GL6850

TWO TONE RINGER

Description

The GL6850 tone ringer is a monolithic device, which incorporates two oscillators, and output amplifier and a power supply control circuit. The oscillator frequencies can be adjusted over a wide range by selection of external components. One oscillator, normally operated at a low frequency, causes the second oscillator to alternate between its nominal frequency and a related higher frequency. The resulting output is a distinct warbling tone. The output amplifier will drive either a transformer coupled loudspeaker or a piezo-ceramic transducer.

The device can be powered from a telephone line or a fixed d.c. supply. The power control circuit has builtin hysteresis to prevent false triggering and rotary dial chirps. The GL6850 can be triggered externally under logic control.

Features

- Low current consumption.
- Designed for telephone bell replacement.
- Small size MINIDIP package.
- Adjustable 2- frequency tone.
- Built-in hysteresis prevents false triggering and rotary dial CHIRPS.
- Alarms or other alerting devices.
- External triggering or ringer disable.
- Include ESD protection.

Block Diagram

Absolute Maximum Ratings ($\mathbf{T a}=25_{i}$ É

CHARACTERISTICS	SYMBOL	VALUE	UNIT
Supply Voltage	V_{CC}	30	V
Power Dissipation	Po	400	mW
Operating Temperature	Topr	-25 to 65	i É
Storage Temperature	Tstg	-65 to 150	i É

Electrical Characteristics $\mathbf{(T a}=25$; É

CHARACTERISTICS	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Operating Supply Voltage	$\mathrm{V}_{\text {CC }}$		-	-	29.0	V
Initiation Supply Voltage ${ }^{1}$	$\mathrm{V}_{\text {SI }}$		17	19	21	V
Initiation Supply Current ${ }^{1}$	$\mathrm{I}_{\text {SI }}$		0.9	2.0	3.7	mA
Sustaining Voltage ${ }^{2}$	$\mathrm{V}_{\text {Sus }}$		9.7	11.0	12.0	V
Sustaining Current ${ }^{2}$	$\mathrm{I}_{\text {SUS }}$		0.4	1.0	2.0	mA
Trigger Voltage ${ }^{3}$	$\mathrm{V}_{\text {TR }}$	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$	9.5	-	-	V
Trigger Current ${ }^{3}$	$\mathrm{I}_{\text {TR }}$	$\mathrm{V}_{\text {CC }}=15 \mathrm{~V}$	40	-	1000^{5}	$\mu \mathrm{A}$
Disable Voltage ${ }^{4}$	$\mathrm{V}_{\text {DIS }}$	$\mathrm{V}_{\text {CC }}=21 \mathrm{~V}$	-	-	0.8	V
Disable Current ${ }^{4}$	$\mathrm{I}_{\text {IIS }}$	$\mathrm{V}_{\mathrm{CC}}=21 \mathrm{~V}$	-50	-	-	$\mu \mathrm{A}$
Output Voltage High	V_{OH}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=21 \mathrm{~V}, \mathrm{I}_{8}=-10 \mathrm{~mA} \\ & \operatorname{Pin} 6=6 \mathrm{~V}, \operatorname{Pin} 7=\mathrm{GND} \end{aligned}$	17	19	21	V
Output Voltage Low	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=21 \mathrm{~V}, \mathrm{I}_{8}=-10 \mathrm{~mA} \\ & \operatorname{Pin} 6=\mathrm{GND}, \operatorname{Pin} 7=6 \mathrm{~V} \end{aligned}$	-	-	2	V
High Frequency 1 High Frequency 2 Low Frequency	$\mathrm{f}_{\mathrm{H} 1}$ $\mathrm{f}_{\mathrm{H} 2}$ f_{L}	$\begin{aligned} & \text { R3 }=191 \mathrm{~K}, \mathrm{C} 3=6800 \mathrm{Pf} \\ & \text { R3 }=191 \mathrm{~K}, \mathrm{C} 3=6800 \mathrm{pF} \\ & \text { R2 }=165 \mathrm{~K}, \mathrm{C} 2=0.47 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 461 \\ & 576 \\ & 9.0 \end{aligned}$	$\begin{gathered} 461 \\ 640 \\ 10 \end{gathered}$	$\begin{aligned} & 563 \\ & 704 \\ & 11.0 \end{aligned}$	$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \\ & \mathrm{~Hz} \end{aligned}$

* NOTE

1. Initial supply voltage $\left(\mathrm{V}_{\mathrm{SI}}\right)$ is the supply voltage required to start the tone ringer oscillation.
2. Sustaining voltage ($\mathrm{V}_{\mathrm{SUS}}$) in the supply voltage required to maintain oscillation.
3. V_{TR} and I_{TR} are the conditions applied to trigger to start for $\mathrm{V}_{\mathrm{SUSi}} \hat{\mathbb{X}}_{\mathrm{CCi}} \hat{\mathbb{X}}_{\mathrm{SI}}$
4. $V_{\text {DIS }}$ and $I_{\text {DIS }}$ are the conditions applied to trigger to inhibit oscillation for $V_{\text {SII }} \hat{A} V_{\text {CC }}$
5. Trigger current must be limited to this value externally.

PIN DESCRIPTION

PIN NUMBER	PIN FUNCTION	DESCRIPTION
PIN 1	VCC	Operating supply D.C. voltage rectified from ringing signal.
PIN2	TRIG_IN	Oscillator External Trigger/Inhibit pin (must beconnected through a current limiting resistor, which is used to program the slope of supply current vs voltage.)
PIN3	LOWOSC_1	Low Frequency Time Constant Adjustment pins f_{L} is controlled externally by R_{2} and $\mathrm{C}_{2}$$\mathrm{f}_{\mathrm{L}}=1 / 1.289 \mathrm{R}_{2} \mathrm{C}_{2}$
PIN 4	LOWOSC_2	
PIN 5	GND	Ground
PIN 6	HIGHOSC_1	High Frequency Time Constant Adjustment Pins $\mathrm{f}_{\mathrm{H} 1}$ and $\mathrm{f}_{\mathrm{H} 2}$ are controlled externally by R_{3} and C_{3}.$\mathrm{f}_{\mathrm{H} 1}=1 / 1.504 \mathrm{R}_{3} \mathrm{C}_{3}, \mathrm{f}_{\mathrm{H} 2}=1 / 1.203 \mathrm{R}_{3} \mathrm{C}_{3}$
PIN 7	HIGHOSC_2	
PIN 8	OUTPUT	Tone output

APPLICATON CIRCUIT

