                            |                                             |                                                           | 10                  |      |      | μs   |
| RESET low-level width | <b>t</b> RST    |                                       |                                             |                                                           | 10                  |      |      | μs   |

Notes 1. When oscillation mode selection register is set to 00H.

2. When oscillation mode selection register is set to 01H.


- fsam can be selected as fxx/2<sup>N</sup>, fxx/32, fxx/64, or fxx/128 by bits 0 and 1 (SCS0 and SCS1) of the sampling clock selection register (N = 0 to 4).
- **Remarks** 1. fxx : Main system clock frequency (fx or fx/2)
  - 2. fx : Main system clock oscillatior frequency




TCY VS VDD (Main System Clock (IECL10 = 1, IECL20 = 0, MCS = 0) Operation)



TCY vs V<sub>DD</sub> (Main System Clock (IECL10 = 1, IECL20 = 1, MCS = 0) Operation)





6

٦

6

#### (2) Read/Write Operations

### (a) When MCS = 1, PCC2 to PCC0 = 000B (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 4.5 to 5.5 V)

| Parameter                                                                                          | Symbol         | Test Conditions | MIN.             | MAX.             | Unit |
|----------------------------------------------------------------------------------------------------|----------------|-----------------|------------------|------------------|------|
| ASTB high-level width                                                                              | <b>t</b> asth  |                 | 0.85tcy –50      |                  | ns   |
| Address setup time                                                                                 | tads           |                 | 0.85tcy –50      |                  | ns   |
| Address hold time                                                                                  | tadh           |                 | 50               |                  | ns   |
| Data input time from address                                                                       | tADD1          |                 |                  | (2.85+2n)tcy-80  | ns   |
|                                                                                                    | tADD2          |                 |                  | (4+2n)tcr–100    | ns   |
| Data input time from $\overline{RD}\downarrow$                                                     | tRDD1          |                 |                  | (2+2n)tcr-100    | ns   |
|                                                                                                    | trdd2          |                 |                  | (2.85+2n)tcr-100 | ns   |
| Read data hold time                                                                                | <b>t</b> RDH   |                 | 0                |                  | ns   |
| RD low-level width                                                                                 | tRDL1          |                 | (2+2n)tcr-60     |                  | ns   |
|                                                                                                    | tRDL2          |                 | (2.85+2n)tcr-60  |                  | ns   |
| $\overline{\text{WAIT}}\downarrow$ input time from $\overline{\text{RD}}\downarrow$                | trdwt1         |                 |                  | 0.85tcy -50      | ns   |
|                                                                                                    | trdwt2         |                 |                  | 2tcy -60         | ns   |
| $\overline{\text{WAIT}}\downarrow$ input time from $\overline{\text{WR}}\downarrow$                | twrwt          |                 |                  | 2tcy -60         | ns   |
| WAIT low-level width                                                                               | tw⊤∟           |                 | (1.15+2n)tcr     | (2+2n)tcr        | ns   |
| Write data setup time                                                                              | twos           |                 | (2.85+2n)tcr-100 |                  | ns   |
| Write data hold time                                                                               | twpн           |                 | 20               |                  | ns   |
| WR low-level width                                                                                 | twRL1          |                 | (2.85+2n)tcy-60  |                  | ns   |
| $\overline{\mathrm{RD}} \downarrow$ delay time from ASTB $\downarrow$                              | <b>t</b> ASTRD |                 | 25               |                  | ns   |
| $\overline{\text{WR}} {\downarrow}$ delay time from ASTB ${\downarrow}$                            | <b>t</b> astwr |                 | 0.85tcy+20       |                  | ns   |
| ASTB <sup><math>\uparrow</math></sup> delay time from $\overline{RD}^{\uparrow}$ in external fetch | <b>t</b> rdast |                 | 0.85tcy-10       | 1.15tcy+20       | ns   |
| Address hold time from $\overline{RD} \uparrow$ in external fetch                                  | trdadh         |                 | 0.85tcy-50       | 1.15tcy+50       | ns   |
| Write data output time from $\overline{\text{RD}} ^{\uparrow}$                                     | trowd          |                 | 40               |                  | ns   |
| Write data output time from $\overline{\text{WR}} \downarrow$                                      | twrwd          |                 | 0                | 50               | ns   |
| Address hold time from $\overline{WR}{\uparrow}$                                                   | twradh         |                 | 0.85tcy          | 1.15tcy+40       | ns   |
| $\overline{RD}^{\uparrow}$ delay time from $\overline{WAIT}^{\uparrow}$                            | twtrd          |                 | 1.15tcy+40       | 3.15tcy+40       | ns   |
| WR↑ delay time from WAIT↑                                                                          | twrwr          |                 | 1.15tcy+30       | 3.15tcy+30       | ns   |

**Remarks** 1. MCS: Bit 0 of the oscillation mode selection register

2. PCC2 to PCC0: Bit 2 to bit 0 of the processor clock control register

Data Sheet U10203EJ2V0DS

- **3.** tcy = Tcy/4
- 4. n indicates the number of waits.

### (b) Except when MCS = 1, PCC2 to PCC0 = 000B (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 2.7 to 5.5 V)

| Parameter                                                                             | Symbol         | Test Conditions | MIN.           | MAX.           | Unit |
|---------------------------------------------------------------------------------------|----------------|-----------------|----------------|----------------|------|
| ASTB high-level width                                                                 | tasth          |                 | tcy -80        |                | ns   |
| Address setup time                                                                    | tads           |                 | tcy -80        |                | ns   |
| Address hold time                                                                     | tadh           |                 | 0.4tcy -10     |                | ns   |
| Data input time from address                                                          | tADD1          |                 |                | (3+2n)tcy-160  | ns   |
|                                                                                       | tADD2          |                 |                | (4+2n)tcy-200  | ns   |
| Data input time from $\overline{RD}\downarrow$                                        | trdd1          |                 |                | (1.4+2n)tcy-70 | ns   |
|                                                                                       | trdd2          |                 |                | (2.4+2n)tcy-70 | ns   |
| Read data hold time                                                                   | <b>t</b> RDH   |                 | 0              |                | ns   |
| RD low-level width                                                                    | tRDL1          |                 | (1.4+2n)tcr-20 |                | ns   |
|                                                                                       | trdl2          |                 | (2.4+2n)tcr-20 |                | ns   |
| $\overline{\text{WAIT}}\downarrow$ input time from $\overline{\text{RD}}\downarrow$   | tRDWT1         |                 |                | tcy -100       | ns   |
|                                                                                       | trdwt2         |                 |                | 2tcy -100      | ns   |
| $\overline{\text{WAIT}}\downarrow$ input time from $\overline{\text{WR}}\downarrow$   | twrwt          |                 |                | 2tcy -100      | ns   |
| WAIT low-level width                                                                  | tw⊤∟           |                 | (1+2n)tcr      | (2+2n)tcr      | ns   |
| Write data setup time                                                                 | twos           |                 | (2.4+2n)tcr-60 |                | ns   |
| Write data hold time                                                                  | twdн           |                 | 20             |                | ns   |
| WR low-level width                                                                    | twRL1          |                 | (2.4+2n)tcr-20 |                | ns   |
| $\overline{\mathrm{RD}} \downarrow$ delay time from ASTB $\downarrow$                 | <b>t</b> ASTRD |                 | 0.4tcy-30      |                | ns   |
| $\overline{\mathrm{WR}} \downarrow$ delay time from ASTB $\downarrow$                 | <b>t</b> astwr |                 | 1.4tcy-30      |                | ns   |
| ASTB <sup>↑</sup> delay time from $\overline{\text{RD}}^{\uparrow}$ in external fetch | <b>t</b> RDAST |                 | tcy-10         | tcy+20         | ns   |
| Address hold time from $\overline{\mathrm{RD}}\uparrow$ in external fetch             | trdadh         |                 | tcy–50         | tcy+50         | ns   |
| Write data output time from $\overline{\mathrm{RD}}$                                  | trowd          |                 | 0.4tcy-20      |                | ns   |
| Write data output time from $\overline{\mathrm{WR}}\downarrow$                        | twrwd          |                 | 0              | 60             | ns   |
| Address hold time from WR↑                                                            | twradh         |                 | tcy            | tcy+60         | ns   |
| RD <sup>↑</sup> delay time from WAIT <sup>↑</sup>                                     | twrrd          |                 | 0.6tcy+180     | 2.6tcy+180     | ns   |
| WR↑ delay time from WAIT↑                                                             | twrwn          |                 | 0.6tcy+120     | 2.6tcy+120     | ns   |

Remarks 1. MCS: Bit 0 of the oscillation mode selection register

- 2. PCC2 to PCC0: Bit 2 to bit 0 of the processor clock control register
- **3.** tcy = Tcy/4
- 4. n indicates the number of waits.

- (3) Serial Interface (T<sub>A</sub> = -40 to  $+85^{\circ}$ C, V<sub>DD</sub> = 2.7 to 5.5 V)
  - (a) Serial interface channel 0
    - (i) 3-wire serial I/O mode (SCK0 ... internal clock output)

| Parameter                                                     | Symbol | Test Conditions                | MIN.        | TYP. | MAX. | Unit |
|---------------------------------------------------------------|--------|--------------------------------|-------------|------|------|------|
| SCK0 cycle time                                               | tkcy1  | $V_{DD} = 4.5$ to 5.5 V        | 800         |      |      | ns   |
|                                                               |        |                                | 1600        |      |      | ns   |
| SCK0 high-/low-level width                                    | tкнı,  | V <sub>DD</sub> = 4.5 to 5.5 V | tксү1/2-50  |      |      | ns   |
|                                                               | tĸ∟ı   |                                | tксү1/2-100 |      |      | ns   |
| SI0 setup time (vs. SCK0 <sup>↑</sup> )                       | tsıkı  | V <sub>DD</sub> = 4.5 to 5.5 V | 100         |      |      | ns   |
|                                                               |        |                                | 150         |      |      | ns   |
| SI0 hold time (vs. SCK0↑)                                     | tksi1  |                                | 400         |      |      | ns   |
| SO0 output delay time from $\overline{\text{SCK0}}\downarrow$ | tkso1  | C = 100pF Note                 |             |      | 300  | ns   |

Note C is the SO0 output line load capacitance.

# (ii) 3-wire serial I/O mode (SCK0 ... external clock input)

| Parameter                                                     | Symbol        | Test Conditions                                   | MIN. | TYP. | MAX. | Unit |
|---------------------------------------------------------------|---------------|---------------------------------------------------|------|------|------|------|
| SCK0 cycle time                                               | <b>t</b> ксү2 | V <sub>DD</sub> = 4.5 to 5.5 V                    | 800  |      |      | ns   |
|                                                               |               |                                                   | 1600 |      |      | ns   |
| SCK0 high-/low-level width                                    | tкн2,         | V <sub>DD</sub> = 4.5 to 5.5 V                    | 400  |      |      | ns   |
|                                                               | tĸ∟2          |                                                   | 800  |      |      | ns   |
| SI0 setup time (vs. SCK0↑)                                    | tsik2         |                                                   | 100  |      |      | ns   |
| SI0 hold time (vs. $\overline{\text{SCK0}}$ )                 | tksi2         |                                                   | 400  |      |      | ns   |
| SO0 output delay time from $\overline{\text{SCK0}}\downarrow$ | tĸso2         | C = 100pF Note                                    |      |      | 300  | ns   |
| SCK0 rise, fall time                                          | tr2,<br>tF2   | When using external device expansion function     |      |      | 160  | ns   |
|                                                               |               | When not using external device expansion function |      |      | 1000 | ns   |

Note C is the SO0 output line load capacitance.

| Parameter                       | Symbol | Test C                         | onditions                      | MIN.        | TYP. | MAX. | Unit |
|---------------------------------|--------|--------------------------------|--------------------------------|-------------|------|------|------|
| SCK0 cycle time                 | tксүз  | V <sub>DD</sub> = 4.5 to 5     | .5 V                           | 800         |      |      | ns   |
|                                 |        |                                |                                | 3200        |      |      | ns   |
| SCK0 high-/low-level width      | tкнз,  | V <sub>DD</sub> = 4.5 to 5     | .5 V                           | tксүз/2-50  |      |      | ns   |
|                                 | tкьз   |                                |                                | tксүз/2-100 |      |      | ns   |
| SB0, SB1 setup time (vs. SCK0↑) | tsik3  | V <sub>DD</sub> = 4.5 to 5.5 V |                                | 100         |      |      | ns   |
|                                 |        |                                |                                | 300         |      |      | ns   |
| SB0, SB1 hold time (vs. SCK0↑)  | tหรเง  |                                |                                | tксүз/2     |      |      | ns   |
| SB0, SB1 output delay time from | tкsoз  | R = 1kΩ,                       | V <sub>DD</sub> = 4.5 to 5.5 V | 0           |      | 250  | ns   |
| <u>scko</u> ↓                   | IKS03  | C = 100pF <sup>Note</sup>      |                                | 0           |      | 1000 | ns   |
| SB0, SB1↓ from SCK0↑            | tкsв   |                                |                                | tксүз       |      |      | ns   |
| SCK0↓ from SB0, SB1↓            | tsвк   |                                |                                | tксүз       |      |      | ns   |
| SB0, SB1 high-level width       | tsвн   |                                |                                | tксүз       |      |      | ns   |
| SB0, SB1 low-level width        | tsв∟   |                                |                                | tксүз       |      |      | ns   |

(iii) SBI mode (SCK0 ... internal clock output)

Note R and C are the SB0 and SB1 output line load resistance and load capacitance.

# (iv) SBI mode (SCK0 ... external clock input)

| Parameter                       | Symbol        | Test C                                        | onditions                      | MIN.          | TYP. | MAX. | Unit |
|---------------------------------|---------------|-----------------------------------------------|--------------------------------|---------------|------|------|------|
| SCK0 cycle time                 | <b>t</b> ксү4 | V <sub>DD</sub> = 4.5 to 5                    | .5 V                           | 800           |      |      | ns   |
|                                 |               |                                               |                                | 3200          |      |      | ns   |
| SCK0 high-/low-level width      | <b>t</b> кн4, | V <sub>DD</sub> = 4.5 to 5                    | .5 V                           | 400           |      |      | ns   |
|                                 | tĸL4          |                                               |                                | 1600          |      |      | ns   |
| SB0, SB1 setup time (vs. SCK0↑) | tsik4         | V <sub>DD</sub> = 4.5 to 5.5 V                |                                | 100           |      |      | ns   |
|                                 |               |                                               |                                | 300           |      |      | ns   |
| SB0, SB1 hold time (vs. SCK0↑)  | tksi4         |                                               |                                | tксү4/2       |      |      | ns   |
| SB0, SB1 output delay time from | tksO4         | R = 1kΩ,                                      | V <sub>DD</sub> = 4.5 to 5.5 V | 0             |      | 300  | ns   |
| <u>SCK0</u> ↓                   |               | C = 100pF <sup>Note</sup>                     |                                | 0             |      | 1000 | ns   |
| SB0, SB1↓ from SCK0↑            | tкsв          |                                               |                                | tксү4         |      |      | ns   |
| SCK0↓ from SB0, SB1↓            | tsвк          |                                               |                                | tксү4         |      |      | ns   |
| SB0, SB1 high-level width       | tsвн          |                                               |                                | <b>t</b> ксү4 |      |      | ns   |
| SB0, SB1 low-level width        | tsвL          |                                               |                                | tксү4         |      |      | ns   |
| SCK0 rise, fall time            | tR4,<br>tF4   | When using external device expansion function |                                |               |      | 160  | ns   |
|                                 |               | When not using device expansion               | -                              |               |      | 1000 | ns   |

Note R and C are the SB0 and SB1 output line load resistance and load capacitance.

| Parameter                                    | Symbol | Test C                    | Test Conditions                |                     | TYP. | MAX. | Unit |
|----------------------------------------------|--------|---------------------------|--------------------------------|---------------------|------|------|------|
| SCK0 cycle time                              | tксүз  | R = 1kΩ,                  | V <sub>DD</sub> = 4.5 to 5.5 V | 1600                |      |      | ns   |
|                                              |        | C = 100pF <sup>Note</sup> |                                | 3200                |      |      | ns   |
| SCK0 high-level width                        | tкн5   |                           |                                | tксү5/2 <b>-160</b> |      |      | ns   |
| SCK0 low-level width                         | tĸ∟5   |                           |                                | tксү5/2-50          |      |      | ns   |
| SB0, SB1 setup time (vs. SCK0 <sup>↑</sup> ) | tsik5  |                           | V <sub>DD</sub> = 4.5 to 5.5 V | 300                 |      |      | ns   |
|                                              |        |                           |                                | 350                 |      |      | ns   |
| SB0, SB1 hold time (vs. SCK0↑)               | tksi5  |                           |                                | 600                 |      |      | ns   |
| SB0, SB1 output delay time<br>from SCK0↓     | tĸso5  |                           |                                | 0                   |      | 300  | ns   |

# (v) 2-wire serial I/O mode (SCK0 ... internal clock output)

**Note** R and C are the  $\overline{SCK0}$ , SB0 and SB1 output line load resistance and load capacitance.

### (vi) 2-wire serial I/O mode (SCK0 ... external clock input)

| Parameter                                                   | Symbol        | Test Conditions                                   | MIN.    | TYP. | MAX. | Unit |
|-------------------------------------------------------------|---------------|---------------------------------------------------|---------|------|------|------|
| SCK0 cycle time                                             | <b>t</b> ксү6 | V <sub>DD</sub> = 4.5 to 5.5 V                    | 1600    |      |      | ns   |
|                                                             |               |                                                   | 3200    |      |      | ns   |
| SCK0 high-level width                                       | tкнө          |                                                   | 650     |      |      | ns   |
| SCK0 low-level width                                        | tĸ∟6          |                                                   | 800     |      |      | ns   |
| SB0, SB1 setup time (vs. SCK0↑)                             | tsik6         |                                                   | 100     |      |      | ns   |
| SB0, SB1 hold time (vs. SCK0↑)                              | tksi6         |                                                   | tксү6/2 |      |      | ns   |
| SB0, SB1 output delay time from $\overline{SCK0}\downarrow$ | tkso6         | $R = 1k\Omega,  C = 100pF^{\mathbf{Note}}$        | 0       |      | 300  | ns   |
| SCK0 rise, fall time                                        | tR6,<br>tF6   | When using external device expansion function     |         |      | 160  | ns   |
|                                                             |               | When not using external device expansion function |         |      | 1000 | ns   |

Note R and C are the SCK0, SB0 and SB1 output line load resistance and load capacitance.

### (b) Serial interface channel 1

| (i) | 3-wire serial I/O mode (SCK) | internal clock output) |
|-----|------------------------------|------------------------|
|-----|------------------------------|------------------------|

| Parameter                                                     | Symbol        | Test Conditions                | MIN.               | TYP. | MAX. | Unit |
|---------------------------------------------------------------|---------------|--------------------------------|--------------------|------|------|------|
| SCK1 cycle time                                               | <b>t</b> ксү7 | V <sub>DD</sub> = 4.5 to 5.5 V | 800                |      |      | ns   |
|                                                               |               |                                | 1600               |      |      | ns   |
| SCK1 high-/low-level width                                    | tкн7,         | V <sub>DD</sub> = 4.5 to 5.5 V | tксү7/ <b>2-50</b> |      |      | ns   |
|                                                               | tĸ∟7          |                                | tксү7/2-100        |      |      | ns   |
| SI1 setup time (vs. SCK1↑)                                    | tsik7         | V <sub>DD</sub> = 4.5 to 5.5 V | 100                |      |      | ns   |
|                                                               |               |                                | 150                |      |      | ns   |
| SI1 hold time (vs. $\overline{\text{SCK1}}$ )                 | tksi7         |                                | 400                |      |      | ns   |
| SO1 output delay time from $\overline{\text{SCK1}}\downarrow$ | tĸso7         | C = 100pF <sup>Note</sup>      |                    |      | 300  | ns   |

**Note** C is the SO1 output line load capacitance.

# (ii) 3-wire serial I/O mode (SCK1 ... external clock input)

| Parameter                                                     | Symbol                               | Test Conditions                                   | MIN. | TYP. | MAX. | Unit |
|---------------------------------------------------------------|--------------------------------------|---------------------------------------------------|------|------|------|------|
| SCK1 cycle time                                               | tксүв                                | V <sub>DD</sub> = 4.5 to 5.5 V                    | 800  |      |      | ns   |
|                                                               |                                      |                                                   | 1600 |      |      | ns   |
| SCK1 high-/low-level width                                    | tкнв,                                | V <sub>DD</sub> = 4.5 to 5.5 V                    | 400  |      |      | ns   |
|                                                               | tĸ∟8                                 |                                                   | 800  |      |      | ns   |
| SI1 setup time (vs. SCK1↑)                                    | tsik8                                |                                                   | 100  |      |      | ns   |
| SI1 hold time (vs. SCK1↑)                                     | tksi8                                |                                                   | 400  |      |      | ns   |
| SO1 output delay time from $\overline{\text{SCK1}}\downarrow$ | tkso8                                | C = 100pF Note                                    |      |      | 300  | ns   |
| SCK1 rise, fall time                                          | t <sub>R8</sub> ,<br>t <sub>F8</sub> | When using external device expansion function     |      |      | 160  | ns   |
|                                                               |                                      | When not using external device expansion function |      |      | 1000 | ns   |

**Note** C is the SO1 output line load capacitance.

| Parameter                                                     | Symbol | Test C                         | Conditions                     | MIN.        | TYP. | MAX.        | Unit |
|---------------------------------------------------------------|--------|--------------------------------|--------------------------------|-------------|------|-------------|------|
| SCK1 cycle time                                               | tксүэ  | $V_{DD} = 4.5$ to 5            | .5 V                           | 800         |      |             | ns   |
|                                                               |        |                                |                                | 1600        |      |             | ns   |
| SCK1 high-/low-level width                                    | tкнэ,  | V <sub>DD</sub> = 4.5 to 5     | .5 V                           | tксү9/2-50  |      |             | ns   |
|                                                               | tĸL9   |                                |                                | tксү9/2-100 |      |             | ns   |
| SI1 setup time (vs. SCK11)                                    | tsik9  | V <sub>DD</sub> = 4.5 to 5.5 V |                                | 100         |      |             | ns   |
|                                                               |        |                                |                                | 150         |      |             | ns   |
| SI1 hold time (vs. SCK1↑)                                     | tksi9  |                                |                                | 400         |      |             | ns   |
| SO1 output delay time from $\overline{\text{SCK1}}\downarrow$ | tĸso9  | C = 100 pF <sup>Note</sup>     | V <sub>DD</sub> = 4.5 to 5.5 V |             |      | 300         | ns   |
| STB↑ from SCK1↑                                               | tsвd   |                                |                                | tксү9/2-100 |      | tксү9/2+100 | ns   |
| Strobe signal high-level width                                | tsвw   |                                |                                | tксү9-30    |      | tксү9+30    | ns   |
| Busy signal setup time<br>(vs. busy signal detection timing)  | tвys   |                                |                                | 100         |      |             | ns   |
| Busy signal hold time                                         | tвүн   | V <sub>DD</sub> = 4.5 to 5.5 V |                                | 100         |      |             | ns   |
| (vs. busy signal detection timing)                            |        |                                |                                | 150         |      |             | ns   |
| $\overline{\text{SCK1}}\downarrow$ from busy inactivation     | tses   |                                |                                |             |      | 2tксүэ      | ns   |

(iii) Automatic transmission/reception function 3-wire serial I/O mode (SCK1 ... internal clock output)

**Note** C is the SO1 output line load capacitance.

| <i>/</i> • \ | Automatic transmission/reception function |                               |                        |
|--------------|-------------------------------------------|-------------------------------|------------------------|
| (1)/1        | Automatic transmission/recention function | 3-WIRD CORIST I/() MODE (SCK) | avternal clock innuit) |
| (17)         |                                           |                               |                        |
|              |                                           |                               |                        |

| Parameter                                                   | Symbol         | Test Conditions                                   | MIN. | TYP. | MAX. | Unit |
|-------------------------------------------------------------|----------------|---------------------------------------------------|------|------|------|------|
| SCK1 cycle time                                             | <b>t</b> ксү10 | V <sub>DD</sub> = 4.5 to 5.5 V                    | 800  |      |      | ns   |
|                                                             |                |                                                   | 1600 |      |      | ns   |
| SCK1 high-/low-level width                                  | <b>t</b> кн10, | V <sub>DD</sub> = 4.5 to 5.5 V                    | 400  |      |      | ns   |
|                                                             | tĸL10          |                                                   | 800  |      |      | ns   |
| SI1 setup time (vs. SCK1↑)                                  | tsıĸ10         |                                                   | 100  |      |      | ns   |
| SI1 hold time (vs. $\overline{\text{SCK1}}$ )               | tksi10         |                                                   | 400  |      |      | ns   |
| SO1 output delay time from $\overline{\rm SCK1} \downarrow$ | tkso10         | C = 100 pF <sup>Note</sup>                        |      |      | 300  | ns   |
| SCK1 rise, fall time                                        | tr10,<br>tr10  | When using external device expansion function     |      |      | 160  | ns   |
|                                                             |                | When not using external device expansion function |      |      | 1000 | ns   |

Note C is the SO1 output line load capacitance.

### (c) Serial interface channel 2

### (i) 3-wire serial I/O mode (SCK2 ... internal clock output)

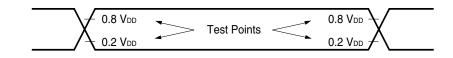
| Parameter                                                       | Symbol         | Test Conditions                | MIN.         | TYP. | MAX. | Unit |
|-----------------------------------------------------------------|----------------|--------------------------------|--------------|------|------|------|
| SCK2 cycle time                                                 | tkCY11         | V <sub>DD</sub> = 4.5 to 5.5 V | 800          |      |      | ns   |
|                                                                 |                |                                | 1600         |      |      | ns   |
| SCK2 high-/low-level width                                      | <b>t</b> кн11, | V <sub>DD</sub> = 4.5 to 5.5 V | tксү11/2-50  |      |      | ns   |
|                                                                 | tĸL11          |                                | tксү11/2-100 |      |      | ns   |
| SI2 setup time (vs. SCK2↑)                                      | tsik11         | V <sub>DD</sub> = 4.5 to 5.5 V | 100          |      |      | ns   |
|                                                                 |                |                                | 150          |      |      | ns   |
| SI2 hold time (vs. $\overline{SCK2}^{\uparrow}$ )               | tksi11         |                                | 400          |      |      | ns   |
| SO2 output delay time from $\overline{\mathrm{SCK2}}\downarrow$ | tkso11         | C = 100pF <sup>Note</sup>      |              |      | 300  | ns   |

Note C is the SO2 output line load capacitance.

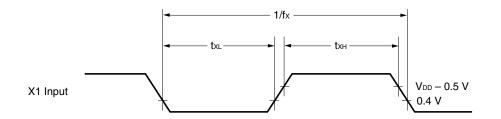
# (ii) 3-wire serial I/O mode (SCK2 ... external clock input)

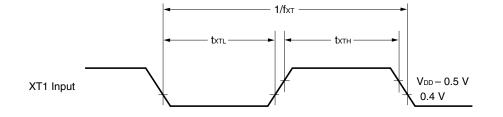
| Parameter                                                     | Symbol         | Test Conditions                                   | MIN. | TYP. | MAX. | Unit |
|---------------------------------------------------------------|----------------|---------------------------------------------------|------|------|------|------|
| SCK2 cycle time                                               | <b>t</b> KCY12 | V <sub>DD</sub> = 4.5 to 5.5 V                    | 800  |      |      | ns   |
|                                                               |                |                                                   | 1600 |      |      | ns   |
| SCK2 high-/low-level width                                    | <b>t</b> кн12, | V <sub>DD</sub> = 4.5 to 5.5 V                    | 400  |      |      | ns   |
|                                                               | <b>t</b> KL12  |                                                   | 800  |      |      | ns   |
| SI2 setup time (vs. SCK2↑)                                    | tsik12         |                                                   | 100  |      |      | ns   |
| SI2 hold time (vs. $\overline{\text{SCK2}}$ )                 | <b>t</b> KSI12 |                                                   | 400  |      |      | ns   |
| SO2 output delay time from $\overline{\text{SCK2}}\downarrow$ | tkso12         | C = 100pF Note                                    |      |      | 300  | ns   |
| SCK2 rise, fall time                                          | tr12,<br>tr12  | When using external device expansion function     |      |      | 160  | ns   |
|                                                               |                | When not using external device expansion function |      |      | 1000 | ns   |

**Note** C is the SO2 output line load capacitance.

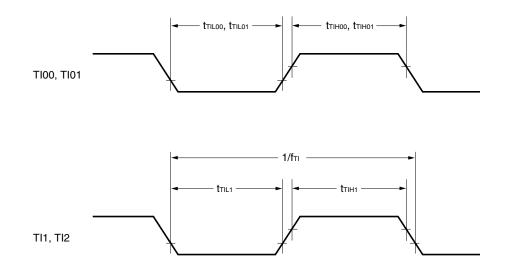

### (iii) UART mode (Dedicated baud rate generator output)

| Parameter     | Symbol | Test Conditions                | MIN. | TYP. | MAX.  | Unit |
|---------------|--------|--------------------------------|------|------|-------|------|
| Transfer rate |        | V <sub>DD</sub> = 4.5 to 5.5 V |      |      | 78125 | bps  |
|               |        |                                |      |      | 39063 | bps  |


#### (iv) UART mode (External clock input)

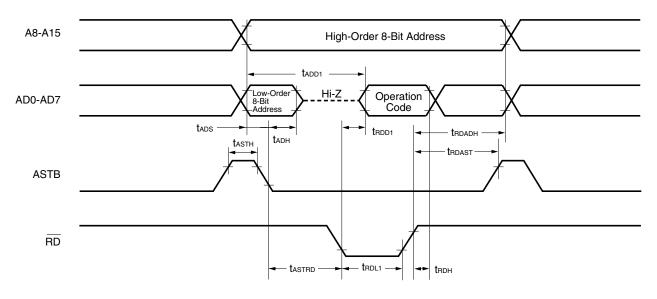

| Parameter            | Symbol         | Test Conditions                                   | MIN. | TYP. | MAX.  | Unit |
|----------------------|----------------|---------------------------------------------------|------|------|-------|------|
| ASCK cycle time      | <b>t</b> ксү13 | $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$          | 800  |      |       | ns   |
|                      |                |                                                   | 1600 |      |       | ns   |
| ASCK high-/low-level | <b>t</b> кн13, | $V_{DD} = 4.5$ to 5.5 V                           | 400  |      |       | ns   |
| width                | tĸ∟13          |                                                   | 800  |      |       | ns   |
| Transfer rate        |                | $V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$          |      |      | 39063 | bps  |
|                      |                |                                                   |      |      | 19531 | bps  |
| SCK rise, fall time  | tr13,<br>tF13  | When using external device expansion function     |      |      | 160   | ns   |
|                      |                | When not using external device expansion function |      |      | 1000  | ns   |

### AC Timing Test Point (Excluding X1, XT1 Input)

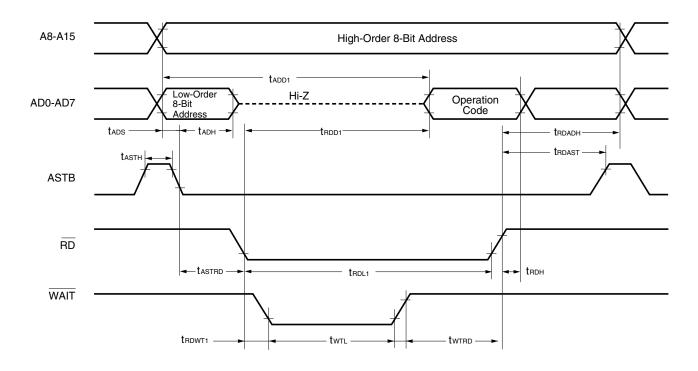



**Clock Timing** 

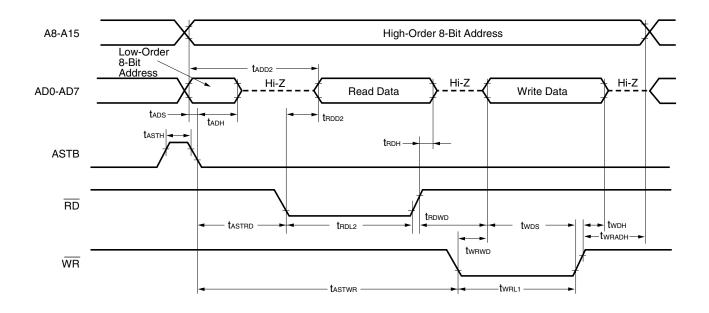




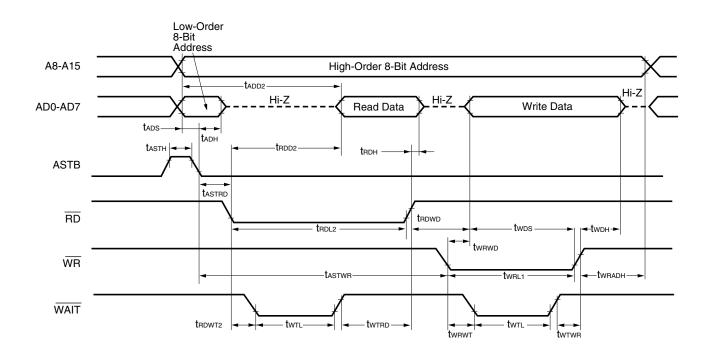

**TI Timing** 




### **Read/Write Operations**

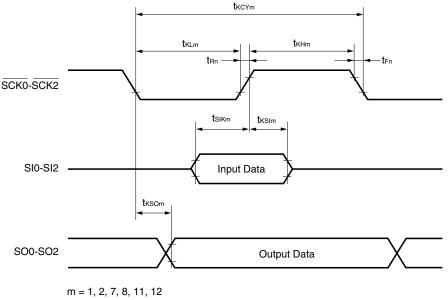

External fetch (no wait):



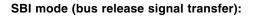

```
External fetch (wait insertion):
```

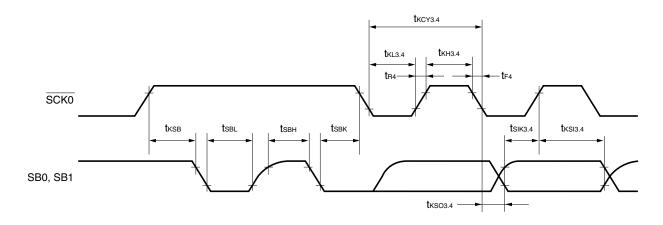


#### External data access (no wait):

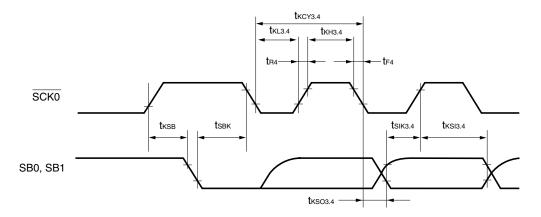



#### External data access (wait insertion):

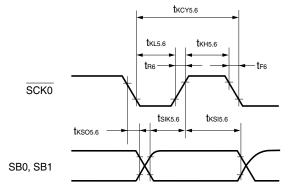




### Serial Transfer Timing

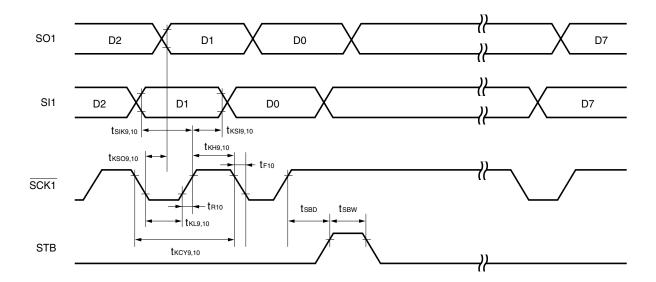
#### 3-wire serial I/O mode:



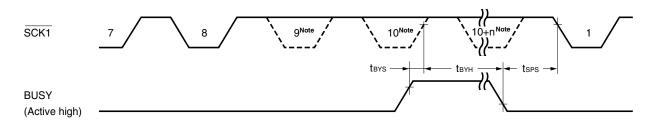

n = 2, 8, 12





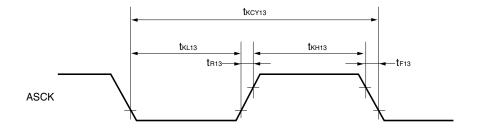


### SBI mode (command signal transfer):




2-wire serial I/O mode:



#### Automatic transmission/reception function 3-wire serial I/O mode:




#### Automatic transmission/reception function 3-wire serial I/O mode (busy processing):



Note The signal is not actually low here, but is represented in this way to show the timing.

# UART mode (external Clock Input):



### A/D Converter Characteristics (T<sub>A</sub> = -40 to +85°C, AV<sub>DD</sub> = V<sub>DD</sub> = 2.7 to 5.5 V, AV<sub>SS</sub> = V<sub>SS</sub> = 0 V)

| Parameter                   | Symbol             | Test       | Test Conditions                |        |      | MAX.               | Unit  |
|-----------------------------|--------------------|------------|--------------------------------|--------|------|--------------------|-------|
| Resolution                  |                    |            |                                | 8      | 8    | 8                  | bit   |
| Total error <sup>Note</sup> |                    | IEAD = 00H |                                |        |      | ±1.8               | % FSR |
|                             |                    | IEAD = 01H | V <sub>DD</sub> = 4.5 to 5.5 V |        | ±2.2 | ±3.4               | % FSR |
|                             |                    |            |                                |        | ±2.6 | ±3.8               | % FSR |
| Conversion time             | tсолv              |            | ·                              | 19.1   |      | 200                | μs    |
| Sampling time               | tsamp              |            |                                | 12/fxx |      |                    | μs    |
| Analog input voltage        | VIAN               |            |                                | AVss   |      | AV <sub>REF0</sub> | V     |
| Reference voltage           | AV <sub>REF0</sub> |            |                                | 2.7    |      | AVDD               | V     |
| AVREFO-AVss resistance      | RAIREFO            |            |                                | 4      | 14   |                    | kΩ    |

Note Excluding quantization error ( $\pm 1/2$  LSB). Shown as a percentage of the full scale value (% FSR).

**Remarks** 1. fxx : Main system clock frequency (fx or fx/2)

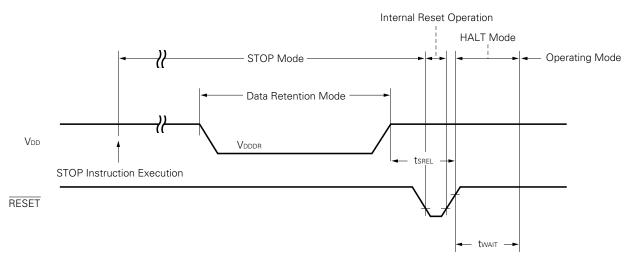
**2.** fx : Main system clock oscillatior frequency

### D/A Converter Characteristics (T<sub>A</sub> = -40 to +85°C, V<sub>DD</sub> = 2.7 to 5.5 V, AV<sub>SS</sub> = V<sub>SS</sub> = 0 V)

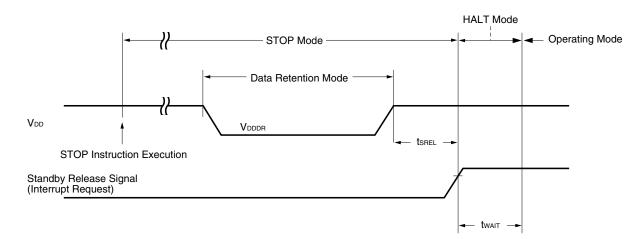
| Parameter                   | Symbol             | Test Co                     | onditions                  | MIN. | TYP. | MAX. | Unit |
|-----------------------------|--------------------|-----------------------------|----------------------------|------|------|------|------|
| Resolution                  |                    |                             |                            |      |      | 8    | bit  |
| Total error                 |                    | $R = 2 M\Omega$ Note1       |                            |      |      | 1.2  | %    |
|                             |                    | $R = 4 M\Omega^{Note1}$     |                            |      |      | 0.8  | %    |
|                             |                    | R = 10 MΩ <sup>Note1</sup>  | R = 10 MΩ <sup>Note1</sup> |      |      | 0.6  | %    |
| Setting time                |                    | C = 30 pF <sup>Note 1</sup> | $AV_{REF} = 4.5$ to 5.5 V  |      |      | 10   | μs   |
|                             |                    |                             |                            |      |      | 15   | μs   |
| Ouput resistor              | Roo                | DACS0 = 55H                 |                            |      | 10   |      | kΩ   |
|                             | Ro1                | DACS1 = 55H                 |                            | 10   |      | kΩ   |      |
| Analog reference<br>voltage | AV <sub>REF1</sub> |                             |                            | 2.7  |      | Vdd  | V    |
| AVREF1 current              | AIREF1             | Note2                       |                            |      |      | 1.5  | mA   |

Notes 1. R and C are the D/A converter output pin load resistance and load capacitance.

2. Value for one D/A converter channel.

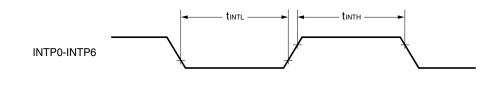

### DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (TA = -40 to +85°C)

| Parameter                        | Symbol | Test Conditions                                                                         | MIN. | TYP.   | MAX. | Unit |
|----------------------------------|--------|-----------------------------------------------------------------------------------------|------|--------|------|------|
| Data retention<br>supply voltage | Vdddr  |                                                                                         | 2.0  |        | 5.5  | V    |
| Data retention<br>supply current | Idddr  | V <sub>DDDR</sub> = 2.0 V<br>Subsystem clock stopped,<br>feedback resister disconnected |      | 0.1    | 10   | μA   |
| Release signal setup time        | tsrel  |                                                                                         | 0    |        |      | μs   |
| Oscillation                      |        | Release by RESET                                                                        |      | 217/fx |      | ms   |
| stabilization<br>wait time       | twait  | Release by interrupt                                                                    |      | Note   |      | ms   |


**Note** 2<sup>12</sup>/fxx, or 2<sup>14</sup>/fxx through 2<sup>17</sup>fxx can be selected by bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time selection register.

fx : Main system clock oscillatior frequency

### Data Retention Timing (STOP mode release by RESET)




#### Data Retention Timing (STOP mode release by standby release signal: interrupt signal)




Remark fxx : Main system clock frequency

### Interrupt Input Timing



# RESET Input Timing



# IEBus Controller Characteristics (TA = -40 to +85°C, VDD = 5 V $\pm$ 10%)

| Parameter                                                     | Symbol | Conditi                     | Conditions    |      | TYP. | MAX. | Unit |
|---------------------------------------------------------------|--------|-----------------------------|---------------|------|------|------|------|
| IEBus controller system                                       | fs     | When using mode 0,          | 1 Note 1      | 5.91 | 6.00 | 6.09 | MHz  |
| clock frequency                                               |        |                             |               | 6.20 | 6.29 | 6.39 | MHz  |
|                                                               |        | When using mode 2           |               | 5.97 | 6.00 | 6.03 | MHz  |
|                                                               |        |                             |               | 6.26 | 6.29 | 6.32 | MHz  |
| Driver delay time                                             |        | C = 50 pF <sup>Note 2</sup> | fs = 6.00 MHz |      |      | 1.6  | μs   |
| $(\overline{TX} \text{ output} \rightarrow bus \text{ line})$ |        |                             | fs = 6.29 MHz |      |      | 1.5  | μs   |
| Receiver delay time                                           |        | fs = 6.00 MHz               |               |      |      | 0.75 | μs   |
| (Bus line $\rightarrow \overline{RX}$ input)                  |        | fs = 6.29 MHz               | fs = 6.29 MHz |      |      | 0.7  | μs   |
| Propagation delay                                             |        | fs = 6.00 MHz               |               |      |      | 0.9  | μs   |
| time on the bus                                               |        | fs = 6.29 MHz               | fs = 6.29 MHz |      |      | 0.85 | μs   |

Notes 1. For the values in the second row, the IEBus standards are not satisfied.

**2.** C is the  $\overline{TX}$  output line load capacitance.

### **PROM PROGRAMMING CHARACTERISTICS**

#### **DC** Characteristics

### (1) PROM Write Mode (T<sub>A</sub> = 25 $\pm$ 5°C, V<sub>DD</sub> = 6.5 $\pm$ 0.25 V, V<sub>PP</sub> = 12.5 $\pm$ 0.3 V)

| Parameter             | Symbol | Test Conditions           | MIN.    | TYP. | MAX.    | Unit |
|-----------------------|--------|---------------------------|---------|------|---------|------|
| Input voltage high    | Vін    |                           | 0.7 Vdd |      | VDD     | V    |
| Input voltage low     | VIL    |                           | 0       |      | 0.3 VDD | V    |
| Output voltage high   | Vон    | Іон = −1 mA               | VDD-1.0 |      |         | V    |
| Output voltage low    | Vol    | IoL = 1.6 mA              |         |      | 0.4     | V    |
| Input leakage current | lu     | $0 \le V_{IN} \le V_{DD}$ | -10     |      | +10     | μA   |
| VPP supply voltage    | VPP    |                           | 12.2    | 12.5 | 12.8    | V    |
| VDD supply voltage    | VDD    |                           | 6.25    | 6.5  | 6.75    | V    |
| VPP supply current    | Ірр    | PGM = VIL                 |         |      | 50      | mA   |
| VDD supply current    | lod    |                           |         |      | 50      | mA   |

### (2) PROM Read Mode (T<sub>A</sub> = 25 $\pm$ 5°C, V<sub>DD</sub> = 5.0 $\pm$ 0.5 V, V<sub>PP</sub> = V<sub>DD</sub> $\pm$ 0.6 V)

| Parameter              | Symbol | Test Conditions                                      | MIN.                 | TYP. | MAX.                 | Unit |
|------------------------|--------|------------------------------------------------------|----------------------|------|----------------------|------|
| Input voltage high     | Vін    |                                                      | 0.7 Vdd              |      | VDD                  | V    |
| Input voltage low      | Vı∟    |                                                      | 0                    |      | 0.3 Vdd              | V    |
| Output voltage high    | Vон1   | Iон = -1 mA                                          | VDD-1.0              |      |                      | V    |
|                        | Vон2   | Іон = −100 μА                                        | V <sub>DD</sub> -0.5 |      |                      | V    |
| Output voltage low     | Vol    | IoL = 1.6 mA                                         |                      |      | 0.4                  | V    |
| Input leakage current  | lu     | $0 \le V_{\text{IN}} \le V_{\text{DD}}$              | -10                  |      | +10                  | μA   |
| Output leakage current | Ilo    | $0 \le V_{OUT} \le V_{DD}, \ \overline{OE} = V_{IH}$ | -10                  |      | +10                  | μA   |
| VPP supply voltage     | Vpp    |                                                      | V <sub>DD</sub> -0.6 | VDD  | V <sub>DD</sub> +0.6 | V    |
| VDD supply voltage     | Vdd    |                                                      | 4.5                  | 5.0  | 5.5                  | V    |
| VPP supply current     | IPP    | Vpp = Vdd                                            |                      |      | 100                  | μA   |
| VDD supply current     | ldd    | $\overline{CE} = V_{IL}, V_{IN} = V_{IH}$            |                      |      | 50                   | mA   |

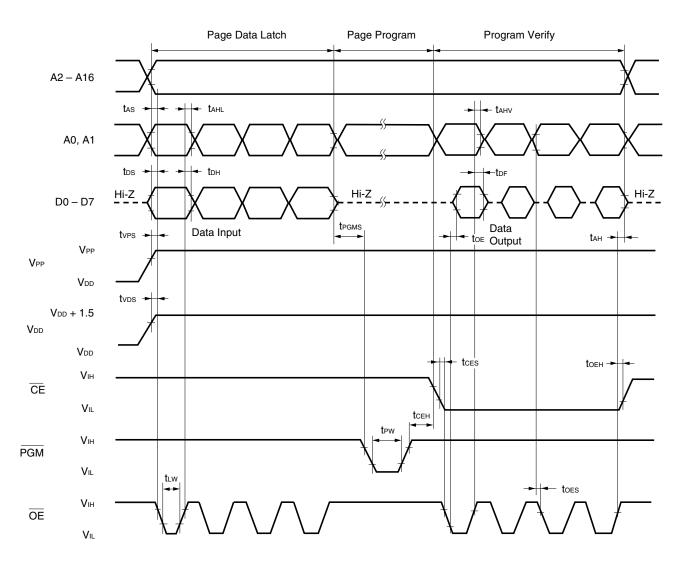
### **AC Characteristics**

### (1) PROM Write Mode

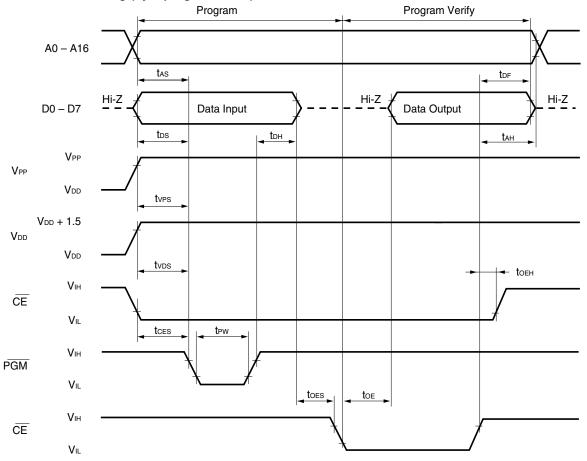
#### (a) Page program mode (TA = 25 $\pm$ 5°C, VDD = 6.5 $\pm$ 0.25 V, VPP = 12.5 $\pm$ 0.3 V)

| Parameter                                                        | Symbol      | Test Conditions | MIN.  | TYP. | MAX.  | Unit |
|------------------------------------------------------------------|-------------|-----------------|-------|------|-------|------|
| Address setup time (vs. $\overline{OE}\downarrow$ )              | tas         |                 | 2     |      |       | μs   |
| OE setup time                                                    | toes        |                 | 2     |      |       | μs   |
| CE setup time (vs. $\overline{OE}\downarrow$ )                   | tces        |                 | 2     |      |       | μs   |
| Input data setup time (vs. $\overline{\text{OE}} \downarrow$ )   | tos         |                 | 2     |      |       | μs   |
| Address hold time (vs. $\overline{OE}\uparrow$ )                 | tан         |                 | 2     |      |       | μs   |
|                                                                  | tahl        |                 | 2     |      |       | μs   |
|                                                                  | tанv        |                 | 0     |      |       | μs   |
| Input data hold time (vs. $\overline{OE}\uparrow$ )              | tон         |                 | 2     |      |       | μs   |
| Data output float delay time from $\overline{\text{OE}}\uparrow$ | <b>t</b> DF |                 | 0     |      | 250   | ns   |
| $V_{PP}$ setup time (vs. $\overline{OE}\downarrow$ )             | tvps        |                 | 1.0   |      |       | ms   |
| $V_{DD}$ setup time (vs. $\overline{OE}\downarrow$ )             | tvos        |                 | 1.0   |      |       | ms   |
| Program pulse width                                              | tew         |                 | 0.095 |      | 0.105 | ms   |
| Valid data delay time from $\overline{OE} \downarrow$            | toe         |                 |       |      | 1     | μs   |
| OE pulse width during data latching                              | t∟w         |                 | 1     |      |       | μs   |
| PGM setup time                                                   | tрдмs       |                 | 2     |      |       | μs   |
| CE hold time                                                     | tсен        |                 | 2     |      |       | μs   |
| OE hold time                                                     | tоен        |                 | 2     |      |       | μs   |

# (b) Byte program mode (TA = 25 $\pm$ 5°C, VDD = 6.5 $\pm$ 0.25 V, VPP = 12.5 $\pm$ 0.3 V)


| Parameter                                                    | Symbol | Test Conditions | MIN.  | TYP. | MAX.  | Unit |
|--------------------------------------------------------------|--------|-----------------|-------|------|-------|------|
| Address setup time (vs. $\overline{\text{PGM}}\downarrow$ )  | tas    |                 | 2     |      |       | μs   |
| OE setup time                                                | toes   |                 | 2     |      |       | μs   |
| $\overline{CE}$ setup time (vs. $\overline{PGM}\downarrow$ ) | tces   |                 | 2     |      |       | μs   |
| Input data setup time (vs. $\overline{PGM}\downarrow$ )      | tos    |                 | 2     |      |       | μs   |
| Address hold time (vs. $\overline{OE}^{\uparrow}$ )          | tан    |                 | 2     |      |       | μs   |
| Input data hold time (vs. $\overline{PGM}\uparrow$ )         | tон    |                 | 2     |      |       | μs   |
| Data output float delay time from $\overline{OE}^\uparrow$   | tdf    |                 | 0     |      | 250   | ns   |
| $V_{PP}$ setup time (vs. $\overline{PGM}\downarrow$ )        | tvps   |                 | 1.0   |      |       | ms   |
| $V_{DD}$ setup time (vs. $\overline{PGM}\downarrow$ )        | tvds   |                 | 1.0   |      |       | ms   |
| Program pulse width                                          | tew    |                 | 0.095 |      | 0.105 | ms   |
| Valid data delay time from $\overline{OE} \downarrow$        | toe    |                 |       |      | 1     | μs   |
| OE hold time                                                 | tоен   |                 | 2     |      |       | μs   |

### (2) PROM Read Mode (T<sub>A</sub> = 25 $\pm$ 5°C, V<sub>DD</sub> = 5.0 $\pm$ 0.5 V, V<sub>PP</sub> = V<sub>DD</sub> $\pm$ 0.6 V)

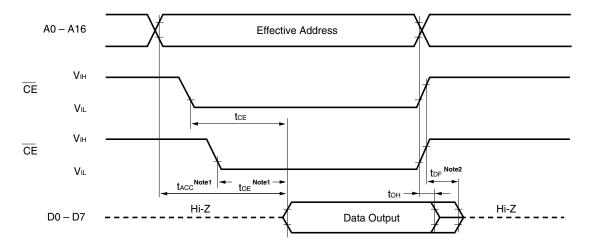

| Parameter                                                    | Symbol      | Test Conditions                          | MIN. | TYP. | MAX. | Unit |
|--------------------------------------------------------------|-------------|------------------------------------------|------|------|------|------|
| Data output delay time from address                          | tacc        | $\overline{CE} = \overline{OE} = V_{IL}$ |      |      | 800  | ns   |
| Data output delay time from $\overline{CE}\downarrow$        | tce.        | OE = VIL                                 |      |      | 800  | ns   |
| Data output delay time from $\overline{OE} \downarrow$       | toe         | CE = VIL                                 |      |      | 200  | ns   |
| Data output float delay time from $\overline{OE}^{\uparrow}$ | <b>t</b> DF | CE = VIL                                 | 0    |      | 60   | ns   |
| Data hold time from address                                  | tон         | $\overline{CE} = \overline{OE} = V_{IL}$ | 0    |      |      | ns   |

### (3) PROM Programming Mode Setting ( $T_A = 25^{\circ}C$ , $V_{SS} = 0$ V)

| Parameter                       | Symbol | Test Conditions | MIN. | TYP. | MAX. | Unit |
|---------------------------------|--------|-----------------|------|------|------|------|
| PROM programing mode setup time | tsma   |                 | 10   |      |      | μs   |

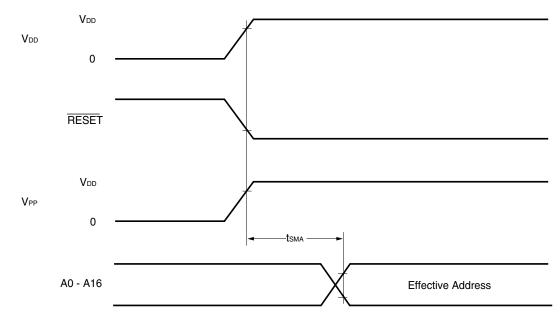


### PROM Write Mode Timing (page program mode)



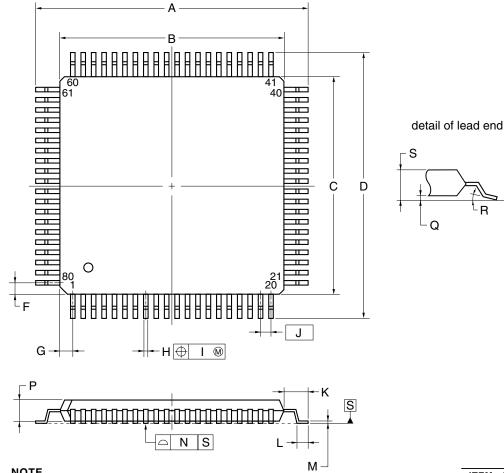

PROM Write Mode Timing (byte program mode)




- 2. VPP should not exceed +13.5 V including overshoot.
- 3. Disconnection during application of  $\pm$ 12.5V to VPP may have an adverse effect on reliability.

**PROM Read Mode Timing** 




- **Notes** 1. If you want to read within the tacc range, make the  $\overline{OE}$  input delay time from the fall of  $\overline{CE}$  a maxmum of tacc - toE.
  - 2. top is the time from when either  $\overline{OE}$  or  $\overline{CE}$  first reaches VIH.

### PROM Programming Mode Setting Timing



8. PACKAGE DRAWINGS

# 80-PIN PLASTIC QFP (14x14)



#### NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

| ITEM | MILLIMETERS                     |
|------|---------------------------------|
| A    | 17.20±0.20                      |
| В    | 14.00±0.20                      |
| С    | 14.00±0.20                      |
| D    | 17.20±0.20                      |
| F    | 0.825                           |
| G    | 0.825                           |
| Н    | 0.32±0.06                       |
| I    | 0.13                            |
| J    | 0.65 (T.P.)                     |
| K    | 1.60±0.20                       |
| L    | 0.80±0.20                       |
| М    | $0.17\substack{+0.03 \\ -0.07}$ |
| N    | 0.10                            |
| Р    | 1.40±0.10                       |
| Q    | 0.125±0.075                     |
| R    | 3° <sup>+7°</sup><br>−3°        |
| S    | 1.70 MAX.                       |
|      | P80GC-65-8BT-1                  |

### ★ 9. RECOMMENDED SOLDERING CONDITIONS

These products should be soldered and mounted under the following recommended conditions.

For the details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, please contact your NEC sales representative.

#### Table 9-1. Surface Mount Type Soldering Conditions

#### µPD78P098AGC-8BT : 80-pin plastic QFP (14 x 14)

| Soldering Method | Soldering Conditions                                                                                                                                                                                                                | Recommended<br>Condition Symbol |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Infrared reflow  | Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher),<br>Count: 2 times or less, Exposure limit: 7 days <sup>Note</sup> (after that, prebake at 125°C for<br>10 hours)                                       | IR35-107-2                      |
| VPS              | Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher),<br>Count: 2 times or less, Exposure limit: 7 days <sup>Note</sup> (after that, prebake at 125°C for<br>10 hours)                                       | VP15-107-2                      |
| Wave soldering   | Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once,<br>Preheating temperature: 120°C max. (package surface temperature), Exposure<br>limit: 7 days <sup>Note</sup> (after that, prebake at 125°C for 10 hours) | WS60-107-1                      |
| Partial heating  | Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)                                                                                                                                                                     |                                 |

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

### APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for development of systems using the  $\mu$ PD78P098A. Also refer to **(6) Notes on using development tools**.

### ★ (1) Software package

| SP78K0 | Software package common to 78K/0 Series |
|--------|-----------------------------------------|
|--------|-----------------------------------------|

#### (2) Language processor software

| RA78K0   | Common assembler package for 78K/0 series products              |
|----------|-----------------------------------------------------------------|
| CC78K0   | Common C compiler package for 78K/0 series products             |
| DF78098  | Device file for $\mu$ PD78098 subseries                         |
| CC78K0-L | Common C compiler library source file for 78K/0 series products |

### (3) PROM writing tools

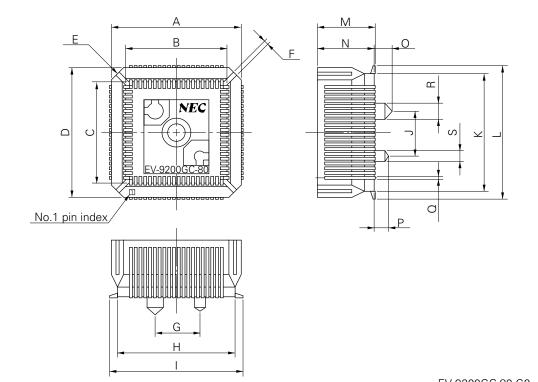
| PG-1500            | PROM programmer                         |
|--------------------|-----------------------------------------|
| PA-78P054GC        | Programmer adapter connected to PG-1500 |
| PG-1500 controller | Control program for PG-1500             |

#### ★ (4) Debugging tools

| IE-78001-R-A      | In-circuit emulator common to 78K/0 Series                                                                                         |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------|
| IE-70000-98-IF-C  | Adapter required when PC-9800 series (except notebook type) is used as host machine (C bus supported)                              |
| IE-70000-PC-IF-C  | Adapter required when IBM PC/AT compatible is used as host machine (ISA bus supported)                                             |
| IE-70000-PCI-IF-A | Adapter required when PC incorporating PCI bus is used as host machine                                                             |
| IE-70000-R-SV3    | Interface adapter and cable required when EWS is used as host machine                                                              |
| IE-78098-R-EM     | Emulation board to emulate the $\mu$ PD78098 Subseries                                                                             |
| EP-78230GC-R      | Emulation probe for 80-pin plastic QFP (GC-8BT type)                                                                               |
| EV-9200GC-80      | Conversion socket to connect the EP-78230GC-R and the target system board on which 80-pin plastic QFP (GC-8BT type) can be mounted |
| ID78K0            | Integrated debugger for IE-78001-R-A                                                                                               |
| SM78K0            | System simulator common to 78K/0 Series                                                                                            |
| DF78098           | Device file for $\mu$ PD78098 Subseries                                                                                            |

### (5) Real-time OS

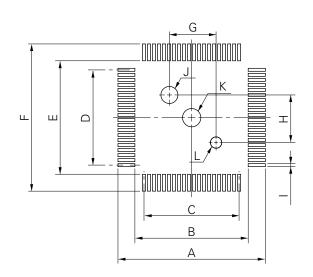
| RX78K/0 | Real-time OS for 78K/0 series |
|---------|-------------------------------|
| MX78K0  | OS for 78K/0 series           |


### $\star$ (6) Notes on using development tools

- The ID78K0, and SM78K0 are used in combination with the DF78098.
- The CC78K0 and RX78K0 are used in combination with the RA78K0 and DF78098.
- For third-party development tools, see the Single-Chip Microcontroller Development Tool Selection Guide (U11069E).
- The host machines and OS suitable for each software are as follows:

| Host Machine | PC                                 | EWS                              |
|--------------|------------------------------------|----------------------------------|
| [OS]         | PC-9800 series [Japanese Windows™] | HP9000 series 700™ [HP-UX™]      |
|              | IBM PC/AT compatibles              | SPARCstation™ [SunOS™, Solaris™] |
| Software     | [Japanese/English Windows]         |                                  |
| RA78K0       | $\sqrt{Note}$                      | $\checkmark$                     |
| CC78K0       | $\sqrt{Note}$                      | $\checkmark$                     |
| ID78K0       | $\checkmark$                       | _                                |
| SM78K0       | $\checkmark$                       | _                                |
| RX78K0       | $\sqrt{Note}$                      | $\checkmark$                     |
| MX78K0       | $\sqrt{Note}$                      | $\checkmark$                     |

Note DOS-based software


### DIMENSIONS AND RECOMMENDED MOUNTING PATTERN OF CONVERSION SOCKET



### Figure A-1. Dimensions of EV-9200GC-80 (reference)

|      |             | EV-9200GC-80-G0 |
|------|-------------|-----------------|
| ITEM | MILLIMETERS | INCHES          |
| А    | 18.0        | 0.709           |
| В    | 14.4        | 0.567           |
| С    | 14.4        | 0.567           |
| D    | 18.0        | 0.709           |
| E    | 4-C 2.0     | 4-C 0.079       |
| F    | 0.8         | 0.031           |
| G    | 6.0         | 0.236           |
| Н    | 16.0        | 0.63            |
| I    | 18.7        | 0.736           |
| J    | 6.0         | 0.236           |
| К    | 16.0        | 0.63            |
| L    | 18.7        | 0.736           |
| М    | 8.2         | 0.323           |
| 0    | 8.0         | 0.315           |
| Ν    | 2.5         | 0.098           |
| Р    | 2.0         | 0.079           |
| Q    | 0.35        | 0.014           |
| R    | ¢2.3        | ¢0.091          |
| S    | ¢1.5        | ø0.059          |

#### Data Sheet U10203EJ2V0DS



### Figure A-2. Recommended Mounting Pattern of EV-9200GC-80 (reference)

| ITEM | MILLIMETERS               | INCHES                                                             |
|------|---------------------------|--------------------------------------------------------------------|
| А    | 19.7                      | 0.776                                                              |
| В    | 15.0                      | 0.591                                                              |
| С    | 0.65±0.02 × 19=12.35±0.05 | $0.026^{+0.001}_{-0.002} \times 0.748 {=} 0.486^{+0.003}_{-0.002}$ |
| D    | 0.65±0.02×19=12.35±0.05   | $0.026^{+0.001}_{-0.002} \times 0.748 {=} 0.486^{+0.003}_{-0.002}$ |
| E    | 15.0                      | 0.591                                                              |
| F    | 19.7                      | 0.776                                                              |
| G    | 6.0±0.05                  | 0.236 <sup>+0.003</sup> 0.002                                      |
| Н    | 6.0±0.05                  | 0.236 <sup>+0.003</sup> 0.002                                      |
| I    | 0.35±0.02                 | $0.014^{+0.001}_{-0.001}$                                          |
| J    | ¢2.36±0.03                | Ø0.093 <sup>+0.001</sup>                                           |
| К    | Ø2.3                      | ¢0.091                                                             |
| L    | Ø1.57±0.03                | Ø0.062 <sup>+0.001</sup><br>-0.002                                 |

**Caution** Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

### **\*** APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

### **Documents Related to Devices**

| Document Name                              | Document No. |
|--------------------------------------------|--------------|
| μPD78098 Subseries User's Manual           | IEU-1381     |
| μPD78094, 78095, 78096, 78098A Data Sheet  | U10146E      |
| µPD78P098A Data Sheet                      | This manual  |
| 78K/0 Series User's Manual - Instruction   | U12326E      |
| 78K/0 Series Application Note - Basic(III) | U10182E      |

### Documents Related to Development Software Tools (User's Manuals)

| Document Name                                                     |                                                  | Document No. |
|-------------------------------------------------------------------|--------------------------------------------------|--------------|
| RA78K0 Assembler Package                                          | Operation                                        | U14445E      |
|                                                                   | Language                                         | U14446E      |
|                                                                   | Structured Assembly Language                     | U11789E      |
| CC78K0 C Compiler                                                 | Operation                                        | U14297E      |
|                                                                   | Language                                         | U14298E      |
| SM78K0S, SM78K0 System Simulator Ver. 2.10 or Later Windows Based | Operation                                        | U14611E      |
| SM78K Series System Simulator Ver. 2.10 or Later                  | External Parts User Open Interface Specification | U15006E      |
| ID78K0-NS Integrated Debugger Ver. 2.00 or Later<br>Windows Based | Operation                                        | U14379E      |
| ID78K0 Integrated Debugger Windows Based                          | Reference                                        | U11539E      |
|                                                                   | Guide                                            | U11649E      |
| RX78K0 Real-time OS                                               | Fundamentals                                     | U11537E      |
|                                                                   | Installation                                     | U11536E      |
| MX78K0 Embedded OS                                                | Fundamental                                      | U12257E      |

### Documents Related to Development Hardware Tools (User's Manuals)

| Document Name                    | Document No. |
|----------------------------------|--------------|
| IE-78001-R-A In-Circuit Emulator | U14142E      |
| IE-78098-R-EM Emulation Board    | EEU-1473     |

### Documents Related to PROM Writing (User's Manuals)

| Document Name           |                               | Document No. |
|-------------------------|-------------------------------|--------------|
| PG-1500 PROM Programmer |                               | U11940E      |
| PG-1500 Controller      | PC-9800 Series (MS-DOS)-Based | EEU-1291     |
|                         | IBM PC Series (PC DOS)-Based  | U10540E      |

### **Other Related Documents**

| Document Name                                                                      | Document No. |
|------------------------------------------------------------------------------------|--------------|
| SEMICONDUCTOR SELECTION GUIDE - Products & Package -                               | X13769E      |
| Semiconductor Device Mounting Technology Manual                                    | C10535E      |
| Quality Grades on NEC Semiconductor Devices                                        | C11531E      |
| NEC Semiconductor Device Reliability/Quality Control System                        | C10983E      |
| Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD) | C11892E      |

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[MEMO]

### NOTES FOR CMOS DEVICES -

### **①** PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

#### Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

### **②** HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

### **③** STATUS BEFORE INITIALIZATION OF MOS DEVICES

#### Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

FIP, IEBus and QTOP are trademarks of NEC Corporation.

Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

# **Regional Information**

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

| NEC Electronics Inc. (U.S.)<br>Santa Clara, California<br>Tel: 408-588-6000<br>800-366-9782<br>Fax: 408-588-6130 | NEC Electronics (Germany) GmbH<br>Benelux Office<br>Eindhoven, The Netherlands<br>Tel: 040-2445845<br>Fax: 040-2444580 | NEC Electronics Hong Kong Ltd.<br>Hong Kong<br>Tel: 2886-9318<br>Fax: 2886-9022/9044                |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 800-729-9288                                                                                                     | NEC Electronics (France) S.A.                                                                                          | NEC Electronics Hong Kong Ltd.<br>Seoul Branch                                                      |
| NEC Electronics (Germany) GmbH                                                                                   | Velizy-Villacoublay, France                                                                                            | Seoul, Korea                                                                                        |
| Duesseldorf, Germany                                                                                             | Tel: 01-3067-5800                                                                                                      | Tel: 02-528-0303                                                                                    |
| Tel: 0211-65 03 02                                                                                               | Fax: 01-3067-5899                                                                                                      | Fax: 02-528-4411                                                                                    |
| Fax: 0211-65 03 490                                                                                              |                                                                                                                        |                                                                                                     |
| <b>NEC Electronics (UK) Ltd.</b><br>Milton Keynes, UK<br>Tel: 01908-691-133<br>Fax: 01908-670-290                | NEC Electronics (France) S.A.<br>Madrid Office<br>Madrid, Spain<br>Tel: 091-504-2787<br>Fax: 091-504-2860              | NEC Electronics Singapore Pte. Ltd.<br>Novena Square, Singapore<br>Tel: 253-8311<br>Fax: 250-3583   |
|                                                                                                                  |                                                                                                                        | NEC Electronics Taiwan Ltd.                                                                         |
| NEC Electronics Italiana s.r.l.<br>Milano, Italy<br>Tel: 02-66 75 41<br>Fax: 02-66 75 42 99                      | NEC Electronics (Germany) GmbH<br>Scandinavia Office<br>Taeby, Sweden<br>Tel: 08-63 80 820                             | Taipei, Taiwan<br>Tel: 02-2719-2377<br>Fax: 02-2719-5951                                            |
|                                                                                                                  | Fax: 08-63 80 388                                                                                                      | <b>NEC do Brasil S.A.</b><br>Electron Devices Division<br>Guarulhos-SP, Brasil<br>Tel: 11-6462-6810 |

J01.2

Fax: 11-6462-6829