Maintenance Only

2048-word x 8-bit High Speed CMOS Static RAM

#FEATURES

Single 5V Supply

High speed: Fast Access Time
 120ns/150ns/200ns (max.)

• Low Power Standby and Low Power Operation

Standby:

100μW (typ.)

10µW (typ.) (L-version)

Operation:

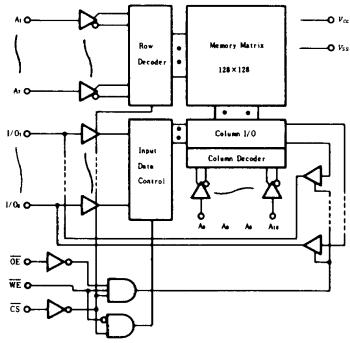
200mW (typ.)

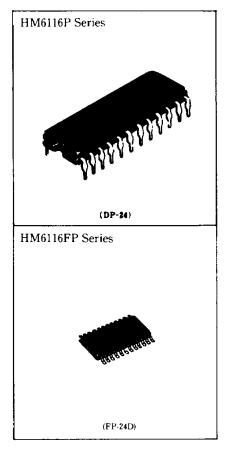
175mW (typ.) (L-version)

Completely Static RAM: No clock or Timing Strobe Required

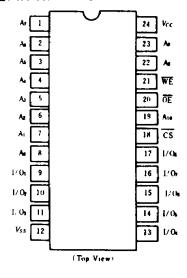
• Directly TTL Compatible: All Input and Output

• Pin Out Compatible with Standard 16K EPROM/MASK ROM


• Equal Access and Cycle Time


Capability of Battery Back Up Operation (L-version)

MORDERING INFORMATION


Type No.	Access Time	Package
HM6116P-2 HM6116P-3 HM6116P-4	120ns 150ns 200ns	600mil 24pin
HM6116LP-2 HM6116LP-3 HM6116LP-4	120 ns 150 ns 200 ns	Plastic DÎP
HM6116FP-2 HM6116FP-3 HM6114FP-4	120 ns 150 ns 200 ns	Od in Plantin SOP
HM6116LFP-2 HM6116LFP-3 HM6116LFP-4	120 ns 150 ns 200 ns	24pin Plastic SOP

EFUNCTIONAL BLOCK DIAGRAM

PIN ARRANGEMENT

Note) This device is not available for new application.

MABSOLUTE MAXIMUM RATINGS

ltem	Symbol	Rating	Unit
Voltage on Any Pin Relative to Vss	Vr	-0.5*1 to +7.0	V
Operating Temperature	T.,.	0 to +70	;c
Storage Temperature	T,,,	-55 to +125	.c
Storage Temperature Under Bias	Т	-10 to +85	.c
Power Dissipation	P_{τ}	1.0	W

Note) ±1. ~3.5V for pulse width≤50ns

ITRUTH TABLE

ĈŚ	ŌĒ	WE	Mode	Vcc Current	1/0 Pin	Ref. Cycle
Н	×	×	Not Selected	Iso, Ison	High Z	
	L	н	Read	Icc	Dout	Read Cycle (1)~(3)
<u> </u>	Н	L	Write	Icc	Din	Write Cycle (1)
1.	1.	L	Write	Icc	Din	Write Cycle (2)

TRECOMMENDED DC OPERATING CONDITIONS (Ta-0 to +70°C)

Item	Symbol	min	typ	max	Unit
	Vcc	4.5	5.0	5.5	v
Supply Voltage	Vss	0	0	0	V
	VIH	2.2	3.5	6.0	v
Input Voltage	VIL	-0.3*1	_	0.8	V

Note) ± 1 . -3.0V for pulse width ≤ 50 ns.

EDC AND OPERATING CHARACTERISTICS ($Vcc = 5V \pm 10\%$, Vss = 0V, Ta = 0 to $+70^{\circ}C$)

			HM6116-2			H	Unit			
Item	Symbol	Test Conditions	min	typ*1	max	min	typ*1	max 10 2*3 10 2*3 70 60*3 - 70 60*3 15 12*3 2 50*3 - 0.4 -		
				-	10		_]	10	μA	
Input Leakage Current	ILI	$V_{CC} = 5.5$ V, $V_{IN} = V_{SS}$ to V_{CC}	_		2*3	_	_	2*3	μ Λ	
		$\overline{CS} = V_{IH} \text{ or } \overline{OE} = V_{IH},$	_	_	10			10	μ A	
Output Leakage Current	ILO	$V_{CC} = 5.5V$, $V_{IN} = V_{SS}$ to V_{CC} $\overline{CS} = V_{IH} \text{ or } \overline{OE} = V_{IH},$ $V_{I/O} = V_{SS} \text{ to } V_{CC}$ $\overline{CS} = V_{IL}, I_{I/O} = 0 \text{mA}$ $V_{CC} = 3.5V, V_{LL} = 0.6V$		-	2*3	-	_	2*3	μ <u>η</u>	
			-	.40	80	_	35		mA	
Operating Power Supply	Icc	$CS = V_{IL}, I_{I/O} = 0 \text{mA}$	_	35*3	70 * 3		30*3	60*3	III.A.	
	Icc1*2			35	-	_	30	-	mA	
Current			-	30*3	-	_	25*3	1	11111	
		35:		40	80	-	35	70	mA	
Average Operating Current		Icc 2	$V_{CC} = 5.5$ V, $V_{IN} = V_{SS}$ to V_{CC} $\overline{CS} = V_{IH} \text{ or } \overline{OE} = V_{IH},$ $V_{I/O} = V_{SS} \text{ to } V_{CC}$ $\overline{CS} = V_{IL}, I_{I/O} = 0 \text{mA}$ $V_{IH} = 3.5$ V, $V_{IL} = 0.6$ V, $I_{I/O} = 0 \text{mA}$ $Min. cycle, duty = 100\%$ $I_{I/O} = 0 \text{mA}$ $\overline{CS} = V_{IH}$ $\overline{CS} \ge V_{CC} - 0.2$ V, 0 V $\le V_{IN} \le 0.2$ V or $V_{CC} - 0.2$ V $\le V_{IN}$ $I_{OL} = 4 \text{mA}$ $I_{OL} = 2.1 \text{mA}$		35*3	70*3	_	30*3	60 * 3	IIIA
	 		_	5	15	_	5	15	mA	
Standby Power Supply	IsB	$\overline{CS} = V_{IH}$		4 * 3	12*3	_	4*3	12*3	IIIA	
•		$\overline{\text{CS}} \ge V_{CC} - 0.2\text{V}, \ 0\text{V} \le V_{IN} \le$		0.02	2		0.02		μA	
Standby Power Supply Current	IsBi	$0.2V$ or $V_{CC} - 0.2V \le V_{IN}$		2*3	50 * 3	_	. 2*3	50*3	<i></i>	
Output Leakage Current Operating Power Supply Current	+	IoL=4mA	-	_	0.4	_	-		<u>v</u>	
	Vol Iol=	$I_{OL}=2.1\text{mA}$	-		-	_	_	0.4	V	
Output . Cruss		<i>Iон</i> = −1.0mA	2.4			2.4			V	

Notes) +1. Vcc = 5V, $Ta = 25^{\circ}C$

◆ 2. Reference Only

*3. This characteristics are guaranteed only for L version.

65

ECAPACITANCE $(f-1MHz, Ta-25^{\circ}C)$

Item	Symbol	Test Conditions	typ	max	Unit
Input Capacitance	c.,	V0V	3	5	pF
Input/Output Capacitance	C10	V _{1.0} = 0 V	5	7	рF

Note) This parameter is sampled and not 100% tested.

EAC CHARACTERISTICS ($V_{cc} = 5V \pm 10\%$, $T_a = 0$ to +70°C)

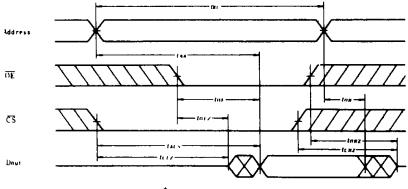
• AC TEST CONDITIONS

Input Pulse Levels: 0.8 to 2.4V Input Rise and Fall Times: 10 ns

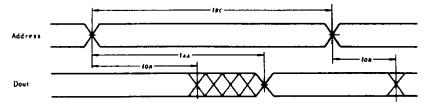
Input and Output Timing Reference Levels: 1.5V

Output Load: 1TTL Gate and C_L (100pF) (including scope and jig)

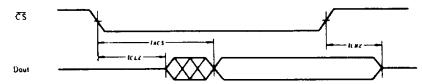
• READ CYCLE


14		HM6116-2		HM6116-3		HM6116-4		
[tem	Symbol	min	max	min	max	min	max	Unit
Read Cycle Time	Lac	120		150		200		ns
Address Access Time	LAA	_	120		150		200	ns
Chip Select Access Time	lacs	_	120	_	150	_	200	ns
Chip Selection to Output in Low Z	lciz	10	-	15	_	15	_	ns
Output Enable to Output Valid	tos	_	80	-	100		120	ns
Output Enable to Output in Low Z	l _{OL} z	10	_	15	_	15		ns
Chip Deselection to Output in High Z	tenz	0	40	0	50	0	60	ns
Chip Disable to Output in High Z	Lonz	0	40	0	50	0	60	ns
Output Hold from Address Change	ton	10		15		15	_	ns

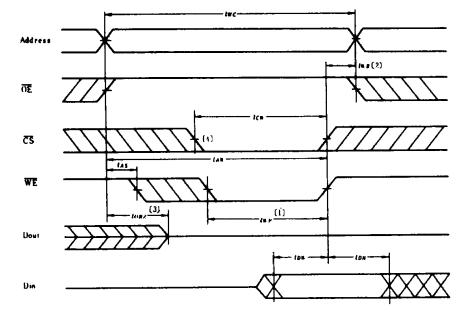
• WRITE CYCLE


1		HM6	116-2	HM6	116-3	HM6116-4		Unit	
ltem	Symbol	min	max	min	max	min	max	Unit	
Write Cycle Time	twc	120		150	_	200		ns	
Chip Selection to End of Write	tcw	70	_	90	-	120		กร	
Address Valid to End of Write	law	105	_	120	_	140		n:s	
Address Set Up Time	tas	20	_	20		20		ns	
Write Pulse Width	twp	70		90		120	_	ns	
Write Recovery Time	lwg	5		10		10		ns	
Output Disable to Output in High Z	tonz	0	40	0	50	0	60	ns	
Write to Output in High Z	twnz	0	50	0	60	0	60	ns	
Data to Write Time Overlap	tow	35		40		60		ns	
Data Hold from Write Time	t _{DH}	5	_	10	_	10	<u> </u>	ns	
Output Active from End of Write	tow	5	_	10		10	_	ns	

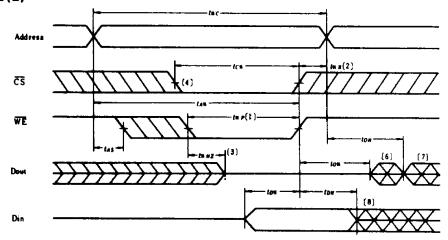
INTIMING WAVEFORM


• READ CYCLE (1)(1)

● READ CYCLE (2) (1)(2)(4)



● READ CYCLE (3)(1)(1)(4)



- NOTES: 1. WE is High for Read Cycle.
 2. Device is continuously selected, $\overline{CS} = V_{IL}$.
 3. Address Valid prior to or coincident with \overline{CS} transition Low.
 4. $\overline{OE} = V_{IL}$.

• WRITE CYCLE(1)

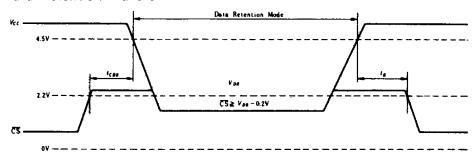
● WRITE CYCLE (2)(5)

NOTES:

- A write occurs during the overlap (twp) of a low CS and a low WE.
 twR is measured from the earlier of CS or WE going high to the end of write cycle.
- 3. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
- 4. If the CS low transition occurs simultaneously with the WE low transitions or after the WE transition, output remain in a high impedance state.
- 5. \overline{OE} is continuously low. $(\overline{OE} = V_{IL})$

- 6. Dout is the same phase of write data of this write cycle.
 7. Dout is the read data of next address.
 8. If CS is Low during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.

PLOW VCC DATA RETENTION CHARACTERISTICS $(Ta=0 \text{ to } +70^{\circ}\text{C})$


This characteristics are guaranteed only for L-version.

Item	Item Symbol Test Conditions			typ	max	Unit
Vcc for Data Retention	VDA	$\overline{CS} \ge V_{CC} - 0.2 \text{V}, \ V_{} \ge V_{CC} - 0.2 \text{V or } V_{} \le 0.2 \text{V}$	2.0	-	<u> </u>	v
Data Retention Current	Iccon*1	$V_{CC} = 3.0 \text{ V}, \overline{\text{CS}} \ge 2.8 \text{ V}, V_{IH} \ge 2.8 \text{ V} \text{ or } \text{OV} \le V_{IN} \le 0.2 \text{ V}$			30	μA
Chip Deselect to Data Retention Time	tcox	C. D. W.	0	_	_	ns
Operation Recovery Time	1 n	See Retention Waveform	t ac*2	_		ns

Notes) $\pm 1.10 \mu A \text{ max at } Ta = 0^{\circ}C \text{ to } \pm 40^{\circ}C, V_{IL} \text{ min} = -0.3V$

*2. tac = Read Cycle Time.

●Low Vcc Data Retention Waveform

