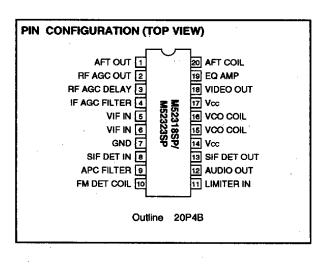
MITSUBISHI ICs (TV) M52318SP/M52323SP

PLL-SPLIT VIF/SIF

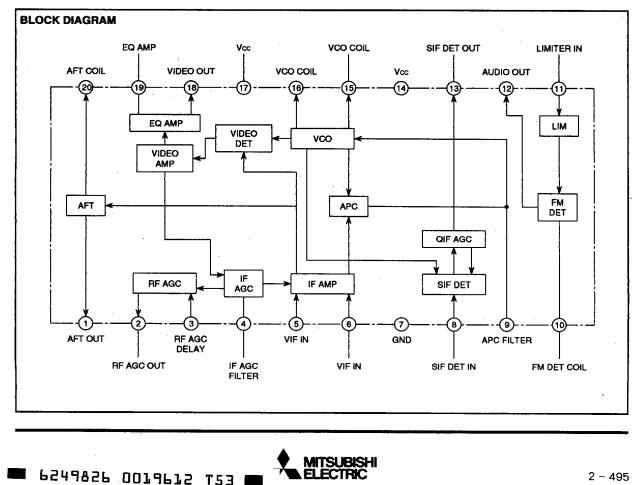
DESCRIPTION

The M52318SP and M52323SP are IF signal-processing ICs for VCRs and color TVs. They enable the PLL detection system despite size as small as that of conventional guasi-synchronous VIF/SIF ICs.


The circuit includes VIF amplifier, video detector, VCO, APC detector, AFT, SIF detector, IF/RF AGC, SIF limiter, FM detector, QIF AGC, and EQ AMP.

FEATURES

- Video detection output is 2 VP-P. It has built-in EQ AMP.
- The package is a 20-pin shrink-DIP, suitable for space saving. • The video detector uses PLL for full synchronous detection circuit. It produces excellent characteristics of DG, DP, 920-kHz beat, and cross color.
- Dynamic AGC realizes high speed response with only single filter.
- Video IF and sound IF signal processings are separated from each other. VCO output is used to obtain intercarrier. This PLL-SPLIT method and built-in QIF AGC provide good sound sensitivity and reduces buzz.


APPLICATION

TV sets, VCR tuners

RECOMMENDED OPERATING CONDITION

Recommended supply voltage(pins (1), (12V) Supply voltage range(pins 0, 0).....8 ~ 10V (11 ~ 13V) () For M52323SP

2 - 495

PLL-SPLIT VIF/SIF

. •

ABSOLUTE MAXIMUM RATINGS

(Ta=25°C, For electrostatic discharge, capacitance is 200pF, snd resistance is 0Ω, unless otherwise noted.)

Symbol	Parameter	Test conditions	Ratings	Unit
Vcc	Supply voltage	Pins 🚯 , 🗊	14	V.
Pd	Power dissipation	· ·	1000	mW
Topr	Operating temperature		-20~+75	r v
Tstg	Storage temperature		-40~+125	D,
Surge	Electrostatic discharge		±200	V

ELECTRICAL CHARACTERISTICS (Ta=25°C, Vcc = 9(12)V unless otherwise noted.)

	Parameter	Test	Test	input pin	Input SG	Test conditions Externel Power Switch is			Limits		·	
Symbol		circuit	point				1	*Switch is usually set	Min.	Тур.	Max.	Unit
	Circuit current	1	A1		_	<u>V3</u> 2		to 1. Vcc=9(12)V SW1=2	34	47	60	mA
V18	Video detection output DC voltage	1	TP18			2	0	SW4=2	6.1 (8.9)	6.7 (9.8)	7.3 (10.7)	v
V18det	Video detection output amplitude	1.	TP18	IN1	SG1	2	_		1.98	2.2	2.42	VP-P
S/N	Video S/N	1	TP18 LPF	IN1	SG2	2	-	SW18=2	52	57	_	dB
BW	Video detection output frequency characteristics	.1	TP18	IN1	SG3	2	Variable	SW4=1→2	7.0	9.2	. —	MHz
VIN (Min.)	Input sensitivity	1	TP18	iN1	SG4	2	_ ·	-	-	44	49	dB μ
VIN (Max.)	Maximum allowable input	1	TP18	IN1.	SG5	2	•		101	105	·. <u> </u>	dΒ μ
GR	AGC control range	1	-	-	-	_	_		54	6 1 ·		dB
V4H	IF AGC maximum voltage	1	TP4	<u> </u>		2			4.8	5.6	-	V
V4 (80)	IF AGC voltage (80dB μ)	1	TP4	IN1	SG6	2	. –		2.6	3.0	3.4	V.
V4L	IF AGC minimum voltage	1	TP4	IN1	SG7	2	·		1.8	2.2	2.6	V
V2H	RF AGC maximam voltage	1	TP2	IN1	SG2	0	-	· .	7.8 (10.8)	8.7 (11.7)	-	V
V2L	RF AGC minimum voltage	1	TP2	IN1	SG2	3	·	·		0.05	0.5	V
CL-U	Capture range U	1	TP18	IN1	SG8	2	-		0.6	1.1 (1.0)	_	MHz
CL-L	Capture range L	1	TP18	IN1	SG8	2	· -		1.3 (1.2)	1.9 (1.7)	-	MHz
CL-T	Capture range T	1	-	_			_		2.2 (2.0)	3.0 (2.7)	_	MHz
V1	AFT output voltage	1	TP1	_	-	2	0	SW4=2	3.0 (4.0)	4.1 (5.4)	5.2 (6.8)	v
μ	AFT detection sensitivity	1	TP1	IN1	SG9	2			48	70		mV/kH
V1H	AFT maximum voltage	1	TP1	IN1	SG10	2			8.0 (11.0)	8.7 (11.7)	-	v
VIL	AFT minimum voltage	1	TP1	IN1	SG10	2	-			0.2	1.0	V
V1 defeat	AFT defeat voltage	1	TP1			2	-	SW20=2	4.05 (5.4)	4.5 (6.0)	4.95 (6.6)	v .
IM	Intermodulation	1	TP18	IN1	SG11	2	Variable	SW4=2	30	35	-	dB
DG	DG	1	TP18	IN1	SG12	2			·	2	5	%
DP	DP	1	TP18	IN1	SG12	2			_	2	5	deg
V18 - SYNC	Sync tip level	1	TP18	IN1	SG2	2	-		3.3 (6.1)	4.0 (7.3)	4.7 (8.5)	V

2 - 496

📕 6249826 CO19613 99T 📕

PLL-SPLIT VIF/SIF

Symbol	Parameter		Test point	Input pin	input SG	Test conditions			Limits			
		Test circuit				External Power Supply		*Switch is	Lin	T -		Unit
		Circuit	point		50	V3	V4	usually set to 1.	Min.	Тур.	Max.	1
RINV	VIF input resistance	2	6PIN						-	0.9	-	kΩ
CINV	VIF input capacitance	2	6PIN						. —	-5.6	-	pF
RINS	SIF input resistance	2	8PIN						-	1.1		kΩ
CINS	SIF input capacitance	2	8PIN						- 1	5.4		pF
V13-80	SIF detector output 4.5 MHz amplitude (80 dB µ)	1	TP13	IN1 IN2	SG2 SG13	2	-		94	99	104	dB µ
V13-100	SIF detector output 4.5 MHz amplitude (100 dB µ)	1	TP13	IN1 IN2	SG2 SG14	2	·		94	99	104	dB µ
V12	AF output DC voltage	1	TP12		_	2	-		4.1(5.3)	4.7(6.1)	5.3(6.9)	v
V12 MUTE	AF mute voltage	1	TP12	-	_	2	-	SW10=2	3.9(5.5)	4.4(6.0)	4.9(6.5)	v
V12 MAX	AF output maximum amplitude	1	TP12	IN3	SG15	2	-		200	270	340	mV r.m.s
THD AF	AF output distortion	1	TP12	IN3	SG15	2	-		-	0.4	1.2	%
LIN (Min)	Input limiting sensitivity	1	TP12	IN3	SG16	2	-		-	49	55	dB µ
AMR	AMR	1	TP12	IN3	SG17	2	_		44	53	_	dB
S/N	AF S/N	2	TP12	IN3	SG18	2	-	· · · · ·	60	70	_	dB

ELECTRICAL CHARACTERISTICS (cont.)


ELECTRICAL CHARACTERISTICS TEST METHODS S/N

Input signals of SG2 to VIF input (IN1) pin. Measure TP18-LPF noise in root-mean-square, from video detection output (Pin (18)) through a low-pass filter of 5 MHz (-3dB).

$$S/N = 20 \log \left(\frac{0.7 \times V18 \text{ det}}{\text{NOISE}} \right) \text{dB}$$

BW

- 1.Input signals of SG3 to VIF input (IN1) pin (set f2 to 57.75 MHz). Using a spectrum analyzer, measure 1 MHz component level at video detection output (TP18). At the same time, measure voltage at TP4. Set SW4 to 2. Adjust and fix V4 to the TP4 voltage.
- 2.Decrease f2. Measure f2-f0 difference when f2-f0 component level is -3dB with reference to the 1 MHz component level.

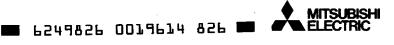
VIN (Min.)

Input SG4 (Vi = 90 dB μ) to VIF input (IN1) pin. Gradually reduce Vi. When 20kHz component of video detection output (TP18) falls to -3 dB with reference to the V18 det, measure the input level.

VIN (Max.)

1.Input SG5 (Vi = 90 dB μ) to VIF input (IN1) pin. Measure 20 kHz component level of video detection output.

2.Gradually increase Vi. When the output falls to -3 dB, measure the input level.


GR

GR = VIN(Max.) - VIN(Min.) (dB)

CL-U

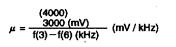
- 1. Increase SG8 frequency to let VCO unlocked.
- 2.Gradually reduce SG8 frequency. When VCO is locked, measure the frequency as fU.

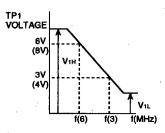
CL-U = fU-58.75(MHz)

2 - 497

PLL-SPLIT VIF/SIF

CL-L


- 1. Reduce SG8 frequency to let VCO unlocked.
- 2. Gradually increase SG8 frequency. When VCO is locked, measure the frequency as fL.


CL-L = 58.75 - fL (MHz)

CL-T

CL-T = CL-U + CL-L (MHz)

- μ, V1H, V1L
- 1. Adjust AFT coil to 58.75 MHz. (See the section "Adjusting Coils.")
- 2. Input SG9 to VIF input (IN1) pin. Set SG9 frequency so that AFT output (TP1) voltage can be 6 V (8V). f(6) is this frequency.
- 3. Set SG9 frequency so that AFT output (TP1) voltage can be 3 V (4 V). f(3) is this frequency.

4. In the figure on this page, V IH is the maximum DC voltage, and VIL is the minimum DC voltage.

ADJUSTING COILS

a. VCO coil

- Make VIF input (IN1) zero.Connect AGC filter (TP4) to GND. Measure APC filter voltage (VDCAPC). After that, input 58.75 MHz CW of 90 dB μ to VIF input (IN1) pin. Adjust APC filter voltage to VDCAPC.
- b. AFT coil
 - Input f = 58.75 MHz CW of 90dB μ to VIF input (IN1) pin. Adjust the coil so that AFT output (TP1) voltage can be about Vcc/2 = 4.5 V (6.0 V).
- c. FM DET coil
 - 1.Connect FM DET coil pin (TP10) through 10k Ω resistor to GND. Measure audio output (TP12) voltage.
 - 2. Input f = 4.5 MHz CW of 90 dB μ to limiter input (IN3) pin. Adjust the coll to produce the previous audio output (TP12).

IM

- 1. Input SG11 to VIF input (IN1) pin. Observe video detection output (TP18) on the oscilloscope.
- 2. Adjust AGC filter voltage (V4) so that the minimum DC level of the output waveform can be 4 V (7.2 V).
- 3. Observe TP18 on the spectrum analyzer. Intermodulation is the ratio of 920 kHz component level to 3.58 MHz component level.

LIM (Min.)

- Input SG16 (Vi = 90 dB μ) to limiter input (IN3) pin. Measure 1 kHz component level at audio output (TP12).
- Gradually decrease SG16 input level Vi. When 1 kHz component level at audio output falls to -3 dB with reference to the previous level, measure the SG16 level.

AMR

1. Input SG17 to limiter input (IN3) pin. Measure audio output (TP12) level. VAM is this level.

2. AMR = 20 log
$$\left(\frac{V12 \text{ Max. (mV r.m.s)}}{VAM (mV r.m.s)}\right)$$
 (dB)

S/N

1. Input SG18 to limiter input (IN3) pin. Measure audio output (TP12) level. VN is this level.

2.	C/N - 00 log	V12 Max. (mV r.m.s)	(40)
2.	S/N = 20 log	VN (mV r.m.s)	(010)

6249826 0019615 762 |

This Material Copyrighted By Its Respective Manufacturer

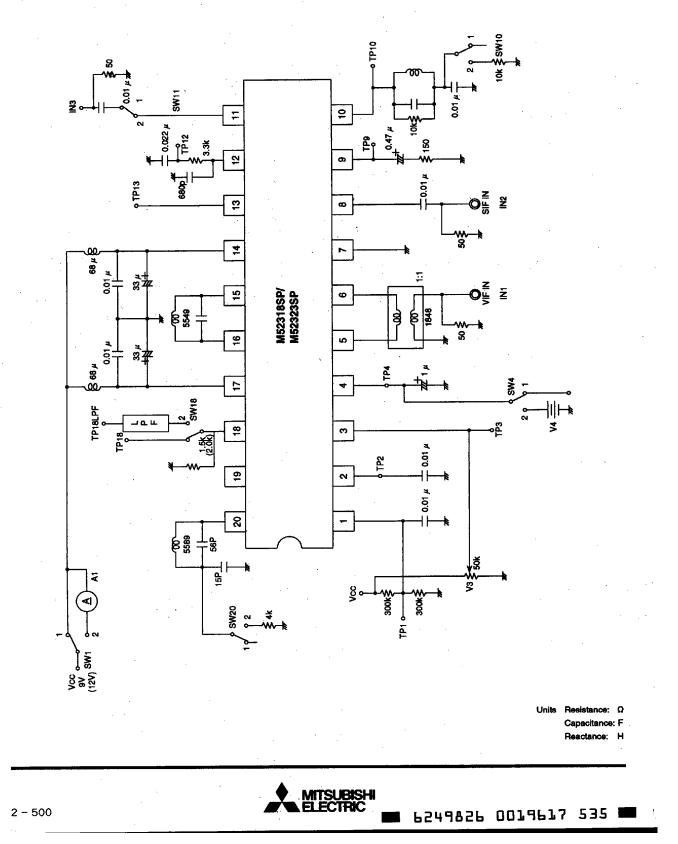
2 - 498

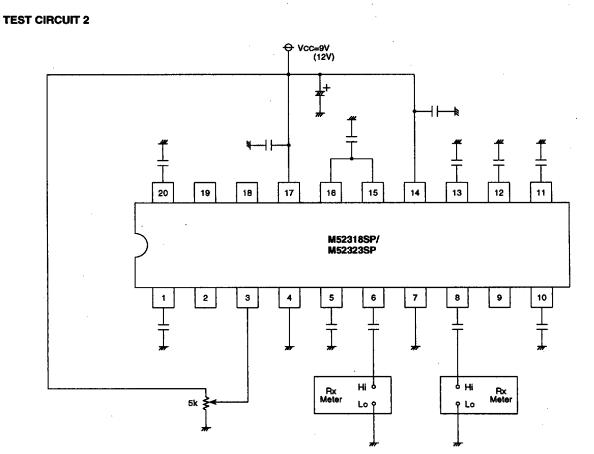
MITSUBISHI ICs (TV)

M52318SP/M52323SP

PLL-SPLIT VIF/SIF

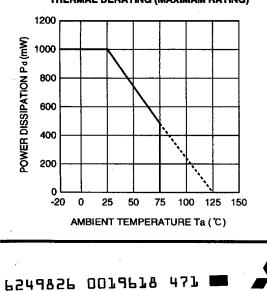
INPUT SIGNALS


SG	5- (0.41.1-)	AM Modulation	FM Modulation	Modulation	1.54.15	
No.	fo(MHz)	%	(kHz)dev	Frequency (kHz)	Vi(dB µ)	Remark
	58.75	77.78	—	20	90	
2	58.75	-	-	_	90	
3	58.75	-	-	_	90	
	Variable	-	-	-	70	MIXED SIGNAL
4	58.75	77.78	-	20	Variable	
5	58.75	16	-	20	Variable	
6	58.75	-	_	_	80	
Ô	58.75	-	-	_	120	
8	Variable	77.78		20	90	
9	58.75±0.1	_	-	_	90	
10	58.75±5	-	-	_	90	
	58.75	-		_	90	
10	55.17	-		_	80	MIXED SIGNAL
	54.25	-	-	_	80	
Q	58.75	87.5 Video modulation	-	-	90 Sync tip lebel	Ten-stage modulation as standard
13	54.25	_	- 1	_	80	
B	54.25	-	_		100	
(5)	4.5		±25	1.0	90	
16	4.5	-	±25	1.0	Variable	
Ø	4.5	30		1.0	90	
(18)	4.5		-	-	90	


2 - 499

PLL-SPLIT VIF/SIF

TEST CIRCUIT 1



PLL-SPLIT VIF/SIF

Capacitors of 0.01 μ Fare used unless noted otherwise. Units Resistance: Ω Capacitance: F

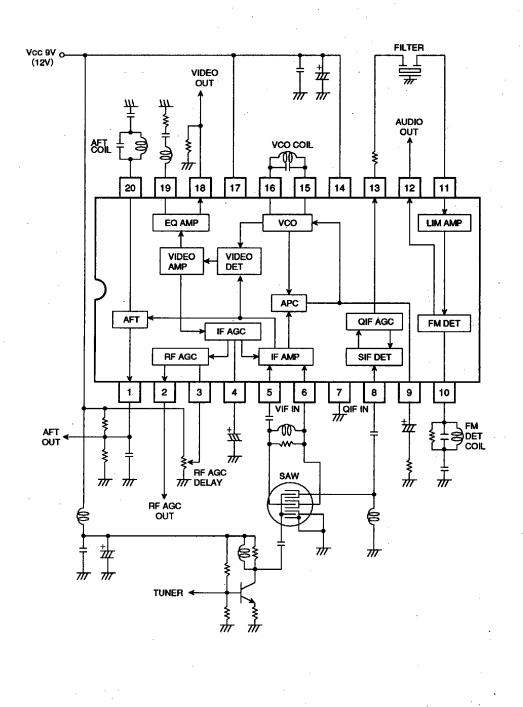
TYPICAL CHARACTERISTICS

THERMAL DERATING (MAXIMAM RATING)

2 - 501

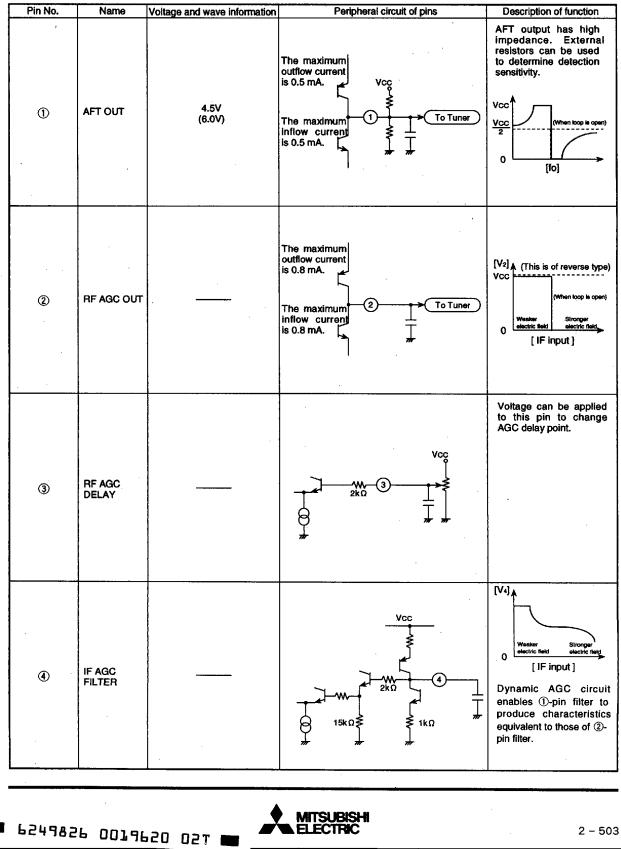
This Material Copyrighted By Its Respective Manufacturer

MITSUBISHI

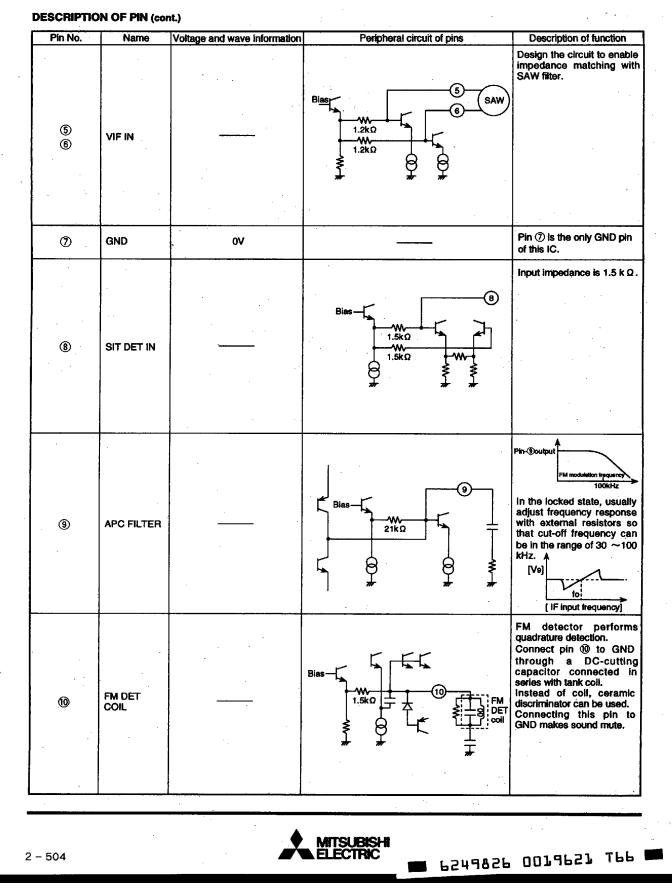

CTRIC

MITSUBISHI ICs (TV)

M52318SP/M52323SP


PLL-SPLIT VIF/SIF

APPLICATION EXAMPLE



PLL-SPLIT VIF/SIF

DESCRIPTION OF PIN (cont.)

PLL-SPLIT VIF/SIF

This Material Copyrighted By Its Respective Manufacturer

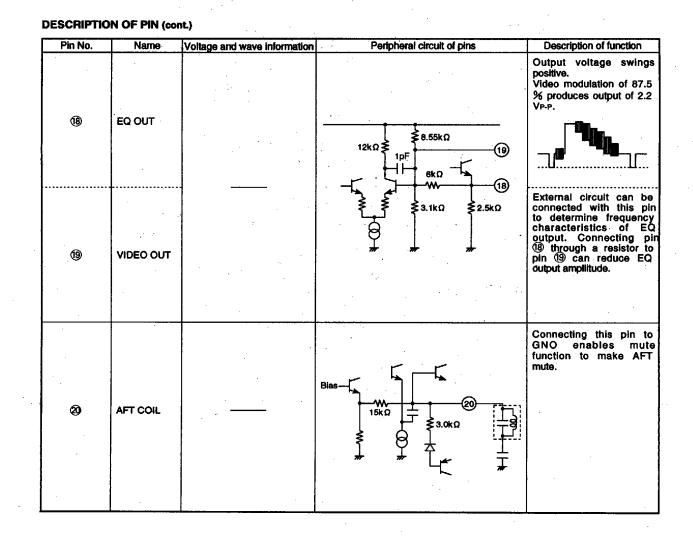
MITSUBISHI ICs (TV)

M52318SP/M52323SP

PLL-SPLIT VIF/SIF

DESCRIPTION OF PIN (cont.)

Pin No.	Name	Voltage and wave information	Peripheral circuit of pins	Description of function
1	LIMITER IN		$\begin{array}{c} \text{Bias}\\ 1.5k\Omega\\ 0\\ \text{#}\\ \text{H}\\ \text{H}$	Input impedance is 1.5 kΩ.
Ø	AUDIO OUT		-τ_ 500Ω *	This is audio output pin This output has a series resistor of 500 Ω .
13	SIT DET OUT			Emitter follower produce this output.
14	Vcc	9V(12V)		
(5) (6)	VCO COIL			Connecting a coil and capacitor with these pin enables oscillation. Th oscillator must be use with oscillation frequence adjusted to fo. Since oscillation evolve to high level, it migf interfere other pins, an cause malfunctions of VCO in the pull- process. For these pin- lay out the externa printed-circuit patter compact enough to prevent interference.
1	Vcc	9V(12V)	· · · · · · · · · · · · · · · · · · ·	


MITSUBISHI ELECTRIC

🖬 6249826 0019622 9T2 🖿 🏒

2 - 505

6249826 0019623 839 📟

PLL-SPLIT VIF/SIF

MITSUBISHI ELECTRIC

This Material Copyrighted By Its Respective Manufacturer

2 - 506