RENESAS LSIS M5M5256DFP,VP-55LL,-70LL,-70LLI, -55XL,-70XL

262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

DESCRIPTION

The M5M5256DFP,VP is 262,144-bit CMOS static RAMs organized as 32,768-words by 8-bits which is f abricated using high-performance 3 poly silicon CMOS technology. The use of resistive load NMOS cells and CMOS periphery results in a high density and low power static RAM. Stand-by current is small enough for battery back-up application. It is ideal for the memory systems which require simple interface.

Especially the M5M5256DVP are packaged in a 28-pin thin small outline package.

FEATURE

	Access	Oprating	Power supply current			
Туре	Type time Temperature (max)		Activ e (max)	Stand-by (max)		
M5M5256DFP,VP-55LL M5M5256DFP,VP-70LL	55ns 70ns	0~70℃		20µA (Vcc=5.5V)		
M5M5256DFP,VP-70LLI	70ns	-40~85℃	50mA (Vcc=5.5V)	40µA (Vcc=5.5V)		
M5M5256DFP,VP-55XL M5M5256DFP,VP-70XL	55ns 70ns	0~70℃	1	5µA (Vcc=5.5V) 0.05µA (Vcc=3.0V, Typical)		

•Single +5V power supply

•No clocks, no refresh

•Data-Hold on +2.0V power supply

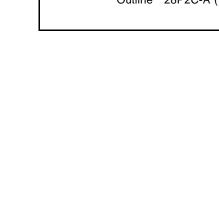
•Directly TTL compatible : all inputs and outputs

•Three-state outputs : OR-tie capability

•/OE prevents data contention in the I/O bus

•Common Data I/O

Battery backup capability


•Low stand-by current 0.05µA(typ.)

PACKAGE

M5M5256DFP		450 mil		
M5M5256DVP	: 28pin	8 X 13.4	mm ² ⁻	FSOP

APPLICATION

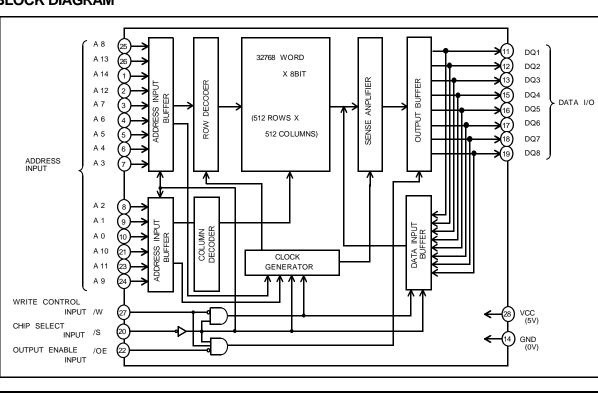
Small capacity memory units

RenesasTechnologyCorp.

PIN CONFIGURATION (TOP VIEW) 10 A14 28 Vcc 2 A12 27 /W 3 26 A13 A7 4 25 A8 A6 M5M5256DFF 5 24 Α9 A5 6 7 23 A4 A11 22 /OE A3 8 21 A10 A2 9 20 /S A1 19 10 DQ8 A0 DQ1 11 18 DQ7 DQ2 17 DQ6 12 DQ5 DQ3 13 16 GND 14 15 DQ4 28P2W-C (FP) Outline 22 /OE A10 21 23 A11 /S 20 24 A9 DQ8 19 25 A8 DQ7 18 26 A13 DQ6 17 27 /W DQ5 16 28 Vcc DQ4 15 M5M5256DVP 1 A14 GND 14 2 A12 DQ3 13 3 A7 DQ2 12 4 A6 DQ1 11 5 A5 A0 10 6 A4 A1 9 7 A3 A2 8 Outline 28P2C-A (VP)

RENESAS LSIS M5M5256DFP,VP-55LL,-70LL,-70LLI, -55XL,-70XL 262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

FUNCTION


The operation mode of the M5M5256DFP,VP is determined by a combination of the device control inputs /S, /W and /OE. Each mode is summarized in the function table.

A write cycle is executed whenever the low level /W overlaps with the low level /S. The address must be set up before the write cycle and must be stable during the entire cycle. The data is latched into a cell on the trailing edge of /W, /S, whichever occurs first, requiring the setup and hold time relative to these edge to be maintained. The output enable /OE directly controls the output stage. Setting the /OE at a high level, the output stage is in a high-impedance state, and the data bus contention problem in the write cycle is eliminated. A read cycle is executed by setting /W at a high level and /OE at a low level while /S are in an active state. When setting /S at a high level, the chip is in a nonselectable mode in which both reading and writing are disabled. In this mode, the output stage is in a highimpedance state, allowing OR-tie with other chips and memory expansion by /S. The power supply current is reduced as low as the stand-by current which is specified as lcc3 or lcc4, and the memory data can be held at +2V power supply, enabling battery back-up operation during power failure or power-down operation in the nonselected mode.

FUNCTION TABLE

/S	/W	/OE	Mode	DQ	lcc
н	х	х	Non selection	High-impedance	Stand-by
L	L	х	Write	ΟіΝ	Activ e
L	Н	L	Read	Dout	Activ e
L	Н	н		High-impedance	Activ e

Note • "H" and "L" in this table mean VIH and VIL, respectively. • "X" in this table should be "H" or "L".

BLOCK DIAGRAM

RENESAS LSIs M5M5256DFP,VP-55LL,-70LL,-70LLI, -55XL,-70XL 262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3*~7.0	V
Vi	Input voltage	With respect to GND	-0.3*~Vcc+0.3 (Max 7.0)	V
Vo	Output voltage		0~Vcc	V
Pd	Power dissipation	Ta=25℃	700	mW
Topr	Operating temperature	-LL,-XL	0~70	8
I opr		-LLI	-40~85	°C
Tstg	Storage temperature		-65~150	S

* -3.0V in case of AC (Pulse width < 30ns)

DC ELECTRICAL CHARACTERISTICS (Vcc=5V±10%, unless otherwise noted)

0	Deveryoten	Descenter Test and divisions			L	imits		
Symbol	Parameter	Test conditions			Min	Тур	Max	Unit
Vін	High-level input voltage				2.2		Vcc +0.3	V
VIL	Low-level input voltage				-0.3*		0.8	V
Voh1	High-level output voltage 1	Іон =-1mA			2.4			V
Vон2	High-level output voltage 2	Іон =-0.1m A			Vcc -0.5			V
Vol	Low-level output voltage	lol=2mA					0.4	V
h	Input current	VI=0~Vcc					±1	μA
lo	Output current in off-state	/S=VIH or or /OE=VIH,	VI/0=0~V0	c			±1	μA
		/S≤0.2V,		55ns		30	45	
lcc1	Active supply current (AC, MOS level)	Other inputs<0.2V or >Vcc-0.2V 70ns Output-open 1MHz				25	40	mA
	,,					2	4	
		/S=VIL,		55ns		30	50	
lcc2	Active supply current (AC, TTL level)	other inputs=V⊮ or V⊫ 70ns Output-open 1MHz				25	45	mA
						4	8	
				-LL,-LLI			2	
			~25℃	-XL		0.1	0.4	
			~40℃	-LL,-LLI			6	1
Icc3	Stand-by current	/S>Vcc-0.2V, other inputs=0~Vcc	~40 °C	-XL			1.2	μA
		other inputs=0~vcc	~70℃	-LL,-LLI			20	
			~700	-XL			5	
		~85℃	-LLI			40		
Icc4	Stand-by current	/S=VIH,other inputs=0~Vcc					3	mA

* -3.0V in case of AC (Pulse width < 30ns)

CAPACITANCE (Vcc=5V±10%, unless otherwise noted)

		_	Limits			11.24
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
Cı	Input capacitance	VI=GND, VI=25mVrms, f=1MHz			6	pF
Co	Output capacitance	Vo=GND,Vo=25mVrms, f=1MHz			8	pF

Note 0: Direction for current flowing into an IC is positive (no mark).

1: Typical value is one at $Ta = 25^{\circ}C$.

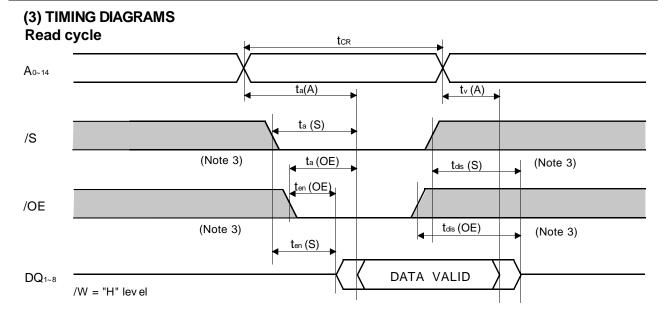
2: CI, Co are periodically sampled and are not 100% tested.

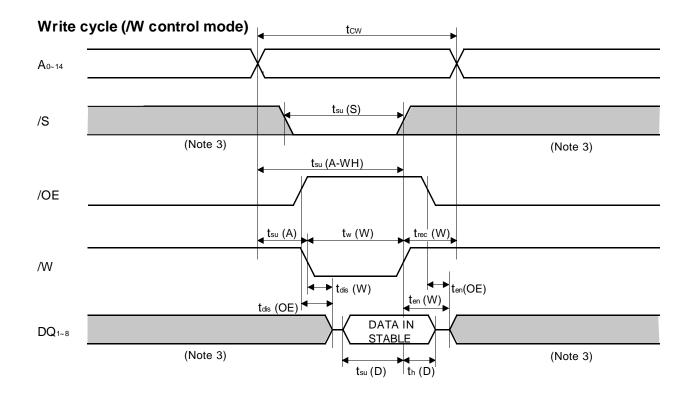
RENESAS LSIS M5M5256DFP,VP-55LL,-70LL,-70LLI, -55XL,-70XL 262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

AC ELECTRICAL CHARACTERISTICS (Vcc=5V \pm 10%, unless otherwise noted)

(1) READ CYCLE

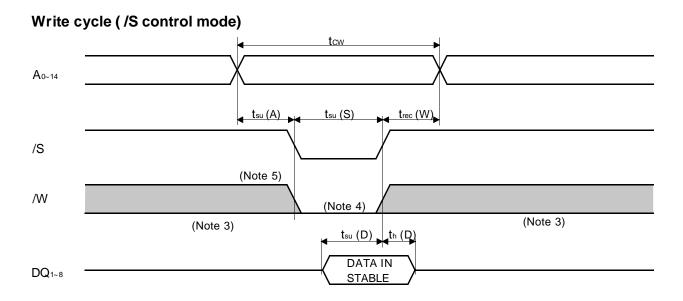
	Parameter		L	imits	nits		
Symbol			-55LL, 55XL		-70LL,-70LLI, -70 XL		
		Min	Max	Min	Max		
t CR	Read cycle time	55		70		ns	
ta(A)	Address access time		55		70	ns	
ta(S)	Chip select access time		55		70	ns	
t _a (OE)	Output enable access time		30		35	ns	
tdis(S)	Output disable time after /S high		20		25	ns	
tdis(OE)	Output disable time after /OE high		20		25	ns	
ten(S)	Output enable time after /S low	5		5		ns	
ten(OE)	Output enable time after /OE low	5		5		ns	
t∨(A)	Data valid time after address	10		10		ns	


(2) WRITE CYCLE

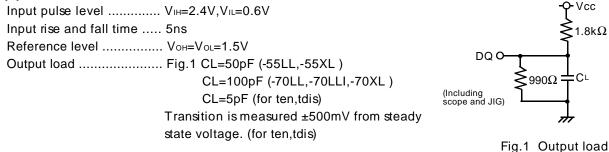

			Limits				
Cumhal	Deremeter	5511	-55XL	-70LL	-70LLI,		
Symbol	Parameter	-55LL,	-337L	-70 XL		Unit	
		Min	Max	Min	Max		
tcw	Write cycle time	55		70		ns	
t _w (W)	Write pulse width	40		50		ns	
t _{su} (A)	Address setup time	0		0		ns	
t _{su} (A-WH)	Address setup time with respect to /W high	50		65		ns	
tsu(S)	Chip select setup time	50		65		ns	
t _{su} (D)	Data setup time	25		30		ns	
th(D)	Data hold time	0		0		ns	
trec(W)	Write recovery time	0		0		ns	
tdis(W)	Output disable time from /W low		20		25	ns	
tdis(OE)	Output disable time from /OE high		20		25	ns	
t _{en} (W)	Output enable time from /W high	5		5		ns	
ten(OE)	Output enable time from /OE low	5		5		ns	

RENESAS LSIs M5M5256DFP,VP-55LL,-70LL,-70LLI,

-55XL,-70XL 262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM



RENESAS LSIS M5M5256DFP,VP-55LL,-70LL,-70LLI, -55XL,-70XL


262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

Note 3 : Hatching indicates the state is "don't care".

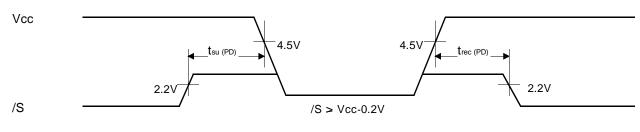
- 4 : Writing is executed in overlap of /S and /W low.
- 5 : If /W goes low simultaneously with or prior to /S, the outputs remain in the high impedance state.
- 6 : Don't apply inverted phase signal externally when DQ pin is output mode.
- 7 : ten, tdis are periodically sampled and are not 100% tested.

(4) MEASUREMENT CONDITIONS

RENESAS LSIS M5M5256DFP,VP-55LL,-70LL,-70LLI, -55XL,-70XL 262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

POWER DOWN CHARACTERISTICS

(1) ELECTRICAL CHARACTERISTICS (Vcc=5V±10%, unless otherwise noted)


0	Denemeter	Test conditions			L	imits.		1.1.4.14
Symbol	Parameter	lest co	onaltions	5	Min	Тур	Max	Unit
Vcc (PD)	Power down supply voltage				2			V
N	Ohim and a time at 10	$2.2V \leq VCC(PD)$			2.2			V
VI (/S)	Chip select input /S	$2V \le V_{CC(PD)} \le 2$.2V			Vcc(pd)		V
		Vcc = $3V$,/S > Vcc-0.2V, Other inputs=0~Vcc	~25℃	-LL,-LLI			1	
				-XL		0.05	0.2	
			~40℃	-LL,-LLI			3	
ICC (PD)	Power down supply current			-XL			0.6	μA
				-LL,-LLI			10	
			~70℃	-XL			2	
			~85℃	-LLI			20	

(2) TIMING REQUIREMENTS (Vcc=5V±10%, unless otherwise noted)

	_					
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
tsu (PD)	Power down set up time		0			ns
trec (PD)	Power down recovery time		tCR			ns

(3) POWER DOWN CHARACTERISTICS

/S control mode

RenesasTechnologyCorp.

Nippon Bldg.,6-2,Otemachi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan

Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials • These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party. • Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or oriccuit application examples contained in these materials. • All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation notice due to product improvements or other reasons. It is therefore recommende that customers contact Renesas Technology Corporation product distributor for the latest product information publication of the information publication of the applicability for any damage, liability, or other loss rising from these inaccuracies or errors. • The information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system the information contained herein. • Nenu using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system the information contained herein. • Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances

Renesas Technology Corp.

Downloaded from Elcodis.com electronic components distributor