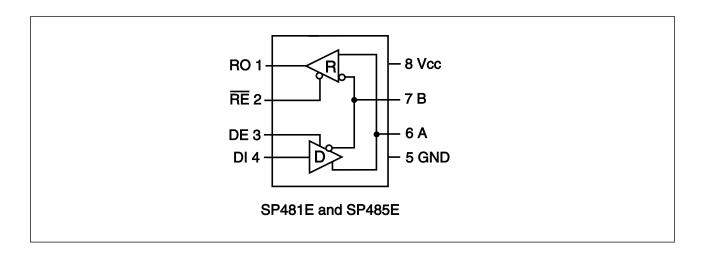


Enhanced Low Power Half-Duplex RS-485 Transceivers


FEATURES

- +5V Only
- Low Power BiCMOS
- Driver/Receiver Enable for Multi-Drop configurations
- Low Power Shutdown Mode (SP481E)
- Enhanced ESD Specifications: ±15KV Human Body Model ±15KV IEC1000-4-2 Air Discharge +8KV IEC1000-4-2 Contact Discharge
- Available in RoHS Compliant, Lead Free Packaging: NSOIC and PDIP

DESCRIPTION

The **SP481E** and the **SP485E** are a family of half-duplex transceivers that meet the specifications of RS-485 and RS-422 serial protocols with enhanced ESD performance. The ESD tolerance has been improved on these devices to over ± 15 KV for both Human Body Model and IEC1000-4-2 Air Discharge Method. These devices are pin-to-pin compatible with Sipex's SP481 and SP485 devices as well as popular industry standards. As with the original versions, the **SP481E** and the **SP485E** feature Sipex's BiCMOS design allowing low power operation without sacrificing performance. The **SP481E** and **SP485E** meet the requirements of the RS-485 and RS-422 protocols up to 10Mbps under load. The **SP481E** is equipped with a low power Shutdown mode.

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum

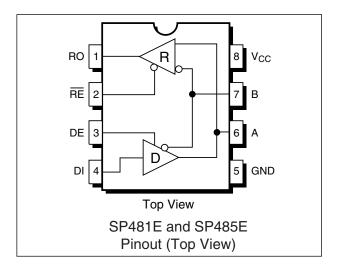
ages	
Logic	$\dots -0.3$ V to (V $+ 0.5$ V)
Drivers	0.3V to (V ₀₀ +0.5V)
Receivers	

Output Voltages	
Logic0.3V to (V _{cc} +0.4	5V)
Drivers±1	
Receivers0.3V to (V _{cc} +0.5	όV)
Storage Temperature65°C to +150)°C
Power Dissipation per Package	
8-pin NSOIC (derate 6.60mW/°C above +70°C)550r	nW
8-pin PDIP (derate 11.8mW/°C above +70°C)1000r	

ELECTRICAL CHARACTERISTICS

T _{MIN} to T _{MAX} ai	nd $V_{cc} = 5V \pm$	5% unless	otherwise noted.
---	----------------------	-----------	------------------

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP481E/SP485E DRIVER					
DC Characteristics					
Differential Output Voltage	GND		V_{cc}	Volts	Unloaded; $R = \infty$; see Figure 1
Differential Output Voltage	2		V _{cc}	Volts	with load; $R = 50\Omega$; (RS-422);
			00		see Figure 1
Differential Output Voltage	1.5		V _{cc}	Volts	with load; $R = 27\Omega$; (RS-485); see Figure 1
Change in Magnitude of Driver			00		
Differential Output Voltage for					
Complimentary States			0.2	Volts	$R = 27\Omega$ or $R = 50\Omega$; see Figure 1
Driver Common-Mode					
Output Voltage			3	Volts	$R = 27\Omega$ or $R = 50\Omega$; see Figure 1
Input High Voltage	2.0			Volts	Applies to DE, DI, RE
Input Low Voltage			0.8	Volts	Applies to DE, DI, RE
Input Current			±10	μA	Applies to DE, DI, RE
Driver Short-Circuit Current					
V _{OUT} = HIGH			±250	mA	$-7V \le V_0 \le +12V$
$V_{OUT} = LOW$			±250	mA	$-7V \le V_0 \le +12V$
SP481E/SP485E DRIVER					
AC Characteristics					
Maximum Data Rate	10			Mbps	\overline{RE} = 5V, DE = 5V; R_{DIFF} = 54 Ω ,
					$C_{L1} = C_{L2} = 100 pF$
Driver Input to Output	20	30	60	ns	$t_{PLH}; R_{DIFF} = 54\Omega, C_{L1} = C_{L2} = 100 pF;$
					see Figures 3 and 5
Driver Input to Output	20	30	80	ns	$t_{PLH}; R_{DIFF} = 54\Omega, C_{LI} = C_{L2} = 100 pF;$
(SP485EMN ONLY)					See Figures 3 and 5
Driver Input to Output	20	30	60	ns	$t_{PHL}; R_{DIFF} = 54\Omega, C_{L1} = C_{L2} = 100 pF;$
Driver land to Output	00	00	00		see Figures 3 and 5
Driver Input to Output (SP485EMN ONLY)	20	30	80	ns	t_{PHL} ; $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$; see Figures 3 and 5
Driver Skew		5	10	ns	see Figures 3 and 5 see Figures 3 and 5,
Driver Skew		5	10	115	
Driver Rise or Fall Time	3	15	40	ns	$t_{SKEW} = t_{DPLH} - t_{DPHL} $ From 10% to 90%; $R_{DIFF} = 54\Omega$,
Driver hise of Fair fille	5	15	40	115	$C_{11} = C_{12} = 100 \text{pF}; see Figures 3 \& 6$
Driver Enable to Output High		40	70	ns	$C_{L1} = 100 \text{pF}; see Figures 4 & 6; S_2$
closed		40	70	115	$O_{L} = 100 \text{pr}$, see 1 igures 4 & 0, O_{2}
Driver Enable to Output Low		40	70	ns	C ₁ = 100pF; <i>see Figures 4 & 6;</i> S ₁
closed		ΨU	70	10	$O_L = 100 \text{ pr}$, $000 \text{ right} 000 \text{ right} 0000 \text{ right} 000 \text{ right} 000 \text{ right} 000 \text{ right} 000 $
Driver Disable Time from Low		40	70	ns	C ₁ = 100pF; <i>see Figures 4 & 6;</i> S ₁
closed					$\mathbf{e}_{L} = 1 \mathbf{e}_{L} \mathbf{e}_{L$
Driver Disable Time from High		40	70	ns	$C_1 = 100 pF$; see Figures 4 & 6; S_2
closed					


ELECTRICAL CHARACTERISTICS

= ELECTRICAL CHARACTERISTICS T _{MAX} and V _{cc} = 5V ± 5% unless otherwise noted.					
PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP481E/SP485E RECEIVER					
DC Characteristics					
Differential Input Threshold	-0.2		+0.2	Volts	$-7V \le V_{CM} \le +12V$
Differential Input Threshold	-0.4		+0.4	Volts	$-7V \le V_{CM}^{OM} \le +12V$
(SP485EMN ONLY)					CM
Input Hysteresis		20		mV	$V_{CM} = 0V$
Output Voltage High	3.5			Volts	$I_0 = -4mA, V_{ID} = +200mV$
Output Voltage Low			0.4	Volts	$V_{0} = +4mA$, $V_{1D} = -200mV$
Three-State (High Impedance)					0 10
Output Current			±1	μA	0.4V ≤ V _O ≤ 2.4V; RE = 5V
Input Resistance	12	15		kΩ	$-7V \le V_{CM} \le +12V$
Input Current (A, B); V _{IN} = 12V			+1.0	mA	$DE = 0V, V_{CC} = 0V \text{ or } 5.25V, V_{IN} = 12V$
Input Current (A, B); $V_{IN} = -7V$			-0.8	mA	$DE = 0V, V_{CC} = 0V \text{ or } 5.25V, V_{IN} = -7V$
Short-Circuit Current	7		95	mA	$0V \le V_0 \le V_{CC}$
SP481E/SP485E RECEIVER					0 00
AC Characteristics					
Maximum Data Rate	10			Mbps	$\overline{RE} = 0V, DE = 0V$
Receiver Input to Output	20	45	100	ns	$t_{PLH}; R_{DIFF} = 54\Omega,$
					$C_{11} = C_{12} = 100 \text{pF}; Figures 3 \& 7$
Receiver Input to Output	20	45	100	ns	$t_{\text{PHL}}^{\text{L}}; R_{\text{DIFF}} = 54\Omega,$
					$C_{11} = C_{12}^{-1} = 100 \text{pF};$ Figures 3 & 7
Diff. Receiver Skew It _{PLH} -t _{PHI} I		13		ns	$R_{DIFF}^{L} = 54\Omega; C_{11} = C_{12} = 100 pF;$
					Figures 3 & 7
Receiver Enable to					
Output Low		45	70	ns	C _{BL} = 15pF; <i>Figures 2 & 8;</i> S ₁ closed
Receiver Enable to					
Output High		45	70	ns	C _{BL} = 15pF; <i>Figures 2 & 8;</i> S ₂ closed
Receiver Disable from Low		45	70	ns	$C_{BI}^{TL} = 15 pF;$ Figures 2 & 8; S_1^{T} closed
Receiver Disable from High		45	70	ns	$C_{BI} = 15 pF;$ Figures 2 & 8; S ₂ closed
SP481E					
Shutdown Timing					
Time to Shutdown	50	200	600	ns	$\overline{RE} = 5V, DE = 0V$
Driver Enable from Shutdown					,
to Output High		40	100	ns	$C_1 = 100 \text{pF}$; See Figures 4 & 6; S_2 closed
Driver Enable from Shutdown					
to Output Low		40	100	ns	C ₁ = 100pF; <i>See Figures 4 & 6;</i> S ₁ closed
Receiver Enable from					
Shutdown to Output High		300	1000	ns	$C_1 = 15 pF$; <i>See Figures 2 & 8;</i> S_2 closed
Receiver Enable from					
Shutdown to Output Low		300	1000	ns	$C_L = 15 pF$; See Figures 2 & 8; S_1 closed
POWER REQUIREMENTS					
Supply Voltage	+4.75		+5.25	Volts	
Supply Current					
SP481E/485E					
No Load		900		μA	$\overline{\text{RE}}$, DI = 0V or V _{CC} ; DE = V _{CC}
		600		μA	$\overline{RE} = 0V, DI = 0V \text{ or } 5V; DE = 0V$
SP481E				·	
Shutdown Mode			10	μA	$DE = 0V, \overline{RE} = V_{CC}$
ENVIRONMENTAL AND MED	HANIC				
Operating Temperature		- -			
Commercial (_C_)	0		+70	°C	
Industrial (_E_)	-40		+85	°C	
	-40		+125	°C	
Storage Temperature	-40		+120	°C	
Package	00		100		
Plastic DIP (_P)					
NSOIC (_N)					
		1		ex RS485 Tr	

May11-2007

Downloaded from Elcodis.com electronic components distributor

SP481E Low Power Half-Duplex RS485 Transceivers

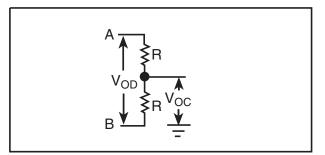


Figure 1. RS-485 Driver DC Test Load Circuit

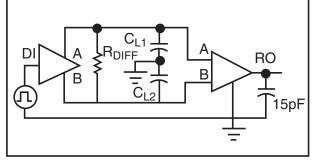


Figure 3. RS-485 Driver/Receiver Timing Test Circuit

PIN FUNCTION

Pin 1 – RO – Receiver Output.

Pin 2 – \overline{RE} – Receiver Output Enable Active LOW.

Pin 3 – DE – Driver Output Enable Active HIGH.

Pin 4 – DI – Driver Input.

Pin 5 – GND – Ground Connection.

Pin 6 – A – Driver Output/Receiver Input Non-inverting.

Pin 7 – B – Driver Output/Receiver Input Inverting.

Pin 8 – Vcc – Positive Supply 4.75V<Vcc< 5.25V.

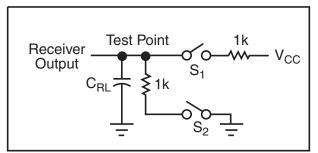


Figure 2. Receiver Timing Test Load Circuit

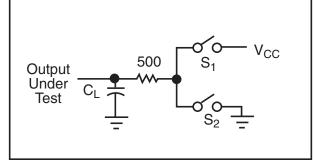


Figure 4. RS-485 Driver Timing Test Load #2 Circuit

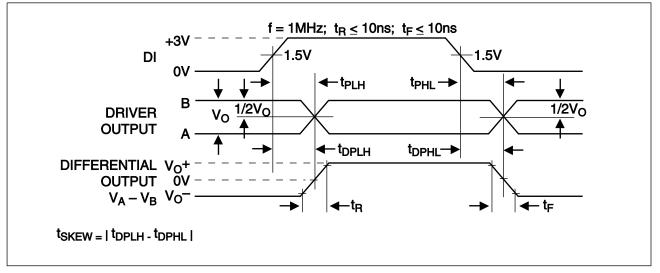


Figure 5. Driver Propagation Delays

May11-2007

Downloaded from Elcodis.com electronic components distributor

INPUTS				OUTI	PUTS
RE	DE	DI	LINE CONDITION	В	A
X	1	1	No Fault	0	1
X	1	0	No Fault	1	0
X	0	Χ	Х	Ζ	Ζ
X	1	Х	Fault	Ζ	Ζ

INPUTS			OUTPUTS
RE	DE	A - B	R
0	0	+0.2V	1
0	0	-0.2V	0
0	0	Inputs Open	1
1	0	Х	Z

Table 1. Transmit Function Truth Table

 Table 2. Receive Function Truth Table

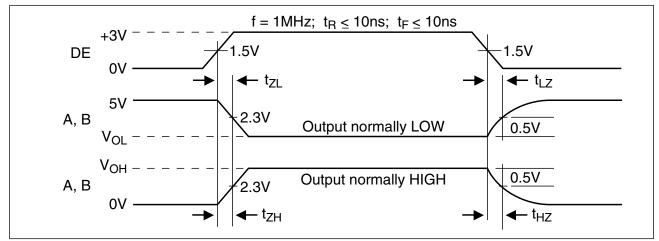


Figure 6. Driver Enable and Disable Times

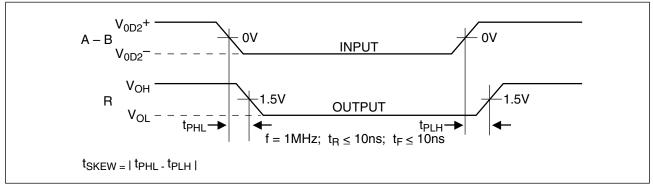


Figure 7. Receiver Propagation Delays

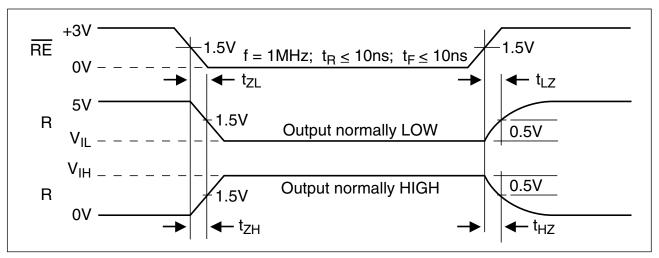


Figure 8. Receiver Enable and Disable Times

The **SP481E** and **SP485E** are half-duplex differential transceivers that meet the requirements of RS-485 and RS-422. Fabricated with a Sipex proprietary BiCMOS process, all three products require a fraction of the power of older bipolar designs.

The RS-485 standard is ideal for multi-drop applications and for long-distance interfaces. RS-485 allows up to 32 drivers and 32 receivers to be connected to a data bus, making it an ideal choice for multi-drop applications. Since the cabling can be as long as 4,000 feet, RS-485 transceivers are equipped with a wide (-7V to +12V) common mode range to accommodate ground potential differences. Because RS-485 is a differential interface, data is virtually immune to noise in the transmission line.

Drivers

The driver outputs of the **SP481E** and **SP485E** are differential outputs meeting the RS-485 and RS-422 standards. The typical voltage output swing with no load will be 0 Volts to +5 Volts. With worst case loading of 54Ω across the differential outputs, the drivers can maintain greater than 1.5V voltage levels. The drivers of the **SP481E**, and **SP485E** have an enable control line which is active HIGH. A logic HIGH on DE (pin 3) will enable the differential driver outputs. A logic LOW on DE (pin 3) will tri-state the driver outputs.

The transmitters of the **SP481E** and **SP485E** will operate up to at least 10Mbps.

Receivers

The **SP481E** and **SP485E** receivers have differential inputs with an input sensitivity as low as ± 200 mV. Input impedance of the receivers is typically $15k\Omega$ ($12k\Omega$ minimum). A wide common mode range of -7V to +12V allows for large ground potential differences between systems. The receivers of the **SP481E** and **SP485E** have a tri-state enable control pin. A logic LOW on \overline{RE} (pin 2) will enable the receiver, a logic HIGH on \overline{RE} (pin 2) will disable the receiver.

The receiver for the **SP481E** and **SP485E** will operate up to at least 10Mbps. The receiver for each of the two devices is equipped with the fail-safe feature. Fail-safe guarantees that the receiver output will be in a HIGH state when the input is left unconnected.

Shutdown Mode SP481E

The **SP481E** is equipped with a Shutdown mode. To enable the Shutdown state, both the driver and receiver must be disabled simultaneously. A logic LOW on DE (pin 3) and a logic HIGH on $\overline{\text{RE}}$ (pin 2) will put the **SP481E** into Shutdown mode. In Shutdown, supply current will drop to typically 1µA.

ESD TOLERANCE

The **SP481E** Family incorporates ruggedized ESD cells on all driver output and receiver input pins. The ESD structure is improved over our previous family for more rugged applications and environments sensitive to electro-static discharges and associated transients. The improved ESD tolerance is at least ± 15 kV without damage nor latch-up.

There are different methods of ESD testing applied:

a) MIL-STD-883, Method 3015.7b) IEC1000-4-2 Air-Dischargec) IEC1000-4-2 Direct Contact

The Human Body Model has been the generally accepted ESD testing method for semiconductors. This method is also specified in MIL-STD-883, Method 3015.7 for ESD testing. The premise of this ESD test is to simulate the human body's potential to store electro-static energy and discharge it to an integrated circuit. The simulation is performed by using a test model as shown in *Figure 7*. This method will test the IC's capability to withstand an ESD transient during normal handling such as in manufacturing areas where the ICs tend to be handled frequently.

The IEC-1000-4-2, formerly IEC801-2, is generally used for testing ESD on equipment and

systems. For system manufacturers, they must guarantee a certain amount of ESD protection since the system itself is exposed to the outside environment and human presence. The premise with IEC1000-4-2 is that the system is required to withstand an amount of static electricity when ESD is applied to points and surfaces of the equipment that are accessible to personnel during normal usage. The transceiver IC receives most of the ESD current when the ESD source is applied to the connector pins. The test circuit for IEC1000-4-2 is shown on *Figure 8*. There are two methods within IEC1000-4-2, the Air Discharge method and the Contact Discharge method.

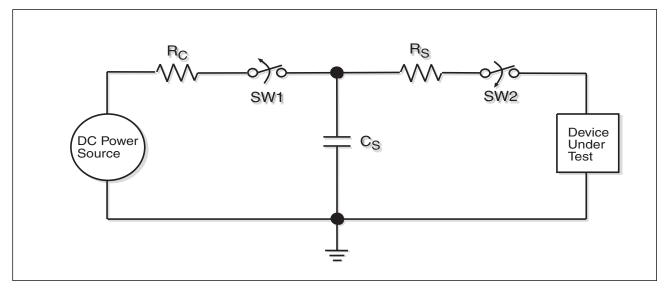


Figure 7. ESD Test Circuit for Human Body Model

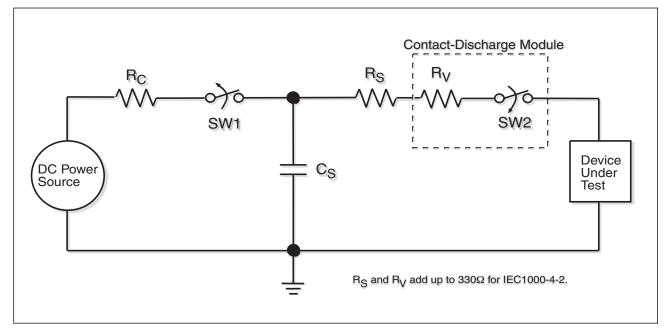


Figure 8. ESD Test Circuit for IEC1000-4-2

May11-2007

With the Air Discharge Method, an ESD voltage is applied to the equipment under test (EUT) through air. This simulates an electrically charged person ready to connect a cable onto the rear of the system only to find an unpleasant zap just before the person touches the back panel. The high energy potential on the person discharges through an arcing path to the rear panel of the system before he or she even touches the system. This energy, whether discharged directly or through air, is predominantly a function of the discharge current rather than the discharge voltage. Variables with an air discharge such as approach speed of the object carrying the ESD potential to the system and humidity will tend to change the discharge current. For example, the rise time of the discharge current varies with the approach speed.

The Contact Discharge Method applies the ESD current directly to the EUT. This method was devised to reduce the unpredictability of the ESD arc. The discharge current rise time is constant since the energy is directly transferred without the air-gap arc. In situations such as hand held systems, the ESD charge can be directly discharged to the equipment from a person already holding the equipment. The current is transferred on to the keypad or the serial port of the equipment directly and then travels through the PCB and finally to the IC.

The circuit model in *Figures* 7 and 8 represent the typical ESD testing circuit used for all three methods. The C_S is initially charged with the DC power supply when the first switch (SW1) is on. Now that the capacitor is charged, the second switch (SW2) is on while SW1 switches off. The

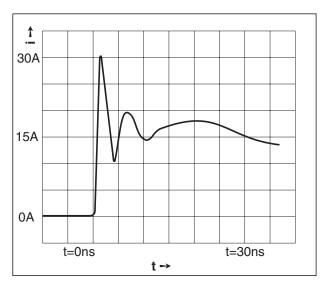
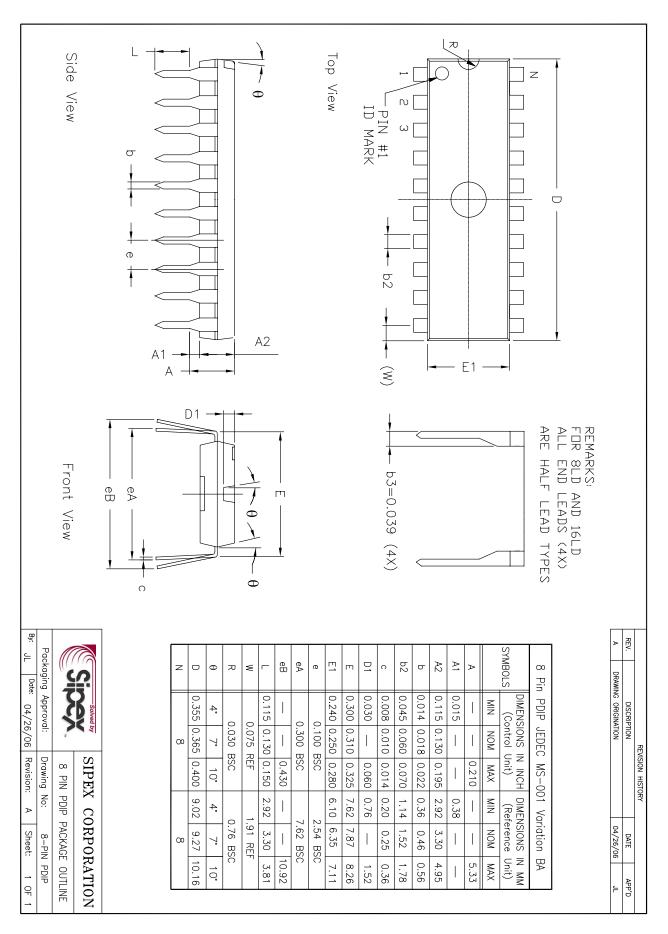
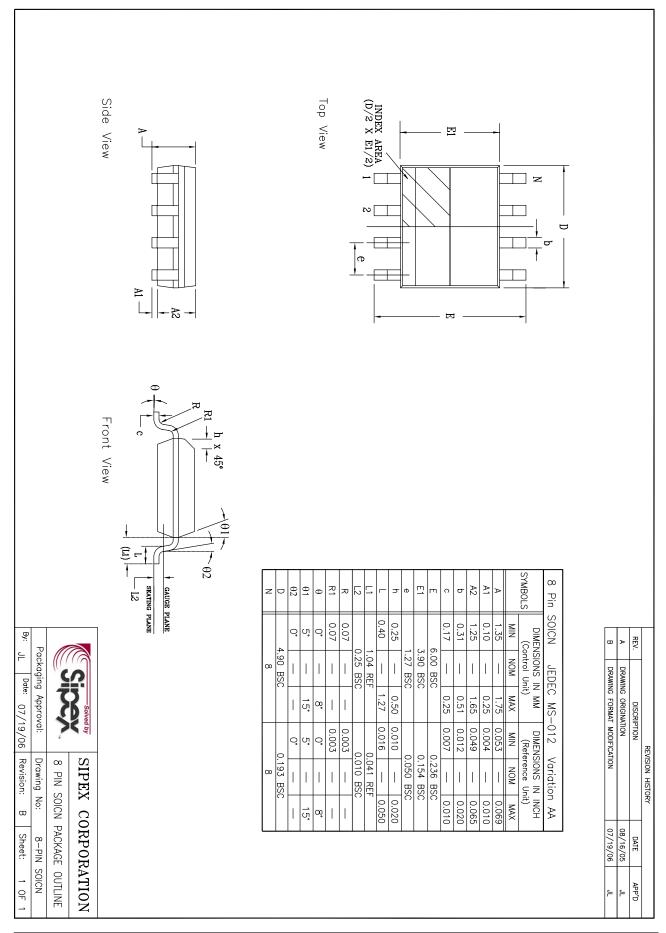


Figure 9. ESD Test Waveform for IEC1000-4-2

voltage stored in the capacitor is then applied through R_S , the current limiting resistor, onto the device under test (DUT). In ESD tests, the SW2 switch is pulsed so that the device under test receives a duration of voltage.


For the Human Body Model, the current limiting resistor (R_s) and the source capacitor (C_s) are 1.5k Ω an 100pF, respectively. For IEC-1000-4-2, the current limiting resistor (R_s) and the source capacitor (C_s) are 330 Ω an 150pF, respectively.

The higher C_s value and lower R_s value in the IEC1000-4-2 model are more stringent than the Human Body Model. The larger storage capacitor injects a higher voltage to the test point when SW2 is switched on. The lower current limiting resistor increases the current charge onto the test point.


SP481E, SP485E FAMILY	HUMAN BODY MODEL	IEC1000-4-2 Air Discharge Direct Contact Level			
Driver Outputs	±15kV	±15kV	±8kV	4	
Receiver Inputs	±15kV	±15kV	±8kV	4	

May11-2007

PACKAGE: 8 PIN PDIP

- PACKAGE: 8 PIN NSOIC

May11-2007

ORDERING INFORMATION

Part Number	Top Mark	Temperature Range	Package
SP481ECN	481ECNYYWWH	0°C to +70°C	8-pin NSOIC
SP481ECN/TR	481ECNYYWWH	0°C to +70°C	8-pin NSOIC
SP481ECP	SP481ECPYYWW	0°C to +70°C	8-pin PDIP
SP481EEN		40°C to +85°C	8-pin NSOIC
SP481EEN/TR		40°C to +85°C	8-pin NSOIC
SP481EEP	SP481EEPYYWW	40°C to +85°C	8-pin PDIP
SP485ECN	485ECNYYWW	0°C to +70°C	8-pin NSOIC
SP485ECN/TR	485ECNYYWW	0°C to +70°C	8-pin NSOIC
SP485ECP	SP485ECPYYWW	0°C to +70°C	8-pin PDIP
SP485EEN	485EENYYWW	40°C to +85°C	8-pin NSOIC
SP485EEN/TR	485EENYYWW	40°C to +85°C	8-pin NSOIC
SP485EEP	SP485EEPYYWW	40°C to +85°C	8-pin PDIP
SP485EMN	SP485EMNYYWW	40°C to +125°C	8-pin NSOIC
SP485EMN/TR	SP485EMNYYWW	40°C to +125°C	8-pin NSOIC

Available in lead free packaging. To order add "-L" suffix to part number. Example: SP485EEN/TR = standard; SP485EEN-L/TR = lead free

/TR = Tape and Reel Pack quantity is 2500 for Narrow SOIC.

For latest information on Product Status and ordering Samples:

http://www.sipex.com/productDetails.aspx?part=SP481E

http://www.sipex.com/productDetails.aspx?part=SP485E

Sipex Corporation

Headquarters and Sales Office 233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 934-7500 FAX: (408) 935-7600

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.