mos integrated circuit $\mu \mathbf{PD78P0208}$

8-BIT SINGLE-CHIP MICROCOMPUTER

The μ PD78P0208 is a product in the μ PD780208 subseries within the 78K/0 series, in which on-chip mask ROM of the μ PD780208 is replaced with one-time PROM or EPROM.

Since user programs can be written to PROM, this microcomputer is best suited for evaluation in system development, manufacture of small quantities of multiple products, and fast start-up of applications.

For specific functions and other detailed information, consult the following user's manual.

This manual is required reading for design work.

μPD780208 Subseries User's Manual : IEU-1413 78K/0 Series User's Manual, Instruction : IEU-1372

FEATURES

- Pin compatible with mask ROM products (except for VPP pin)
- Internal PROM: 60K bytes^{Note 1}
 - µPD78P0208KL-T : EPROM (best suited for system evaluation)
 - µPD78P0208GF : PROM (best suited for manufacture of small quantities)
- Internal high-speed RAM : 1024 bytes
- Internal expansion RAM : 1024 bytes^{Note 2}
- Buffer RAM : 64 bytes
- FIP[®] display RAM : 80 bytes
- Can be operated at the same power supply voltage as mask ROM products: $V_{DD} = 2.7$ to 5.5 V (except for A/D converter).

A/D converter's power supply voltage: $AV_{DD} = 4.0$ to 5.5 V.

- QTOPTM microcomputer
 - Notes 1. Internal PROM capacity can be changed according to the internal memory switching register (IMS).
 - 2. Internal expansion RAM capacity can be changed according to the internal expansion RAM switching register (IXS).
 - **Remark** The QTOP microcomputer is a single-chip microcomputer with a built-in one-time PROM that is totally supported by NEC. The support includes writing application programs, marking, screening, and verification.

This product differs from mask ROM products in the following respects.

- It can use the same memory mapping as mask ROM products, depending upon the IMS and IXS settings.
- FIP0 to FIP12 have on-chip pull-down resistors.
- Port 3 and FIP13 to FIP52 (port 8 to port 12) do not have on-chip pull-down resistors.
- Port 7 does not have a on-chip pull-up resistor.

In this reference, all ROM components that are common to one-time PROM and EPROM are referred to as PROM.

The information in this document is subject to change without notice.

ORDERING INFORMATION

Part No.	Package		Internal ROM		
μPD78P0208GF-3BA	100-pin plastic QFP	(14 $ imes$ 20 mm)	One-Time PROM		
μ PD78P0208KL-T	100-pin ceramic WQFN	(14 $ imes$ 20 mm)	EPROM		

★ 78K/0 SERIES PRODUCT DEVELOPMENT

The 78K/0 series products were developed as shown below. The subseries names are indicated in frames.

The table below shows the main differences between subseries.

	Function	ROM		Tin	ner		8-bit	8-bit	Serial	1/0	VDD Min.	External
Subseries na	me	capacity	8-bit	16-bit	Watch	WDT	A/D	D/A	interface	1/0	value	expansion
For control	μPD78078	32K-60K	4ch	1ch	1ch	1ch	8ch	2ch	3ch (UART : 1ch)	88 pins	1.8 V	0
	μPD78070A	_								61 pins	2.7 V	1
	μPD78058F	48K-60K	2ch							69 pins		
	μPD78054	16K-60K]								2.0 V	
	μPD78018F	8K-60K]					_	2ch	53 pins	1.8 V]
	μPD78014	8K-32K]								2.7 V	
	μPD780001	8K		-	-				1 ch	39 pins		-
	μPD78002	8K-16K	1		1 ch		-			53 pins		0
	μPD78083				_		8 ch		1 ch (UART : 1 ch)	33 pins	1.8 V	-
For FIP	μPD780208	32K-60K	2 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	74 pins	2.7 V	-
driving	μPD78044A	16K-40K	1							68 pins	1	
	μPD78024	24K-32K								54 pins		
For LCD	μPD780308	48K-60K	2 ch	1 ch	1 ch	1 ch	8 ch	-	3 ch (UART : 1 ch)	57 pins	1.8 V	-
driving	μPD78064B	32K							2 ch (UART : 1 ch)		2.0 V]
	μPD78064	16K-32K										
Compatible	μPD78098	32K-60K	2 ch	1 ch	1 ch	1 ch	8 ch	2 ch	3 ch (UART : 1 ch)	69 pins	2.7 V	0
with IEBus												
For LV	μPD78P0914	32K	6 ch	-	_	1 ch	8 ch	_	2 ch	54 pins	4.5 V	0

OVERVIEW OF FUNCTIONS

	Item	Function					
Internal memory		 PROM: 60K bytes Note 1 RAM Internal high-speed RAM : 1024 bytes Internal expansion RAM : 1024 bytes Note 2 Buffer RAM : 64 bytes FIP display RAM : 80 bytes 					
General reg	ister	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)					
Instruction		On-chip instruction execution time cycle modification function					
cycle	Main system clock selected	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs (5.0 MHz operation)					
	Subsystem clock selected	122 μs (32.768 kHz operation)					
Instruction s	set	 Multiplier/divider (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit handling (set, reset, test, Boolean operations) 					
I/O ports (including pins also used for FIP)		Total: 74 pins• CMOS input: 2• CMOS I/O: 27• N-ch open-drain I/O: 5• P-ch open-drain I/O: 24• P-ch open-drain output: 16					
FIP controller/driver		Display output total : 53 • No. of segments : 9 to 40 • No. of digits : 2 to 16					
A/D convert	er	 8-bit resolution × 8 channels Supply voltage: AVDD = 4.0 to 5.5 V 					
Serial interface		 3-wire serial I/O/SBI/2-wire serial I/O selectable modes: 1 channel 3-wire serial I/O mode (on-chip maximum 64-byte automatic transmit/receive function): 1 channel 					
Timers		 16-bit timer/event counter : 1 channel 8-bit timer/event counters : 2 channels Watch timer : 1 channel Watchdog timer : 1 channel 					
Timer outpu	its	3 (1 with 14 bit PWM output capability)					
Clock outpu	t	19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz (5.0 MHz main system clock operation) 32.768 kHz (32.768 kHz subsystem clock operation)					
Buzzer output		1.2 kHz, 2.4 kHz, 4.9 kHz (5.0 MHz main system clock operation)					

Notes 1. The capacity of internal PROM can be changed according to the internal memory switching register (IMS) settings.

2. The capacity of internal expanded RAM can be changed according to the internal expanded RAM switching register (IXS) settings.

	Item	Function
Vector interrupts	Maskable interrupt	Internal: 9, external: 4
	Non-maskable interrupt	Internal: 1
	Software interrupt	Internal: 1
Test input		Internal: 1
Supply volt	age	VDD = 2.7 to 5.5 V
Package		• 100-pin plastic QFP (14 × 20 mm) • 100-pin ceramic WQFN (14 × 20 mm)

PIN CONFIGURATION (TOP VIEW)

(1) Normal operating mode

- 100-pin plastic QFP (14 × 20 mm) μPD78P0208GF-3BA
- 100-pin ceramic WQFN (14 \times 20 mm) μ PD78P0208KL-T

Cautions 1. Connect the VPP pin to Vss directly.

- 2. Connect the AVDD pin to VDD.
- 3. Connect the AVss pin to Vss.

P00-P04	:	Port 0
P10-P17	:	Port 1
P20-P27	:	Port 2
P30-P37	:	Port 3
P70-P74	:	Port 7
P80-P87	:	Port 8
P90-P97	:	Port 9
P100-P107	:	Port 10
P110-P117	:	Port 11
P120-P127	:	Port 12
INTP0-INTP3	:	Interrupt from Peripherals
TI0-TI2	:	Timer Input
TO0-TO2	:	Timer Output
SB0, SB1	:	Serial Bus
SI0, SI1	:	Serial Input
SO0, SO1	:	Serial Output
SCK0, SCK1	:	Serial Clock

PCL	:	Programmable Clock
BUZ	:	Buzzer Clock
STB	:	Strobe
BUSY	:	Busy
FIP0-FIP52	:	Fluorescent Indicator Panel
Vload	:	Negative Power Supply
X1, X2	:	Crystal (Main System Clock)
XT1, XT2	:	Crystal (Subsystem Clock)
RESET	:	Reset
ANI0-ANI7	:	Analog Input
AVdd	:	Analog Power Supply
AVss	:	Analog Ground
AVREF	:	Analog Reference Voltage
Vdd	:	Power Supply
Vpp	:	Programming Power Supply
Vss	:	Ground

(2) PROM programming mode

- 100-pin plastic QFP (14 \times 20 mm) μ PD78P0208GF-3BA
- 100-pin ceramic WQFN (14 \times 20 mm) μ PD78P0208KL-T

- Cautions 1. (L) : Connect to Vss through individual pull-down resistors.
 - 2. (D) : To be connected through drivers.
 - 3. Vss : Connect to ground.
 - 4. RESET : Set to low level.
 - 5. Open : Do not connect.

A0-A16	:	Address Bus	RESET	:	Reset
D0-D7	:	Data Bus	Vdd	:	Power Supply
CE	:	Chip Enable	Vpp	:	Programming Power Supply
OE	:	Output Enable	Vss	:	Ground
PGM	:	Program			

BLOCK DIAGRAM

★

 \star

 \star

CONTENTS

1.	DIFFERENCES BETWEEN THE μ PD78P0208 AND MASK ROM PRODUCTS	11
2.	LIST OF PIN FUNCTIONS	12
	2.1 PINS FOR NORMAL OPERATING MODE	12
	2.2 PINS FOR PROM PROGRAMMING MODE	15
	2.3 I/O CIRCUITS FOR PINS AND TREATMENT OF UNUSED PINS	16
3.	INTERNAL MEMORY SWITCHING (IMS) REGISTER	20
4.	INTERNAL EXPANDED RAM SWITCHING (IXS) REGISTER	21
5.	PROM PROGRAMMING	22
	5.1 OPERATION MODE	22
	5.2 PROM WRITE SEQUENCE	24
	5.3 PROM READ SEQUENCE	28
6.	ERASURE CHARACTERISTICS (µPD78P0208KL-T ONLY)	29
7.	PROTECTIVE FILM COVERING THE ERASURE WINDOW (μ PD78P0208KL-T ONLY)	29
8.	SCREENING ONE-TIME PROM PRODUCTS	29
9.	ELECTRICAL SPECIFICATIONS	30
10	. CHARACTERISTIC CURVE (REFERENCE VALUE)	57
11	. PACKAGE DRAWINGS	62
12	. RECOMMENDED SOLDERING CONDITIONS	64
AF	PPENDIX A DEVELOPMENT TOOLS	65
AF	PPENDIX B RELATED DOCUMENTS	69

1. DIFFERENCES BETWEEN THE μ PD78P0208 AND MASK ROM PRODUCTS

The μ PD78P0208 contains an on-chip one-time PROM in which data can be written once or an EPROM featuring repetitive program write and deletion.

Functions other than PROM specifications and mask options can be set as equivalent to those of mask ROM products, by setting the internal memory switching register (IMS) and internal expansion RAM switching register (IXS) accordingly.

Table 1-1 lists the points of difference between the μ PD78P0208 and mask ROM products.

Item	μPD78P0208	Mask ROM products
ROM structure	One-time PROM/EPROM	Mask ROM
ROM capacity	60K bytes	μPD780204 : 32K bytes μPD780205 : 40K bytes μPD780206 : 48K bytes μPD780208 : 60K bytes
Internal expansion RAM capacity	1024 bytes	μPD780204 : None μPD780205 : None μPD780206 : 1024 bytes μPD780208 : 1024 bytes
Changing the internal ROM capacity using the internal memory switching register (IMS)	PossibleNote 1	Impossible
Changing the internal expansion RAM capacity using the internal expansion RAM switching register (IXS)	PossibleNote 2	Impossible
Includes IC pins	No	Yes
Includes VPP pins	Yes	No
P30/TO0-P32/TO2,P33/TI1 P34/TI2, P35/PCL, P36/BUZ, P37	No on-chip pull-down resistors	An on-chip pull-down resistor can be incorporated for each pin by specifying mask options.
P70-P74	No on-chip pull-up resistors	An on-chip pull-up resistor can be incorporated for each pin by specifying mask options.
FIP0-FIP12	On-chip pull-down resistors provided (connect to VLOAD)	An on-chip pull-down resistor can be incorporated for each pin by specifying mask options.
P80/FIP13-P87/FIP20 P90/FIP21-P97/FIP28 P100/FIP29-P107/FIP36 P110/FIP37-P117/FIP44 P120/FIP45-P127/FIP52	No on-chip pull-down resistors	An on-chip pull-down resistor can be incorporated for each pin by specifying mask options. (These pins can be connected to VLOAD or Vss in four-bit units.)
Electrical characteristics	Refer to the data sheet of each product.	

Table 1-1 Differences between µPD78P0208 and Mask ROM Products

Notes 1. A RESET input sets the internal PROM capacity to 60K bytes.

2. A RESET input sets the internal expansion RAM capacity to 1024 bytes.

2. LIST OF PIN FUNCTIONS

2.1 PINS FOR NORMAL OPERATING MODE

(1) Port pins (1/2)

Pin name	I/O		Function	Reset	Combination pin
P00	Input	Port 0.	Input only	Input	INTP0/TI0
P01	I/O	5-bit I/O port.	Each pin can be designated as an input	Input	INTP1
P02			or output pin separately. If used as an input port an on-chip pull-up resistor can		INTP2
P03			be used by software.		INTP3
P04Note 1	Input		Input only	Input	XT1
P10-P17	I/O	Port 1. 8-bit I/O port. Each pin can be separately. If used as an inp used by software	designated as an input or output pin out port, an on-chip pull-up resistor can be _{2.} Note 2	Input	ANIO-ANI7
P20	I/O	Port 2.		Input	SI1
P21		8-bit I/O port.	designated as an input or output nin		SO1
P22		separately.			SCK1
P23		If used as an inp	out port, an on-chip pull-up resistor can be		STB
P24		used by software	3.		BUSY
P25					SI0/SB0
P26					SO0/SB1
P27					SCK0
P30	I/O	Port 3.		Input	TO0
P31		8-bit I/O port.	designated as an input or output pin		TO1
P32		separately.			TO2
P33		Can directly drive	e LEDs.		TI1
P34		used by software	ar port, an on-chip puil-up resistor can be		TI2
P35					PCL
P36					BUZ
P37					

Notes 1. When using pin combination P04/XT1 as an input port, set bit 6 of the processor clock control register (PCC) to 1 (do not use the subsystem clock oscillator circuit's on-chip feedback resistor).

2. When using pin combination P10/ANI0-P17/ANI7 as the analog input for the A/D converter, set input mode for port 1. This setting disables the on-chip pull-up resistors.

(1) Port pins (2/2)

Pin name	I/O	Function	Reset	Combination pin
P70-P74	I/O	Port 7. N-ch open-drain 5-bit I/O port. Each pin can be designated as an input or output pin separately. Can directly drive LEDs.	Input	_
P80-P87	Output	Port 8. P-ch open-drain 8-bit high withstand voltage output port. Can directly drive LEDs.	Output	FIP13-FIP20
P90-P97	Output	Port 9. P-ch open-drain 8-bit high withstand voltage output port. Can directly drive LEDs.	Output	FIP21-FIP28
P100-P107	I/O	Port 10. P-ch open-drain 8-bit high withstand voltage output port. Each pin can be designated as an input or output pin separately. Can directly drive LEDs.	Input	FIP29-FIP36
P110-P117	I/O	Port 11. P-ch open-drain 8-bit high withstand voltage I/O port. Each pin can be designated as an input or output pin separately. Can directly drive LEDs.	Input	FIP37-FIP44
P120-P127	I/O	Port 12. P-ch open-drain 8-bit high withstand voltage I/O port. Each pin can be designated as an input or output pin separately. Can directly drive LEDs.	Input	FIP45-FIP52

(2) Non-port pins (1/2)

Pin name	I/O	Function	Reset	Combination pin
INTP0	Input	Can be set for effective edge (rising edge, falling edge, or	Input	P00/TI0
INTP1		both rising and falling edges).		P01
INTP2	1	Inputs external interrupts.		P02
INTP3		Falling edge detection and external interrupt input	Input	P03
SI0	Input	Input of serial data for serial interface	Input	P25/SB0
SI1	1			P20
SO0	Output	Output of serial data for serial interface	Input	P26/SB1
SO1	1			P21
SB0	I/O	Input/output of serial data for serial interface	Input	P25/SI0
SB1	1			P26/SO0
SCK0	I/O	Serial clock input/output for serial interface	Input	P27
SCK1	1			P22
STB	Output	Output of automatic transmit/receive strobe signal for serial interface	Input	P23
BUSY	Input	Input of automatic transmit/receive busy signal for serial interface	Input	P24
T10	Input	External count clock input to 16-bit timer (TM0)	Input	P00/INTP0
TI1	1	External count clock input to 8-bit timer (TM1)		P33
TI2	1	External count clock input to 8-bit timer (TM2)		P34
TO0	Output	16-bit timer (TM0) output (combined with 14-bit PWM output)	Input	P30
TO1		8-bit timer (TM1) output		P31
TO2	1	8-bit timer (TM2) output		P32
PCL	Output	Clock output (for trimming main system clock or sub- system clock)	Input	P35
BUZ	Output	Buzzer output	Input	P36
FIP0-FIP12	Output	High current output with high withstand voltage for the grids/segments of FIP controller/driver On-chip pull-down resistors provided (connect to VLOAD)	Output	_
FIP13-FIP20	Output	High current output with high withstand voltage for the grids/segments of FIP controller/driver	Output	P80-P87
FIP21-FIP28	Output	High current output with high withstand voltage for the	Output	P90-P97
FIP29-FIP36	1	grids/segments of FIP controller/driver	Input	P100-P107
FIP37-FIP44	1			P110-P117
FIP45-FIP52	1			P120-P127
Vload	_	Pull-down resistor connection for FIP controller/driver	_	—

 \star

(2) Non-port pins (2/2)

Pin name	I/O	Function	Reset	Combination pin
ANI0-ANI7	Input	Analog input for A/D converter	Input	P10-P17
AVREF	Input	Reference voltage input for A/D converter	_	_
AVdd	—	Analog power supply for A/D converter. Connect to VDD.	_	_
AVss	—	Ground for A/D converter. Connect to Vss.	_	_
RESET	Input	System reset input	_	_
X1	Input	Crystal connection for main system clock oscillation	—	—
X2	_			_
XT1	Input	Crystal connection for subsystem clock oscillation	Input	P04
XT2	—			_
Vdd	—	Positive power supply	_	—
Vpp	_	Connect to Vss.	_	_
Vss	—	Ground level	_	—

2.2 PINS FOR PROM PROGRAMMING MODE

Pin name	I/O	Function
RESET	Input	PROM programming mode selection. PROM programming mode is selected when +5 V or +12.5 V is added to the V _{PP} pin or low- level input is added to the RESET pin.
Vpp	Input	PROM programming mode selection and high voltage input during program write or verification
A0-A16	Input	Address bus
D0-D7	I/O	Data bus
CE	Input	PROM enable input/program pulse input
ŌĒ	Input	Read strobe input to PROM
PGM	Input	Program/program inhibit input during PROM programming mode
Vdd	_	Positive power supply
Vss	—	Ground level

2.3 I/O CIRCUITS FOR PINS AND TREATMENT OF UNUSED PINS

Table 2-1 describes the types of I/O circuits for pins and the treatment of unused pins. Fig. 2-1 shows the configuration of these various types of I/O circuits.

Pin name	I/O circuit type	I/O	Recommended connection method for unused pins
P00/INTP0/TI0	2	Input	Connect to Vss.
P01/INTP1	8-A	I/O	Connect to Vss through a separate resistor.
P02/INTP2			
P03/INTP3			
P04/XT1	16	Input	Connect to VDD or Vss.
P10/ANI0-P17/ANI7	11	I/O	Connect to VDD or Vss through a separate resistor.
P20/SI1	8-A		
P21/SO1	5-A		
P22/SCK1	8-A		
P23/STB	5-A		
P24/BUSY	8-A		
P25/SI0/SB0	10-A		
P26/SO0/SB1			
P27/SCK0			
P30/TO0	5-A		
P31/TO1			
P32/TO2			
P33/TI1	8-A		
P34/TI2			
P35/PCL	5-A		
P36/BUZ			
P37			
P70-P74	13-D		
FIP0-FIP12	14	Output	Open
P80/FIP13-P87/FIP20	14-B]	
P90/FIP21-P97/FIP28	1		

Table 2-1 Types of I/O Circuits for Pins (1/2)

 \star

★

Pin name	I/O circuit type	I/O	Recommended connection method for unused pins
P100/FIP29-P107/FIP36	15-B	I/O	Connect to V_{DD} or V_{SS} through a separate resistor.
P110/FIP37-P117/FIP44			
P120/FIP45-P127/FIP52			
RESET	2	Input	_
XT2	16	—	Open
AVREF	_		Connect to Vss.
AVdd			Connect to VDD.
AVss			Connect to Vss.
Vload			
Vpp			Connect to Vss directly.

Table 2-1 Types of I/O Circuits for Pins (2/2)

Fig. 2-1 List of I/O Circuits for Pins (1/2)

Fig. 2-1 List of I/O Circuits for Pins (2/2)

3. INTERNAL MEMORY SWITCHING (IMS) REGISTER

This register enables the software to avoid using part of the internal memory. The IMS register can be set to establish the same memory mapping as used in ROM products that have a different internal ROM capacity.

The IMS register is set using 8-bit memory operation instructions.

A RESET input sets the IMS register to CFH.

Fig. 3-1 Format of IMS Register

Table 3-1 lists IMS register settings for memory mapping equivalent to various mask ROM products.

Target mask ROM product	IMS setting
μPD780204	C8H
μPD780205	CAH
μPD780206	ССН
μPD780208	CFH
μPD780205 μPD780206 μPD780208	CAH CCH CFH

Table 3-1 IMS Register Settings

*

4. INTERNAL EXPANDED RAM SWITCHING (IXS) REGISTER

The μ PD78P0208 can set the IXS register to establish the same memory mapping as used in ROM products that have a different internal expanded RAM capacity.

The IXS register is set using 8-bit memory operation instructions.

A RESET input sets the IXS register to 0AH.

Fig. 4-1 Format of IXS Register

Table 4-1 lists IXS register settings for memory mapping equivalent to various mask ROM products.

Table 4-1 IXS Register Settings

Target mask ROM product	IXS setting
μPD780204	0CH
μPD780205	
μPD780206	0AH
μPD780208	

*

5. PROM PROGRAMMING

The μ PD78P0208 has an on-chip 60KB PROM device for use as program memory. When programming, set the VPP and RESET pins for PROM programming mode. See (2) PROM programming mode in PIN CONFIGURATION (TOP VIEW) with regard to treatment of other, unused pins.

Caution Write a program in the range between addresses 0000H and EFFFH. (Set EFFFH in the programend address.) PROM programmers which cannot specify the writing address cannot be used.

5.1 OPERATION MODE

PROM programming mode is selected when +5 V or +12.5 V is added to the VPP pin or low-level input is added to the $\overline{\text{RESET}}$ pin. This mode can be set to operation mode by setting the $\overline{\text{CE}}$ pin, $\overline{\text{OE}}$ pin, and $\overline{\text{PGM}}$ pin as shown in Table 5-1 below.

In addition, the PROM contents can be read by setting read mode.

Pin Operation mode	RESET	Vpp	Vdd	ĊĒ	ŌĒ	PGM	D0-D7
Page data latch	L	+12.5 V	+6.5 V	Н	L	Н	Data input
Page write				Н	н	L	High impedance
Byte write				L	н	L	Data input
Program verify				L	L	Н	Data output
Program inhibit				×	н	Н	High impedance
				×	L	L	
Read		+5 V	+5 V	L	L	Н	Data output
Output disable				L	н	×	High impedance
Standby				Н	×	×	High impedance

Table 5-1 PROM Programming Operation Mode

 \times = L or H

(1) Read mode

Set \overline{CE} to L and \overline{OE} to L to set read mode.

(2) Output disable mode

Set \overline{OE} to H to set high impedance for data output and output disable mode. Consequently, if several μ PD78P0208 devices are connected to a data bus, the \overline{OE} pins can be controlled to select data output from any of the devices.

(3) Standby mode

Set \overline{CE} to H to set standby mode. In this mode, data output is set to high impedance regardless of the \overline{OE} setting.

(4) Page data latch mode

At the beginning of page write mode, set \overline{CE} to H, \overline{PGM} to H, and \overline{OE} to L to set page data latch mode. In this mode, 1 page (4 bytes) of data are latched to the internal address/data latch circuit.

(5) Page write mode

After latching the address and data for one page (4 bytes) using page data latch mode, adding a 0.1 ms program pulse (active, low) to the \overrightarrow{PGM} pin with both \overrightarrow{CE} and \overrightarrow{OE} set to H causes page write to be executed. Later, setting both \overrightarrow{CE} and \overrightarrow{OE} to L causes program verification to be executed.

If programming is not completed after one program pulse, the write and verify operations may be repeated X times (where X - 10).

(6) Byte write mode

Adding a 0.1 ms program pulse (active, low) to the \overrightarrow{PGM} pin with \overrightarrow{CE} set to L and \overrightarrow{OE} set to H causes byte write to be executed. Later, setting \overrightarrow{OE} to L causes program verification to be executed.

If programming is not completed after one program pulse, the write and verify operations may be repeated X times (where X - 10).

(7) Program verify mode

Set \overline{CE} to L, \overline{PGM} to H, and \overline{OE} to L to set program verify mode. Use verify mode for verification following each write operation.

(8) Program inhibit mode

Program inhibit mode is used to write to a single device when several μ PD78P0208 devices are connected in parallel to \overline{OE} , VPP, and D0 to D7 pins.

Use the page write mode or byte write mode described above for each write operation. Write operations cannot be done for devices in which the \overline{PGM} pin has been set to H.

5.2 PROM WRITE SEQUENCE

Fig. 5-1 Page Program Mode Flowchart

G = Start address

N = Program end address

Fig. 5-2 Page Program Mode Timing

Fig. 5-3 Byte Program Mode Flowchart

G = Start address

N = Program end address

Fig. 5-4 Byte Program Mode Timing

Cautions 1. Add VDD before VPP, and turn off the VDD after VPP.

- 2. Do not allow VPP to exceed +13.5 V including overshoot.
- 3. Reliability problems may result if the device is inserted or pulled out while +12.5 V is applied at VPP.

5.3 PROM READ SEQUENCE

Follow this sequence to read the PROM contents to an external data bus (D0 to D7).

- (1) Set the RESET pin to low level and add +5 V to the VPP pin. See (2) PROM programming mode in PIN CONFIGURATION (TOP VIEW) with regard to treatment of other, unused pins.
- (2) Add +5 V to the VDD and VPP pins.
- (3) Input the data address to be read to pins A0 to A16.
- (4) Set read mode.
- (5) Output the data to pins D0 to D7.

Fig. 5-5 shows the timing of steps (2) to (5) above.

Fig. 5-5 PROM Read Timing

★

*

6. ERASURE CHARACTERISTICS (µPD78P0208KL-T ONLY)

Data written in the μ PD78P0208KL-T program memory can be erased (FFH); therefore users can write other data in the memory.

To erase the written data, expose the erasure window to light with a wavelength shorter than approx. 400 nm. Normally, ultraviolet light with a wavelength of 254 nm is employed. The amount of light required to completely erase the data is as follows:

- Intensity of ultraviolet light × erasing time: 30 W•s/cm² min.
- Erasing time: 40 minutes or more (When using a 12000 μW/cm² ultraviolet lamp. It may, however, take more time due to lamp deterioration, dirt on the erasure window, or the like.)

The ultraviolet lamp should be placed within 2.5 cm from the erasure window during erasure. In addition, if a filter is attached to the ultraviolet lamp, remove the filter before erasure.

7. PROTECTIVE FILM COVERING THE ERASURE WINDOW (µPD78P0208KL-T ONLY)

To prevent EPROM from being erased inadvertently by light other than that from the lamp used for erasing EPROM, or to prevent the internal circuits other than EPROM from malfunctioning by light, stick a protective film on the erasure window except when EPROM is to be erased.

8. SCREENING ONE-TIME PROM PRODUCTS

NEC cannot execute a complete test of one-time PROM products (μ PD78P0208GF-3BA) due to their structure before shipment. It is recommended that you screen (verify) PROM products after writing necessary data into them and storing them at 125 °C for 24 hours.

NEC offers a charged service called QTOP microcomputer service. This service includes writing to one-time PROM, marking, screening, and verification. Ask your sales representative for details.

★ 9. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)

Parameter	Symbol	Conditions			Rating	Unit		
Supply voltage	Vdd				-0.3 to +7.0	V		
	Vload				VDD - 45 to VDD + 0.3	V		
	Vpp				-0.3 to +13.5	V		
	AVdd				-0.3 to VDD + 0.3	V		
	AVREF							
	AVss				-0.3 to +0.3	V		
Input voltate	VI1	P01 to P04, P10 to P17, P20 to P27, P30 to P3	37, X1	, X2, RESET	-0.3 to V _{DD} + 0.3	V		
	Vı2	P00/A9			-0.3 to +13.5	V		
	Vıз	P70-P74	N-ch	open drain	-0.3 to +16	V		
	V14	P100 to P107, P110 to P117, P120 to P127	VDD - 45 to VDD + 0.3	V				
Output voltage	Vo	P01 to P03, P10 to P17, P20 to P27, P30 to	P37,	P70 to P74	-0.3 to V _{DD} + 0.3	V		
	Vod	P80 to P87, P90 to P97, P100 to P107, P110 P127, FIP0 to FIP12	0 to P	117, P120 to	V _{DD} - 45 to V _{DD} + 0.3	V		
Analog input voltage	Van	ANI0 to ANI7	AVss - 0.3 to AVREF + 0.3	V				
High-level	_{OH} Note1	1 pin of P01 to P03, P10 to P17, P20 to P27	7, P30	to P37	-10	mA		
output current		Total for P01 to P03, P10 to P17, P02 to P2	7, P3() to P37	-30	mA		
		1 pin of FIP0 to FIP12, P80 to P87, P90 to P9 P110 to P117, P120 to P127	97, P1	00 to P107,	-30			
		Total for P80 to P87, FIP0 to FIP12		Peak value	-240	mA		
				RMS	-120	mA		
		Total for P90 to P97, P100 to P107, P110 to P	117,	Peak value	-100	mA		
		P120 to P127		RMS	-60	mA		
Low-level	_{OL} Note1	1 pin of P01 to P03, P10 to P17, P20 to P27,	P30	Peak value	30	mA		
output current		to P37, P70 to P74		RMS	15	mA		
		Total for P01 to P03, P10 to P17, P20 to 27,	P30	Peak value	50	mA		
		to P37		RMS	20	mA		
		Total for P70 to P74		Peak value	100	mA		
				RMS	60	mA		
Total power	P⊤Note 2	$T_{A} = -40$ to +60 °C			800	mW		
dissipation		T _A = +85 °C			600	mW		
Operating ambient temperature	TA				-40 to +85	°C		
Storage temperature	Tstg				-65 to +150	°C		

- Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter, or even momentarily. In other words, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless otherwise specified, shared pin characteristics are the same as port pin characteristics.
- **Notes 1.** The RMS should be calculated as follows: [RMS value] = [Peak value] $\times \sqrt{\text{Duty}}$

Notes 2. Total power dissipation differs depending on the temperature (see the following figure).

How to calculate total power dissipation

The total power dissipation of the μ PD78P0208GF is the sum of the values at the following three parts. Design your application set so that the sum is lower than the total power dissipation PT. (The recommended operating condition is 80% or lower of the rated value.)

- <1> CPU: the power consumed by CPU and calculated with VDD (max.) × IDD1 (max.)
- <2> Output pins: the power consumption when the maximum current flows at all output pins (normal output and display output).
- <3> Pull-down resistors: the power dissipated at the on-chip pull-down resistors connected to display output pins

The calculation example of the total power dissipation is provided below. The following total power dissipation calculation example assumes the case where the characters shown in the figure on the next page are displayed.

Example: The operating conditions are as follows:

 $V_{DD} = 5 \text{ V} \pm 10\%, \text{ operating at 5.0 MHz}$ Supply current (IDD1) = 21.6 mA
FIP display outputs: 11 grids × 10 segments (cut width is 1/16)
It is assumed that up to 15 mA flows to each grid pin, and that up to 3 mA flows to each segment
pin.
It is also assumed that all display outputs are turned off at key scan timings.
Display output voltage: grid $V_{OD} = V_{DD} - 2 \text{ V}$ (Voltage drop of 2 V is assumed.)
segment $V_{OD} = V_{DD} - 0.4 \text{ V}$ (Voltage drop of 0.4 V is assumed.)
Voltage applied to fluorescent indication panel (VLOAD) = -35 V

On-chip pull-down resistor = 25 ký

<1> Power consumption of CPU: 5.5 V × 21.6 mA = 118.8 mW

<2> Power consumption at output pins

Grid: 2 V × 15 mA ×
$$\frac{11 \text{ grids}}{12 \text{ timings}}$$
 × (1 – 1/16) = 25.8 mW

Segment: 0.4 V
$$\times$$
 3mA $\times \frac{31 \text{ segments}}{12 \text{ timings}} \times (1 - 1/16) = 2.9 \text{ mW}$

<3> Power consumption at pull-down resistors

Grid:

$$\frac{(35 \text{ V} + (5.5 \text{ V} - 2 \text{ V}))^2}{25 \text{ k}\Omega} \times \frac{11 \text{ grids}}{12 \text{ timings}} \times (1 - 1/16) = 50.9 \text{ mW}$$
Segment:

$$\frac{(35 \text{ V} + (5.5 \text{ V} - 0.4 \text{ V}))^2}{25 \text{ k}\Omega} \times \frac{31 \text{ segments}}{12 \text{ timings}} \times (1 - 1/16) = 155.8 \text{ mW}$$

Total power dissipation = **<1>** + **<2>** + **<3>** = 118.8 + 2.9 + 25.8 + 155.8 + 50.9 = 354.2 mW (< P_T = 600 mW)

According to the graph shown on the previous page, the total power dissipation in the temperature range of $T_A = -40$ to +85 °C must be lower than 600 mW. Therefore, the calculation result in this example (354.2 mW) satisfies the requirement. If the calculation result for the total power dissipation becomes higher than the rated value, the power consumption must be reduced.

					- - - - - - - - - - - - - - - - - - -	FA/ ×H													
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Bit 7	Bit 6								
EAZOH	FA60H	0	0	~	0	~	-	- -	0	0	0		Þ	Т0		a -	f g b	e d c	10 h
EA711	FA61H	0	0	0	-	-	0	-	0	0	0		►	Т1					ი
E A 70H	FA62H	-	-	-	-	0	0	-	0	0	0		Þ	Т2			I_	 _	∞
EA 73H	FA63H	0	-	-	0	0	0	0	0	0	0		Þ	Т3		SAT			7
iemory EA71H	FA64H	0	0	0	0	0	0	0	~	0	0		Þ	Т4		FRI			9
y data m באסבו	FA65H	-	0	-	-	0	-	-	0	0	0		Þ	Т5		THU	I_	I _	5
Display	FA66H	0	-	~	0	0	~	-	0	0	0		►	ТG		WED			4
EA 771	FA67H	0	0	0	0	0	0	0	0	0	~		Þ	Т7		TUE	<u>. </u>		ю
EA 781	FA68H	0	~	-	0	0	0	0	0	-	0		Þ	Т8		MON			7
EAZOH	FA69H	0	~	~	0	0	0	0	0	0	0		Þ	Т9		SUN			-
EAZAH	FA6AH	0	0	0	0	0	0	0	0	-	0		►	T10			AM i	PM j	0
														S9 S8 S7 S6 S5 S4 S3 S2 S1 S0	a b c d e f g h j j				

Resonator	Recommended circuit	Parameter	Conditions	Min.	Тур.	Max.	Unit
Ceramic resonator		Oscillator frequency (fx)Note 1		1		5	MHz
		Oscillation settling timeNote 2				4	ms
Crystal resonator		Oscillator frequency (fx)Note 1		1	4.19	5	MHz
		Oscillation settling time Note 2	V _{DD} = 4.5 to 5.5 V			10	ms
	i' 7777					30	
External clock		X1 input frequency (f _X)Note 1		1		5	MHz
	μPD74HCU04	X1 input high-/low- level width (txH/txL)		85		500	ns

MAIN SYSTEM CLOCK OSCILLATION CIRCUIT CHARACTERISTICS (TA = -40 to +85 °C, VDD = 2.7 to 5.5 V)

- Notes 1. Only the oscillator characteristics are shown. See AC characteristics for instruction execution times.
 This is the time required for oscillation to stabilize after a reset or STOP mode release.
- Cautions 1. When the main system clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a broken line to prevent the influence of wiring capacitance, etc.
 - The wiring should be kept as short as possible.
 - No other signal lines should be crossed.
 - · Keep away from lines carrying a high fluctuating current.
 - The oscillator capacitor grounding point should always be at the same potential as Vss.
 - Do not connect to a ground pattern carrying a high current.
 - A signal should not be taken from the oscillator.
 - 2. When the main system clock is stopped and the device is operating on the subsystem clock, wait until the oscillation settling time has been secured by the program before switching back to the main system clock.

SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = -40 to +85 °C, V_{DD} = 2.7 to 5.5 V)

Resonator	Recommended circuit	Parameter	Conditions	Min.	Тур.	Max.	Unit
Crystal resonator	XT1 XT2 VPP	Oscillator frequency (f _{XT})Note 1		32	32.768	35	kHz
		Oscillation settling	V _{DD} = 4.5 to 5.5 V		1.2	2	s
						10	
External clock		XT1 input frequency (f _{XT}) ^{Note 1}		32		100	kHz
	Å	XT1 input high-/low- level width (txTH/txTL)		5		15	μs

- Notes 1. Only the oscillator characteristics are shown. See AC characteristics for instruction execution times.
 - 2. This is the time required for oscillation to stabilize after power (V_{DD}) is turned on.
- Cautions 1. When the subsystem clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a broken line to prevent the influence of wiring capacitance, etc.
 - The wiring should be kept as short as possible.
 - No other signal lines should be crossed.
 - Keep away from lines carrying a high fluctuating current.
 - The oscillator capacitor grounding point should always be at the same potential as Vss.
 - Do not connect to a ground pattern carrying a high current.
 - A signal should not be taken from the oscillator.
 - The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption current, and is more prone to misoperation due to noise than the main system clock oscillator.
 Particular care is therefore required with the wiring method when the subsystem clock is used.

RECOMMENDED OSCILLATOR CONSTANT

Manufacturer	Product name	Frequency	Circuit	constant	Oscillator v	oltage range	Remark	
		(MHz)	C1 (pF)	C2 (pF)	Min. (V)	Max. (V)		
Murata Mfg. Co., Ltd.	CSB1000J	1.0	100	100	2.80	5.50		
Toyama	CSA2.00MG040	2.0	100	100	2.96	5.50		
	CST2.00MG040	2.0	_	_	2.96	5.50	Built-in capacitor	
	CSA4.00MG	4.0	30	30	2.85	5.50		
	CST4.00MGW	4.0		_	2.85	5.50	Built-in capacitor	
	CSA5.00MG	5.0	30	30	3.05	5.50		
	CST5.00MGW	5.0	_	_	3.05	5.50	Built-in capacitor	
TDK Corp.	CCR1000K2	1.0	100	100	2.70	5.50		
	FCR4.00MC5	4.0			2.75	5.50	Built-in capacitor	
	CCR4.00MC3	4.0	—	—	2.70	5.50	Built-in capacitor	
	FCR5.00MC5	5.0	_		2.78	5.50	Built-in capacitor	
	CCR5.00MC3	5.0	_	_	2.75	5.50	Built-in capacitor	
Matsushita Electronics	EFOEC5004A4	5.0		_	2.70	5.50	Built-in capacitor	
Components Co., Ltd.	EFOEN5004A4	5.0		_	2.70	5.50	Built-in capacitor	
	EFOS5004B5	5.0			2.70	5.50	Built-in capacitor Surface-mount type	

Main System Clock: Ceramic Resonator (T_A = -40 to +85 ½C)

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator in the application circuit. For this, it is necessary to directly contact the manufacturer of the resonator being used.

Subsystem Clock: Crystal Resonator (T_A = -40 to +85½C)

Manufacturer	Product name	Frequency	Circuit constant			Oscillator voltage range	
		(kHz)	C3 (pF)	C4 (pF)	R (kΩ)	Min. (V)	Max. (V)
Kinseki, Ltd.	P-3 (Load capacitance 12 pF)	32.768	15	33	220	2.7	5.5

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation but do not guarantee accuracy of the oscillation frequency. If the application circuit requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency of the resonator in the application circuit. For this, it is necessary to directly contact the manufacturer of the resonator that being used.
CAPACITANCE (TA = 25 °C, VDD = VSS = 0 V)

Parameter	Symbol	Conditions	3	Min.	Тур.	Max.	Unit
Input capacitance	Cin	f = 1 MHz Unmeasured pins return			15	pF	
Output capacitance	Соит	f = 1 MHz Unmeasured pins return			35	pF	
Input/output capacitance	Сю	f = 1 MHz Unmeasured pins returned to 0 V	P01 to P03, P10 to P17, P20 to P27, P30 to P37			15	pF
		ſ	P70 to P74			20	pF
			P100 to P107, P110 to P117, P120 to P127			35	pF

Remark Unless otherwise specified, shared pin characteristics are the same as port pin characteristics.

OPERATING POWER SUPPLY VOLTAGE (T_A = -40 to +85 °C)

Parameter	Conditions	Min.	Тур.	Max.	Unit
CPUNote 1		2.7Note 2		5.5	V
Display controller		4.5		5.5	V
PWM mode of 16-bit timer/ event counter (TM0)		4.5		5.5	V
A/D converter		4.0		5.5	V
Other hardware		2.7		5.5	V

Notes 1. Except for system clock oscillator, display controller, and PWM.

2. The operating power supply voltage differs depending on the cycle time. See AC Characteristics.

DC CHARACTERISTICS (T_A = -40 to +85 °C, V_{DD} = 2.7 to 5.5 V)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
High-level input	VIH1	P21, P23		0.7Vdd		Vdd	V
voltage	VIH2	P00 to P03, P20, P22, P24 to P27,	P33, P34, RESET	0.8Vdd		Vdd	V
	Vінз	P70 to P74	N-ch open-drain	0.7Vdd		15	V
	VIH4	X1, X2		Vdd - 0.5		Vdd	V
	VIH5	XT1/P04, XT2	V _{DD} = 4.5 to 5.5 V	0.8Vdd		Vdd	V
				0.9Vdd		Vdd	V
	VIH6	P10 to P17, P30 to P32, P35 to	V _{DD} = 4.5 to 5.5 V	0.65Vdd		Vdd	V
		P37		0.7Vdd		Vdd	V
	VIH7	P100 to P107, P110 to P117,	V _{DD} = 4.5 to 5.5 V	0.7Vdd		Vdd	V
		P120 to P127		Vdd - 0.5		Vdd	V
Low-level input	VIL1	P21, P23		0		0.3Vdd	V
voltage	VIL2	P00 to P03, P20, P22, P24 to P27,	P33, P34, RESET	0		0.2Vdd	V
	VIL3	P70 to P74	V _{DD} = 4.5 to 5.5 V	0		0.3Vdd	V
				0		0.2VDD	V
	VIL4	X1, X2		0		0.4	V
	VIL5	XT1/P04, XT2	V _{DD} = 4.5 to 5.5 V	0		0.2VDD	V
				0		0.1Vdd	V
	VIL6	P10 to P17, P30 to P32, P35 to P37		0		0.3Vdd	V
	VIL7	P100 to P107, P110 to P117, P120	to P127	$V_{\text{DD}}-40$		0.3Vdd	V
High-level output voltage	Vон	P01 to P03, P10 to P17, P20 to P27, P30 to P37, P80 to P87, P90 to P97, P100 to P107, P110 to P117, P120 to P127, FIP0 to FIP12	V _{DD} = 4.5 to 5.5 V, Іон = -1 mA	Vdd - 1.0			V
			Іон = −100 μА	Vdd - 0.5			V
Low-level output voltage	Vol1	P30 to P37, P70 to P74	V _{DD} = 4.5 to 5.5 V I _{OL} = 15 mA		0.4	2.0	V
		P01 to P03, P10 to P17, P20 to P27	V _{DD} = 4.5 to 5.5 V Io∟ = 1.6 mA			0.4	V
	Vol2	SB0, SB1, SCK0	V_{DD} = 4.5 to 5.5 V With open-drain and pull-up (R = 1 k Ω)			0.2Vdd	V
	Vol3	Ιοι = 400 μΑ				0.5	V
High-level input leakage	ILIH1	Vin = Vdd	P00 to P03, P10 to P17, P20 to P27, P30 to P37, P70 to P74, RESET			3	μΑ
	ILIH2		X1, X2, XT1/P04, XT2			20	μA
	Ілнз	V _{IN} = 15 V	P70 to P74			80	μA
	ILIH4	P110 to P117, P120 to P127	V _{DD} = 4.5 to 5.5 V			3Note 1	μA
		VIN = VDD				3Note 2	μA

- Notes 1. For P110 to P117 and P120 to P127, a high-level input leakage current of 50 μA (MAX.) flows only during the 1.5 clocks (no-wait time) after an instruction has been executed to read out ports 11, 12 (P11, P12) or port mode registers 11, 12 (PM11, PM12). Outside the period of 1.5 clocks following executing a read-out instruction, the current is 3 μA (MAX.).
 - For P110 to P117 and P120 to P127, a high-level input leakage current of 30 μA (MAX.) flows only during the 1.5 clocks (no-wait time) after an instruction has been executed to read out P11, P12, PM11, and PM12. Outside the period of 1.5 clocks following executing a read-out instruction, the current is 3 μA (MAX.).
- **Remark** Unless otherwise specified, shared pin characteristics are the same as port pin characteristics.

DC CHARACTERISTICS (T_A = -40 to +85 °C, V_{DD} = 2.7 to 5.5 V)

Parameter	Symbol	Conditior	IS	Min.	Тур.	Max.	Unit
Low-level input leakage current		V _{IN} = 0 V	P00 to P03, P10 to P17, P20 to P27, P30 to P37, RESET			-3	μA
	ILIL2		X1, X2, XT1/P04, XT2			-20	μΑ
	ILIL3		P70 to P74			_3Note 4	μΑ
	Ilil4		P100 to P107, P110 to P117, P120 to P127			-10	μΑ
High-level input leakage current	Iloh1	Vout = Vdd	P01 to P03, P10 to P17, P20 to P27, P30 to P37, P80 to P87, P90 to P97, P100 to P107, P110 to P117, P120 to P127, FIP0 to FIP12			3	μΑ
	ILOH2	Vout = 15 V	P70 to P74			80	μΑ
Low-level output leakage current	ILOL1	Vout = 0 V	P01 to P03, P10 to P17, P20 to P27, P30 to P37, P70 to P74			-3	μA
	ILOL2	Vout = Vload = Vdd - 40 V	P80 to P87, P90 to P97, P100 to P107, P110 to P117, P120 to P127, FIP0 to FIP12			-10	μA
Display output current	Iod	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ V}_{OD} = \text{V}_{DD} - 2$	V	-15	-18		mA
Software pull-up	R1	$V_{IN} = 0 V$, P01 to P03, P10 to	V _{DD} = 4.5 to 5.5 V	15	40	90	kΩ
resistor		P17, P20 to P27, P30 to P37		20		500	kΩ
On-chip pull-down resistor	R2	FIP0 to FIP12	$V_{OD} - V_{LOAD} = 40 V$	25	70	135	kΩ
Power supply	DD1	5.0 MHz crystal oscillation	V _{DD} = 5.0 V ±10 %Note 2		10.0	30.0	mA
currentNote 1		operation mode	V _{DD} = 3.0 V ±10 %Note 3		1.1	3.3	mA
	IDD2	5.0 MHz crystal oscillation HALT	VDD = 5.0 V ±10 %		1.6	4.8	mA
		mode	VDD = 3.0 V ±10 %		0.65	1.95	mA
	Іддз	32.768 kHz crystal oscillation	VDD = 5.0 V ±10 %		135	270	μA
		operation mode	VDD = 3.0 V ±10 %		95	190	μΑ
	IDD4	32.768 kHz crystal oscillation	VDD = 5.0 V ±10 %		25	55	μΑ
		HALI mode	VDD = 3.0 V ±10 %		5	15	μΑ
	IDD5	XT1 = 0 V	VDD = 5.0 V ±10 %		1	30	μΑ
		feedback resistor	VDD = 3.0 V ±10 %		0.5	10	μA
	DD6	XT1 = 0 V	VDD = 5.0 V ±10 %		0.1	30	μA
		STOP mode when not connect- ing to feedback resistor	VDD = 3.0 V ±10 %		0.05	10	μA

Notes 1. This current excludes the AV_{REF} current, port current, and current which flows in the on-chip pull-down resistor.

- 2. When operating at high-speed mode (when the processor clock control register (PCC) is set to 00H)
- 3. When operating at low-speed mode (when the PCC is set to 04H)
- 4. For P70 to P74, a low-level input leakage current of -200 μA (MAX.) flows only during the 1.5 clocks (no-wait time) after an instruction has been executed to read out port 7 (P7) or port mode register 7 (PM7). Outside the period of 1.5 clocks following executing a read-out instruction, the current is -3 μA (MAX.).

Remark Unless otherwise specified, shared pin characteristics are the same as port pin characteristics.

AC CHARACTERISTICS

(1)	Basic operation	(T _A = -40 to +85	5 °C, VDD = 2.7 to 5.5 \	/)
-----	------------------------	------------------------------	--------------------------	----

Parameter	Symbol	Conditior	IS	Min.	Тур.	Max.	Unit
Cycle time (mini-	Тсү	Operated with main system	V _{DD} = 4.5 to 5.5 V	0.4		32	μs
mum) instruction		clock		0.8		32	μs
execution time)		Operated with subsystem clock	·	40Note 1	122	125	μs
TI1, TI2 input	fтı	V _{DD} = 4.5 to 5.5 V	0		2	MHz	
frequency				0		138	kHz
TI1, TI2 input high,	fтін	V _{DD} = 4.5 to 5.5 V		250			ns
low-level width	f⊤ı∟			3.6			μs
Interrupt input high,	finth	INTP0		8/f _{sam} Note 2			μs
low-level width	TINTL	INTP1 to INTP3		10			μs
RESET low-level	tRSL			10			μs
width							

Notes 1. Value when external clock input is used as subsystem clock. When a crystal is used, the value becomes 114 μ s.

Selection of f_{sam} = fx/2^{N+1}, fx/64, fx/128 is available (N = 0 to 4) by bits 0 and 1 (SCS0, SCS1) of sampling clock select register (SCS).

TCY VS VDD (with main system clock operated)

- (2) Serial interface (T_A = -40 to +85 °C, V_{DD} = 2.7 to 5.5 V)
 - (a) Serial interface channel 0

(i) 3-wire serial I/O mode (SCK0: Internal clock output)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCK0 cycle time	tkCY1	V _{DD} = 4.5 to 5.5 V	800			ns
			1600			ns
SCK0 high, low- level widthtкн1 tк∟1	tkH1	V _{DD} = 4.5 to 5.5 V	tксү₂/2 – 50			ns
	tKL1		tксү2/2 – 100			ns
SI0 setup time to	tsik1	V _{DD} = 4.5 to 5.5 V	100			ns
SCK0∞			150			ns
SI0 hold time from	tksi1		400			ns
SCK0∞						
$\overline{SCK0} \downarrow \rightarrow SO0$	tkso1	C = 100 pFNote			300	ns
output delay time						

Note C is a load capacitance of the $\overline{SCK0}$ or SO0 output line.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCK0 cycle time	tkCY2	V _{DD} = 4.5 to 5.5 V	800			ns
			1600			ns
SCK0 high, low- tkH	tĸH2	V _{DD} = 4.5 to 5.5 V	tксү₂/2 – 50			ns
level width	tKL2		tксү2/2 – 100			ns
SI0 setup time to	tsik2	V _{DD} = 4.5 to 5.5 V	100			ns
SCK0∞			150			ns
SI0 hold time from	tksi2		400			ns
SCK0∞						
$\overline{\text{SCK0}} \downarrow \rightarrow \text{SO0}$	tkso2	C = 100 pFNote			300	ns
output delay time						
SCK0 rise, fail time	t _{R2}				160	ns
	tF2					

(ii) 3-wire serial I/O mode (SCK0: External clock input)

Note C is a load capacitance of the SO0 output line.

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
SCK0 cycle time	t ксүз	V _{DD} = 4.5 to 5.5 V		800			ns
				3200			ns
SCK0 high, low-level	tкнз	V _{DD} = 4.5 to 5.5 V		tксүз/2 – 50			ns
width	tкlз		tксүз/2 – 150			ns	
SB0, SB1 setup time	tsiкз	V _{DD} = 4.5 to 5.5 V	V _{DD} = 4.5 to 5.5 V				ns
to SCK0∞				300			ns
SB0, SB1 hold time	tksi3			tксүз/2			ns
from SCK0∞							
$\overline{\text{SCK0}} \downarrow \rightarrow \text{SB0}, \text{SB1}$	tкsoз	R = 1 kΩ, C = 100 pF ^{Note}	V _{DD} = 4.5 to 5.5 V	0		250	ns
output delay time				0		1000	ns
SCK0∞→SB0, SB1↓	tкsв			tксүз			ns
SB0, SB1 $\downarrow \rightarrow \overline{\text{SCK0}}\downarrow$	tsвк			tксүз			ns
SB0, SB1 high-level	tsвн			tксүз			ns
width							
SB0, SB1 low-level width	tsbl			tксүз			ns

(iii) SBI mode (SCK0: Internal clock output)

Note R is a load resistance of the $\overline{SCK0}$, SB0, or SB1 output line, and C is its load capacitance.

(iv) SBI mode (SCK0: External clock input)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
SCK0 cycle time	tkCY4	VDD = 4.5 to 5.5 V		800			ns
				3200			ns
SCK0 high, low-level	tĸн₄	VDD = 4.5 to 5.5 V		400			ns
width	tĸ∟4			1600			ns
SB0, SB1 setup time	tsıκ₄	V _{DD} = 4.5 to 5.5 V		100			ns
to SCK0∞				300			ns
SB0, SB1 hold time from SCK0∞	tksi4			tксү4/2			ns
$\overline{SCK0} \downarrow \rightarrow SB0, SB1$	tkso4	R = 1 kΩ, C = 100 pF ^{Note}	V _{DD} = 4.5 to 5.5 V	0		250	ns
output delay time				0		1000	ns
SCK0∞→SB0, SB1↓	tкsв			tkCY4			ns
SB0, SB1↓→ SCK0 ↓	tsвк			tkCY4			ns
SB0, SB1 high-level width	tsвн			tkcy4			ns
SB0, SB1 low-level width	tsbl			tkcy4			ns
SCK0 rise, fall time	tR4					160	ns
	tF4						

Note R is a load resistance of the SB0 or SB1 output line, and C is its load capacitance.

42

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCK0 cycle time	t ксү5		1600			ns
SCK0 high-level width	tĸн5		tксү₅/2 – 160			ns
SCK0 low-level width	tĸ∟5	V _{DD} = 4.5 to 5.5 V	tксү₅/2 – 50			ns
			tксү5/2 – 100			ns
SB0, SB1 setup time	tsik5	V _{DD} = 4.5 to 5.5 V	300			ns
to SCK0∞			350			ns
SB0, SB1 hold time	tksi5		600			ns
from SCK0∞						
SCK0↓→SB0, SB1 output delay time	tkso5	$R = 1 k\Omega$, $C = 100 pF^{Note}$	0		300	ns

(v) 2-wire serial I/O mode (SCK0: Internal clock output)

Note R is a load resistance of the SCK0, SB0, or SB1 output line, and C is its load capacitance.

(vi) 2-wire serial I/O mode (SCK0: External clock input)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit
SCK0 cycle time	t ксү6			1600			ns
SCK0 high-level width	tĸH6		650			ns	
SCK0 low-level width	tĸ∟6		800			ns	
SB0, SB1 setup time	tsik6						ns
to SCK0∞							
SB0, SB1 hold time	tksi6			tксү6/2			ns
from SCK0∞							
SCK0↓→SB0, SB1	tkso6	R = 1 kΩ, C = 100 pF ^{Note}	V _{DD} = 4.5 to 5.5 V	0		300	ns
output delay time				0		500	ns
SCK0 rise, fall time	t _{R6}					160	ns
	tF6						

Note R is a load resistance of the SB0 or SB1 output line, and C is its load capacitance.

(b) Serial interface channel 1

(i) 3-wire serial I/O mode (SCK1: Internal clock output)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCK1 cycle time	t ксү7	V _{DD} = 4.5 to 5.5 V	800			ns
			1600			ns
SCK1 high, low-level	tкн7	V _{DD} = 4.5 to 5.5 V	tксү7/2 – 50			ns
width	tĸ∟7		tксү7/2 – 100			ns
SI1 setup time to $\overline{\text{SCK1}}_{\infty}$	tsıĸ7	V _{DD} = 4.5 to 5.5 V	100			ns
			150			ns
SI1 hold time from $\overline{\text{SCK1}}$	tksi7		400			ns
$\overline{\text{SCK1}} \downarrow \rightarrow \text{SO1}$	tkso7	C = 100 pFNote			300	ns
output delay time						

Note C is a load capacitance of the $\overline{SCK1}$ or SO1 output line.

(ii) 3-wire serial I/O mode (SCK1: External clock input)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCK1 cycle time	t ксу8	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$	800			ns
			1600			ns
SCK1 high, low-level	tкнв	V _{DD} = 4.5 to 5.5 V	tксүв/2 – 50			ns
width	tĸ∟8		tксүв/2 – 100			ns
SI1 setup time to $\overline{SCK1}_{\infty}$	tsik8	V _{DD} = 4.5 to 5.5 V	100			ns
			150			ns
SI1 hold time from $\overline{\text{SCK1}}$	tksi8		400			ns
$\overline{\text{SCK1}} \downarrow \rightarrow \text{SO1}$	tkso8	C = 100 pF ^{Note}			300	ns
output delay time						
SCK1 rise, fall time	t _{R8}				160	ns
	tF8					

Note C is a load capacitance of the SO1 output line.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCK1 cycle time	tксүэ	V _{DD} = 4.5 to 5.5 V	800			ns
			1600			ns
SCK1 high, low-level	tкнэ	V _{DD} = 4.5 to 5.5 V	tксү9/2 – 50			ns
width	t ĸ∟9		tксү9/2 – 100			ns
SI1 setup time (to $\overline{SCK1}\infty$)	tsik9	V _{DD} = 4.5 to 5.5 V	100			ns
			150			ns
SI1 hold time (from $\overline{\text{SCK1}}_{\infty}$)	tksi9		400			ns
SO1 output delay time from $\overline{\text{SCK1}}\downarrow$	tĸso9	C = 100 pF ^{Note}			300	ns
STB∞ from SCK1↓	tsвd		tксүэ/2 – 100		tксүя/2 + 100	ns
Strobe signal high-level width	tsвw		tксү9 – 30		tксүэ + 30	ns
Busy signal setup time (to busy signal detection timing)	teys		100			ns
Busy signal hold time	tвүн	V _{DD} = 4.5 to 5.5 V	100			ns
(from busy signal detection timing)			150			ns
SCK1↓ from busy inactive	tsps				2t ксүэ	ns

(iii)	3-wire serial I/O	mode with	automatic	transmit/receive	function	(SCK1: Internal	clock output)
-------	-------------------	-----------	-----------	------------------	----------	-----------------	---------------

Note C is a load capacitance of the SO1 output line.

/* \	A 1		A	1	
111/1	X-WIRD CORISE I/()	mode with suitemstic	tranemit/rocolvo	tunction /S/ K1	· Evtornal clock innuiti
	J-WILE SELIAL I/U				
`					

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCK1 cycle time	t KCY10	V _{DD} = 4.5 to 5.5 V	800			ns
			1600			ns
SCK1 high, low-level	t кн10	V _{DD} = 4.5 to 5.5 V	400			ns
width	t KL10		800			ns
SI1 setup time (to $\overline{\text{SCK1}}_{\infty}$)	tsik10		100			ns
SI1 hold time (from $\overline{\text{SCK1}}_{\infty}$)	t KSI10		400			ns
SO1 output delay time	tkso10	C = 100 pF ^{Note}			300	ns
from SCK1↓						
SCK1 rise, fall time	t R10				160	ns
	t F10					

Note C is a load capacitance of the SO1 output line.

AC Timing Test Point (Excluding X1, XT1 Input)

Clock Timing

TI Timing

Serial Transfer Timing

3-wire serial I/O mode:

SBI mode (bus release signal transfer):

SBI mode (command signal transfer):

2-wire serail I/O mode:

3-wire serial I/O mode with automatic transmit/receive function:

3-wire serial I/O mode with automatic transmit/receive function (busy processing):

Note Though it does not become low level actually, here described as it does due to the timing rule.

48

A/D CONVERTER CHARACTERISTICS (TA = -40 to +85 °C, AVDD = VDD = 4.0 to 5.5 V, AVSS = VSS = 0 V)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution			8	8	8	bit
Total error ^{Note 1}					0.6	%
Conversion time ^{Note 2}	tconv	1 MHz - fx - 5.0 MHz	19.1		200	μs
Sampling time ^{Note 3}	t SAMP		24/fx			μs
Analog signal input voltage	VIAN		AVss		AVREF	V
Reference voltage	AVREF		4.0		AVDD	V
AV _{REF} resistor	RAIREF		4	14		kΩ

Notes 1. Quantization error $(\pm 1/2LSB)$ is not included. This parameter is indicated as the ratio to the full-scale value.

- **2.** Set the A/D conversion time to 19.1 μ s or more.
- 3. Sampling time depends on the conversion time.

DATA RETENTION CHARACTERISTICS AT LOW SUPPLY VOLTAGE IN DATA MEMORY STOP MODE (TA = -40 to +85 °C)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Data retention supply voltage	Vdddr		1.8		5.5	V
Data retention supply current	Idddr	V _{DDDR} = 2.0 V Subsystem clock stopped, Feedback resistor non-connected		0.1	10	μA
Release signal set time	tsrel		0			μs
Oscillation settling time	twait	Release by RESET		2 ¹⁷ /fx		ms
		Release by interrupt		Note		ms

Note Selection of 2¹²/fx, 2¹⁴/fx to 2¹⁷/fx is available by bits 0 to 2 (OSTS0 to OSTS2) of oscillation settling time select register (OSTS).

Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)

PROM PROGRAMMING CHARACTERISTICS

DC Characteristics

(1) PROM write mode (T_A = 25 ±5 °C, V_{DD} = 6.5 ±0.25 V, V_{PP} = 12.5 ±0.3 V)

Parameter	Symbol	Symbol ^{Note}	Conditions	Min.	Тур.	Max.	Unit
Input voltage high	Vін	Vih		0.7Vdd		Vdd	V
Input voltage low	VIL	VIL		0		0.3Vdd	V
Output voltage high	Vон	Vон	Iон = −1 mA	Vdd - 1.0			V
Output voltage low	Vol	Vol	lo∟ = 1.6 mA			0.4	V
Input leakage current	I LI	Lu	$0 \leq V_{\text{IN}} \leq V_{\text{DD}}$	-10		+10	μΑ
VPP supply voltage	Vpp	Vpp		12.2	12.5	12.8	V
VDD supply voltage	Vdd	Vcc		6.25	6.5	6.75	V
VPP supply current	IPP	Ірр	PGM = VIL			50	mA
VDD supply current	ldd	lcc				50	mA

(2) PROM read mode (T_A = 25 \pm 5 °C, V_{DD} = 5.0 \pm 0.5 V, V_{PP} = V_{DD} \pm 0.6 V)

Parameter	Symbol	Symbol ^{Note}	Conditions	Min.	Тур.	Max.	Unit
Input voltage high	Vін	Vih		0.7Vdd		Vdd	V
Input voltage low	VIL	VIL		0		0.3Vdd	V
Output voltage high	Vон1	Vон1	Іон = −1 mA	Vdd - 1.0			V
	Vон2	Vон2	Іон = -100 μА	Vdd - 0.5			V
Output voltage low	Vol	Vol	lo∟ = 1.6 mA			0.4	V
Input leakage current	lu	lu	$0 \leq V_{\text{IN}} \leq V_{\text{DD}}$	-10		+10	μA
Output leakage current	Ilo	Ilo	$0 \le V_{OUT} \le V_{DD}, \ \overline{OE} = V_{IH}$	-10		+10	μA
VPP supply voltage	Vpp	Vpp		Vdd - 0.6	Vdd	Vdd + 0.6	V
VDD supply voltage	Vdd	Vcc		4.5	5.0	5.5	V
VPP supply current	Ірр	Ірр	Vpp = Vdd			100	μA
VDD supply current	ldd	ICCA1	$\overline{CE} = V_{IL}, V_{IN} = V_{IH}$			50	mA

Note Corresponding *µ*PD27C1001A symbol

AC Characteristics

(1) PROM write mode

(a) Page program mode (T_A = 25 ±5 °C, V_{DD} = 6.5 ±0.25 V, V_{PP} = 12.5 ±0.3 V)

Parameter	Symbol	Symbol ^{Note}	Conditions	Min.	Тур.	Max.	Unit
Address setup time (to $\overline{OE}\downarrow$)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
\overline{CE} setup time (to $\overline{OE}\downarrow$)	tces	tces		2			μs
Input data setup time (to $\overline{OE}\downarrow$)	tos	tos		2			μs
Address hold time (from $\overline{OE} \sim$)	tан	tан		2			μs
	tahl	tahl		2			μs
	tанv	tанv		0			μs
Input data hold time (from \overline{OE} ∞)	tон	tон		2			μs
Data output float delay time from $\overline{\text{OE}}{\scriptscriptstyle\infty}$	tdf	tDF		0		250	ns
V_{PP} setup time (to $\overline{OE}\downarrow$)	tvps	tvps		1.0			ms
V_{DD} setup time (to $\overline{OE}\downarrow$)	tvds	tvcs		1.0			ms
Program pulse width	tew	tew		0.095	0.1	0.105	ms
Valid data delay time from $\overline{OE} \downarrow$	toe	toe				1	μs
OE pulse width during data latching	t∟w	t∟w		1			μs
PGM setup time	t PGMS	tрgms		2			μs
CE hold time	tсен	tсен		2			μs
OE hold time	tоен	tоен		2			μs

(b) Byte program mode (T_A = 25 \pm 5 °C, V_{DD} = 6.5 \pm 0.25 V, V_{PP} = 12.5 \pm 0.3 V)

Parameter	Symbol	Symbol ^{Note}	Conditions	Min.	Тур.	Max.	Unit
Address setup time (to $\overline{PGM}\downarrow$)	tas	tas		2			μs
OE setup time	toes	toes		2			μs
\overline{CE} setup time (to $\overline{PGM}\downarrow$)	tces	tces		2			μs
Input data setup time (to $\overline{PGM}\downarrow$)	tos	tos		2			μs
Address hold time (from $\overline{OE} \sim$)	tан	tан		2			μs
Input data hold time (from \overline{PGM}_{∞})	tон	tон		2			μs
Data output float delay time from \overline{OE}_∞	t DF	t _{DF}		0		250	ns
V_{PP} setup time (to $\overline{PGM}\downarrow$)	tvps	tvps		1.0			ms
V_{DD} setup time (to $\overline{PGM}\downarrow$)	tvds	tvcs		1.0			ms
Program pulse width	tew	tew		0.095		0.105	ms
Valid data delay time from $\overline{OE}\downarrow$	toe	toe				1	μs
OE hold time	tоен	_		2			μs

Note Corresponding *µ*PD27C1001A symbol

52

(2) PROM read mode (T_A = 25 \pm 5 °C, V_{DD} = 5.0 \pm 0.5 V, V_{PP} = V_{DD} \pm 0.6 V)

Parameter	Symbol	SymbolNote	Conditions	Min.	Тур.	Max.	Unit
Data output delay time from address	tacc	tacc	$\overline{CE} = \overline{OE} = VIL$			800	ns
Data output delay time from $\overline{CE}\downarrow$	tce	tce	OE = VIL			800	ns
Data output delay time from $\overline{OE} {\downarrow}$	toe	toe	\overline{CE} = VIL			200	ns
Data output float delay time from $\overline{\text{OE}}{\scriptstyle\sim}$	tDF	t DF	CE = VIL	0		60	ns
Data hold time from address	tон	tон	$\overline{CE} = \overline{OE} = V_{IL}$	0			ns

Note Corresponding *µ*PD27C1001A symbol

(3) PROM programming mode setting ($T_A = 25 \text{ °C}$, $V_{SS} = 0 \text{ V}$)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
PROM programming mode setup time	tsma		10			μs

PROM Write Mode Timing (Page Program Mode)

PROM Write Mode Timing (Byte Program Mode)

Cautions 1. VDD should be applied before VPP, and cut after VPP.

- 2. VPP should not exceed +13.5 V including overshoot.
- 3. Disconnection during application of +12.5V to VPP may have an adverse effect on reliability.

PROM Read Mode Timing

- Notes 1. If you want to read within the tacc range, make the \overline{OE} input delay time from the fall of \overline{CE} a maximum of tacc toE.
 - **2.** top is the time from when either \overline{OE} or \overline{CE} first reaches VIH.

PROM Programming Mode Setting Timing

10. CHARACTERISTIC CURVE (REFERENCE VALUE)

IDD vs. VDD (Main system clock: 5.0 MHz)

Supply voltage VDD [V]

*

Clock oscillation frequency fx [MHz]

Low-level output voltage $V_{\text{OL}}\left[V\right]$

High-level output voltage VDD - VOH [V]

High-level output voltage VDD - VOH [V]

11. PACKAGE DRAWINGS

100 PIN PLASTIC QFP (14 \times 20)

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
А	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	0.8	0.031
G	0.6	0.024
Н	0.30±0.10	$0.012\substack{+0.004\\-0.005}$
I	0.15	0.006
J	0.65 (T.P.)	0.026 (T.P.)
К	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$
Ν	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

62

100 PIN CERAMIC WOFN

NOTE

Each lead centerline is located within 0.06 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

		X100KVV-65A-1
ITEM	MILLIMETERS	INCHES
А	20.6±0.4	0.811±0.016
В	19.0	0.748
С	13.8	0.543
D	14.6±0.4	0.575±0.016
E	1.94	0.076
F	2.14	0.084
G	3.5 MAX,	0.138 MAX.
Н	0.45±0.10	0.018+0.004
I	0.06	0.003
J	0.65	0.026
К	1.0±0.2	0.039 ^{+0.009}
Q	C 0.3	C 0.012
R	0.875	0.034
S	1.125	0.044
Т	R 3.17	R 0.125
U	12.0	0.472
W	0.75±0.2	0.030+0.008
Z	0.10	0.004

NEC

★ 12. RECOMMENDED SOLDERING CONDITIONS

The conditions listed below shall be met when soldering the μ PD78P0208.

For details of the recommended soldering conditions, refer to our document *Semiconductor Device Mounting Technology Manual* (C10535E).

Please consult with our sales offices in case any other soldering process is used, or in case soldering is done under different conditions.

Table 12-1 Soldering Conditions for Surface-Mount Devices

μ PD78P0208GF-3BA: 100-pin plastic QFP (14 \times 20 mm)

Soldering process	Soldering conditions	Recommended conditions
Infrared ray reflow	Peak package's surface temperature: 235 °C Reflow time: 30 seconds or less (210 °C or more) Maximum allowable number of reflow processes: 2	IR35-00-2
VPS	Peak package's surface temperature: 215 °C Reflow time: 40 seconds or less (200 °C or more) Maximum allowable number of reflow processes: 2	VP15-00-2
Wave soldering	Solder temperature: 260 °C or less Flow time: 10 seconds or less Number of flow processes: 1 Preheating temperature : 120 °C max. (measured on the package surface)	WS60-00-1
Partial heating method	Terminal temperature: 300 °C or less Heat time: 3 seconds or less (for one side of a device)	_

Caution Do not apply two or more different soldering methods to one chip (except for partial heating method for terminal sections).

APPENDIX A DEVELOPMENT TOOLS

The following tools are available for development of systems using the μ PD78P0208.

Language processing software

RA78K/0Notes 1, 2, 3, 4	Assembler package common to 78K/0 series
CC78K/0Notes 1, 2, 3, 4	C compiler package common to 78K/0 series
DF780208Notes 1, 2, 3, 4	Device file for μ PD780208 subseries
CC78K/0-LNotes 1, 2, 3, 4	C compiler library source file common to 78K/0 series

PROM writing tools

PG-1500	PROM programmer
PA-78P0208GF	Programmer adapter connected to PG-1500
PA-78P0208KL-T	
PG-1500 controllerNotes 1, 2	Control program for PG-1500

Debugging tools

IE-78000-R	In-circuit emulator common to 78K/0 series	
IE-78000-R-ANote 8	In-circuit emulator common to 78K/0 series (for integrated debugger)	
IE-78000-R-BK	Break board common to 78K/0 series	
IE-780208-R-EM	Emulation board for evaluating μ PD780208 subseries	
EP-78064GF-R	Emulation probe common to μ PD78064 subseries	
EV-9200GF-100	Socket mounted on target system created for 100-pin plastic QFP	
SM78K0Notes 5, 6, 7	System simulator common to 78K/0 series	
ID78K0Notes 4, 5, 6, 7, 8	Integrated debugger for IE-78000-R-A	
SD78K/0Notes 1, 2	Screen debugger for IE-78000-R	
DF780208Notes 1, 2, 5, 6, 7	Device file for μ PD780208 subseries	

Real-time OS

RX78K/0Notes 1, 2, 3, 4	Real-time OS for 78K/0 series	
MX78K0Notes 1, 2, 3, 4	OS for 78K/0 series	

Notes 1. PC-9800 series (MS-DOS™) based

- 2. IBM PC/ATTM and compatible (PC DOSTM/IBM DOSTM/MS-DOS) based
- 3. HP9000 series 300TM (HP-UXTM) based
- HP9000 series 700[™] (HP-UX) based, SPARCstation[™] (Sun OS[™]) based, EWS-4800 series (EWS-UX/V) based
- 5. PC-9800 series (MS-DOS + Windows™) based
- 6. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based
- 7. NEWSTM (NEWS-OSTM) based
- 8. Under development
- **Remarks 1.** Please refer to the *78K/0 Series Selection Guide* (U11126E) for information on third party development tools.
 - 2. RA78K/0, CC78K/0, SD78K/0, ID78K0 and SM78K0 are used in combination with DF780208.

Fuzzy inference development support system

FE9000Note 1/FE9200Note 3	Fuzzy knowledge data creation tool
FT9080Note 1/FT9085Note 2	Translator
FI78K0Notes 1, 2	Fuzzy inference module
FD78K0Notes 1, 2	Fuzzy inference debugger

Notes 1. PC-9800 series (MS-DOS) based

- 2. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS) based
- 3. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based
- **Remark** Please refer to the *78K/0 Series Selection Guide* (U11126E) for information on third party development tools.

Conversion socket (EV-9200GF-100) package drawings and recommended pattern to mount the socket

Fig. A-1 Package Drawings of EV-9200GF-100 (Reference) (Unit: mm)

Based on EV-9200GF-100 (1) Package drawing (in mm)

		EV-9200GF-100-G0
ITEM	MILLIMETERS	INCHES
А	24.6	0.969
В	21	0.827
С	15	0.591
D	18.6	0.732
E	4-C 2	4-C 0.079
F	0.8	0.031
G	12.0	0.472
Н	22.6	0.89
I	25.3	0.996
J	6.0	0.236
К	16.6	0.654
L	19.3	076
М	8.2	0.323
Ν	8.0	0.315
0	2.5	0.098
Р	2.0	0.079
Q	0.35	0.014
R	ø2.3	¢0.091
S	<i>ф</i> 1.5	ø0.059

Fig. A-2 Recommended Pattern to Mount EV-9200GF-100 on a Substrate (Reference) (Unit: mm)

EV-9200GF-100-P0

ITEM	MILLIMETERS	INCHES
А	26.3	1.035
В	21.6	0.85
С	0.65±0.02×29=18.85±0.05	$0.026^{+0.001}_{-0.002} \times 1.142 = 0.742^{+0.002}_{-0.002}$
D	0.65±0.02×19=12.35±0.05	$0.026^{+0.001}_{-0.002} \times 0.748 = 0.486^{+0.003}_{-0.002}$
E	15.6	0.614
F	20.3	0.799
G	12±0.05	$0.472^{+0.003}_{-0.002}$
Н	6±0.05	0.236 ^{+0.003} -0.002
I	0.35±0.02	$0.014^{+0.001}_{-0.001}$
J	¢2.36±0.03	Ø0.093 ^{+0.001} -0.002
К	¢2.3	¢0.091
L	¢1.57±0.03	Ø0.062 ^{+0.001} -0.002

Caution Dimensions of mount pad for EV-9200 and that for target device (QFP) may be different in some parts. For the recommended mount pad dimensions for QFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

68

APPENDIX B RELATED DOCUMENTS

Documents related to devices

Document name	Document No.	
	Japanese	English
μPD780208 Subseries User's Manual	IEU-885	IEU-1413
μPD780204, 780205, 780206, 780208 Data Sheet	U10436J	U10436E
78K/0 Series User's Manual, Instruction	IEU-849	IEU-1372
78K/0 Series Instruction Set	U10903J	—
78K/0 Series Instruction Summary Sheet	U10904J	
μPD780208 Subseries Special Function Registers Table	U10997J	_
78K/0 Series Application Note, Basic (II)	U10121J	U10121E

Documents related to development tools (user's manual)

Document name		Document No.	
		Japanese	English
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor		EEU-817	EEU-1402
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K/0 C Compiler Application Note	Programming Know-How	EEA-618	EEA-1208
CC78K Series Library Source File		EEU-777	_
PG-1500 PROM Programmer		EEU-651	EEU-1335
PG-1500 Controller, PC-9800 Series (MS-DOS) Base		EEU-704	EEU-1291
PG-1500 Controller, IBM PC/AT (PC DOS) Base		EEU-5008	U10540E
IE-78000-R		EEU-810	EEU-1398
IE-78000-R-A		U10057J	U10057E
IE-78000-R-BK		EEU-867	EEU-1427
IE-780208-R-EM		EEU-977	EEU-1501
EP-78064		EEU-934	EEU-1469
SM78K0 System Simulator	Reference	EEU-5002	U10181E
SM78K Series System Simulator	External Parts User-Open Interface Specification	U10092J	U10092E
SD78K/0 Screen Debugger	Introduction	EEU-852	U10539E
PC-9800 Series (MS-DOS) Base	Reference	EEU-816	_
SD78K/0 Screen Debugger	Introduction	EEU-5024	EEU-1414
IBM PC/AT (PC DOS) Base	Reference	U11279J	EEU-1413

Caution The above documents may be revised without notice. Use the latest versions when you design an application system

★

 \star

 \star

★

 \star

Documents related to embedded software (user's manual)

Document name		Document No.	
		Japanese	English
78K/0 Series Real-time OS	Fundamental	EEU-912	—
	Installation	EEU-911	_
	Technical	EEU-913	—
78K/0 Series OS MX78K0	Fundamental	EEU-5010	—
Tool for Creating Fuzzy Knowledge Data		EEU-829	EEU-1438
78K/0, 78K/II, and 87AD Series Fuzzy Inference Development Support System, Translator		EEU-862	EEU-1444
78K/0 Series Fuzzy Inference Development Support System, Fuzzy Inference Module		EEU-858	EEU-1441
78K/0 Series Fuzzy Inference Development Support System, Fuzzy Inference Debugger		EEU-921	EEU-1458

Other documents

Document name	Document No.	
	Japanese	English
Package Manual	IEI-635	IEI-1213
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Device	IEI-620	IEI-1209
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	_
Guide to Quality Assurance for Semiconductor Device	MEI-603	MEI-1202
Guide for Products Related to Micro-Computer: Other Companies	MEI-604	_

Caution The above documents may be revised without notice. Use the latest versions when you design an application system.

Cautions on CMOS Devices

Countermeasures against static electricity for all MOSs

Caution When handling MOS devices, take care so that they are not electrostatically charged. Strong static electricity may cause dielectric breakdown in gates. When transporting or storing MOS devices, use conductive trays, magazine cases, shock absorbers, or metal cases that NEC uses for packaging and shipping. Be sure to ground MOS devices during assembling. Do not allow MOS devices to stand on plastic plates or do not touch pins.

Also handle boards on which MOS devices are mounted in the same way.

CMOS-specific handling of unused input pins

Caution Hold CMOS devices at a fixed input level.

Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an intermediatelevel input may be caused by noise. This allows current to flow in the CMOS device, resulting in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input level. Since unused pins may function as output pins at unexpected times, each unused pin should be separately connected to the V_{DD} or GND pin through a resistor.

If handling of unused pins is documented, follow the instructions in the document.

Statuses of all MOS devices at initialization

Caution The initial status of a MOS device is unpredictable when power is turned on.

Since characteristics of a MOS device are determined by the amount of ions implanted in molecules, the initial status cannot be determined in the manufacture process. NEC has no responsibility for the output statuses of pins, input and output settings, and the contents of registers at power on. However, NEC assures operation after reset and items for mode setting if they are defined.

When you turn on a device having a reset function, be sure to reset the device first.

FIP is a registered trademark of NEC Corporation. IEBus and QTOP are trademarks of NEC Corporation. MS-DOS and Windows are trademarks of Microsoft Corporation. IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation. HP9000 series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard Company SPARCstation is a trademark of SPARC International, Inc. SunOS is a trademark of Sun Microsystems, Inc. NEWS and NEWS-OS are trademarks of Sony Corporation. Some related documents may be preliminary versions. Note that, however, what documents are preliminary is not indicated in this document.

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

License not needed	: µPD78P0208KL-T
The customer must judge the need for licence	: µPD78P0208GF-3BA

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as reductancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94.11