## M62216FP/GP

Low Voltage Operation STEP-UP DC/DC Converter

## Description

The M62216FP is designed as low voltage operation STEP-UP DC/DC converter.
This IC can operate very low input voltage (over 0.9 V ) and low power dissipation. (circuit current is less than $850 \mu \mathrm{~A}$ )
So, this IC suitable for power supply of portable system that using low voltage battery. (DRY battery, rechargeable battery)

## Features

- Pre-drive type PWM output (Pre-drive only)
- Low voltage operation.......... $\mathrm{V}_{\mathrm{IN}}=0.9 \mathrm{~V}$ min.
- Low current dissipation........ $I_{B}=850 \mu \mathrm{~A}$ typ.
- Pre-drive output current can be adjusted
- Built-in ON/OFF Function....... $\mathrm{I}_{\mathrm{B}}$ (OFF) $=35 \mu \mathrm{~A}$ typ.
- Application for STEP-DOWN Converter can be used


## Application

DC/DC Converter for portable sets of battery used

## Block Diagram



## Pin Arrangement



## Absolute Maximum Ratings

( $\mathrm{Ta}=25^{\circ} \mathrm{C}$, unless otherwise noted)

| Item | Symbol | Ratings | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: |
| Input voltage | $\mathrm{V}_{\text {IN }}$ | 15.5 | V |  |
| Bias terminal supply voltage | $\mathrm{V}_{\text {BIAS }}$ | 15.5 | V |  |
| Drive1 terminal supply voltage | $\mathrm{V}_{\text {DRIVE1 }}$ | 15.5 | V |  |
| Drive2 terminal supply voltage | $\mathrm{V}_{\text {DRIVE2 }}$ | 15.5 | V |  |
| Drive1 terminal input current | $\mathrm{I}_{\text {DRIVE } 1}$ | 100 | mA |  |
| Drive2 terminal Input current | $\mathrm{I}_{\text {DRIVE } 2}$ | 10 | mA |  |
| Power dissipation | Pd | $440(\mathrm{FP}) 250(\mathrm{GP})$ | mW | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ |
| Operating temperature | Topr | -20 to +85 | ${ }^{\circ} \mathrm{C}$ |  |
| Storage temperature | Tstg | -40 to +150 | ${ }^{\circ} \mathrm{C}$ |  |

## Electrical Characteristics

| Block | Item | Symbol | Limits |  |  | Units | Test Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |
| All device | Input voltage range | $\mathrm{V}_{\text {IN }}$ | 0.9 | - | 15 | V |  |
|  | BIAS voltage setting range* ${ }^{1}$ | $V_{\text {BIAS }}$ | 1.7 | - | 15 | V |  |
|  | BIAS current | $\mathrm{I}_{\mathrm{B}}$ | - | 850 | 1200 | $\mu \mathrm{A}$ |  |
|  | BIAS current at off mode | $\mathrm{I}_{\mathrm{B} \text { ( OFF) }}$ | - | 35 | 47 | $\mu \mathrm{A}$ |  |
| Voltage reference | Reference voltage | $\mathrm{V}_{\text {REF }}$ | 1.20 | 1.26 | 1.32 | V | Use internal amp as Buffer-amp |
|  | BIAS voltage regulation of VREF | $\Delta \mathrm{V}_{\text {REF }}$ | - | 10 | 30 | mV | $\mathrm{V}_{\text {BIAS }}=1.7$ to 15 V |
| Error <br> Amp. | Input current | $\mathrm{I}_{\mathrm{IN}}$ | - | 20 | - | nA | $\mathrm{IN}=1 \mathrm{~V} / \mathrm{IM}$ |
|  | Open loop voltage gain | $A_{V}$ | - | 70 | - | dB | $\mathrm{f}_{\mathrm{IN}}=100 \mathrm{~Hz}$, null amp operation |
|  | FB terminal sink current | $\mathrm{IFB}^{+}$ | 260 | 800 | - | $\mu \mathrm{A}$ | $\mathrm{IN}=1.4 \mathrm{~V}, \mathrm{FB}=1.25 \mathrm{~V} / \mathrm{IM}$ |
|  | FB terminal source current | $\mathrm{I}_{\text {FB }}-$ | 30 | 45 | 60 | $\mu \mathrm{A}$ | $\mathrm{IN}=1.1 \mathrm{~V}, \mathrm{FB}=1.25 \mathrm{~V} / \mathrm{IM}$ |
| Osc. | Oscillation frequency | fosc | 95 | 125 | 155 | kHz | PWM terminal monitored |
|  | Maximum on duty | DUTY $_{\text {max }}$ | 82 | 87 | 92 | \% | PWM terminal monitored, $\mathrm{IN}=1.1 \mathrm{~V}$ |
| Output | Saturation voltage between PWM Term. and DRIVE1 Term. | $\mathrm{V}_{\text {sat1 }}$ | - | 0.25 | 0.5 | V | $\begin{aligned} & \mathrm{I}_{\mathrm{DRIVE} 1}=50 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{DRIVE} 2}=5 \mathrm{~mA} \end{aligned}$ |
|  | Saturation voltage between PWM Term. and DRIVE2 Term. | $\mathrm{V}_{\text {sat2 }}$ | - | 1.0 | 1.2 | V |  |
|  | Leak current of DRIVE1 terminal | $\mathrm{I}_{\mathrm{L} 1}$ | -1 | - | 1 | $\mu \mathrm{A}$ | $\mathrm{IN}=1.4 \mathrm{~V}$ |
|  | Leak current of DRIVE2 terminal | $\mathrm{I}_{\mathrm{L} 2}$ | -1 | - | 1 | $\mu \mathrm{A}$ | $\mathrm{IN}=1.4 \mathrm{~V}$ |
|  | Output low voltage of PWM terminal | $\mathrm{V}_{\text {PWM (L) }}$ | - | 0.03 | 0.3 | V | $\mathrm{I}_{\text {PWM }}=1 \mathrm{~mA}$ |
| ON/OFF | Input current of ON/ $\overline{\mathrm{OFF}}$ terminal at on status | Ion | - | 2 | 3 | $\mu \mathrm{A}$ |  |
|  | Threshold voltage of ON/ $\overline{\mathrm{OFF}}$ terminal | $\left.\mathrm{V}_{\text {TH ( }} \mathrm{ON}\right)$ | - | 0.65 | 0.75 | V |  |

Note: 1. Setting range of BIAS voltage as same as setting range of output voltage.

## Application Circuit

(1) Standard application circuit

(2) Application circuit $1\left(\mathrm{~V}_{\text {IN }} \geq 1.7 \mathrm{~V}\right)$

(3) Application circuit $2\left(\mathrm{~V}_{\text {out }}>15 \mathrm{~V}\right)$

(4) Application circuit for STEP-DOWN circuit


## Typical Characteristics






## Equation for Constants Calculation

| Constants | Standard Application Circuit | Application Circuit 1 | Application Circuit 2 |
| :---: | :---: | :---: | :---: |
| $\frac{\mathrm{T}_{\mathrm{ON}}}{\mathrm{~T}_{\mathrm{OFF}}}$ | $\begin{aligned} & \hline V_{O}+V_{F}-V_{I N} \\ & V_{I N}-V_{C E} \text { (sat) } \end{aligned}$ | $\frac{V_{O}+V_{F}-V_{I N}}{V_{I N}-V_{C E} \text { (sat) }}$ | $\begin{aligned} & \hline V_{O}+V_{F}-V_{I N} \\ & V_{I N}-V_{C E} \text { (sat) } \end{aligned}$ |
| $\mathrm{T}_{\text {ON }}+\mathrm{T}_{\text {OFF }}$ | $\frac{1}{f_{\mathrm{OSC}}}$ | $\frac{1}{f_{\mathrm{OsC}}}$ | $\frac{1}{f_{\mathrm{Osc}}}$ |
| $\mathrm{T}_{\text {OFF (MIN) }}$ | $\frac{\mathrm{T}_{\mathrm{ON}}+\mathrm{T}_{\mathrm{OFF}}}{1+\frac{\mathrm{T}_{\mathrm{ON}}}{\mathrm{~T}_{\mathrm{OFF}}}}$ | $\frac{\mathrm{T}_{\mathrm{ON}}+\mathrm{T}_{\mathrm{OFF}}}{1+\frac{\mathrm{T}_{\mathrm{ON}}}{\mathrm{~T}_{\mathrm{OFF}}}}$ | $\frac{\mathrm{T}_{\mathrm{ON}}+\mathrm{T}_{\mathrm{OFF}}}{1+\frac{T_{\mathrm{ON}}}{T_{\mathrm{OFF}}}}$ |
| TON (MAX) | $\frac{1}{f_{\mathrm{OSC}}}-\mathrm{T}_{\mathrm{OFF}(\mathrm{MIN})}$ | $\frac{1}{\mathrm{f}_{\mathrm{OSC}}}-\mathrm{T}_{\mathrm{OFF}(\mathrm{MIN})}$ | $\frac{1}{f_{\text {OSC }}}-\mathrm{T}_{\text {OFF (MIN) }}$ |
| Ipk | $2 \times\left(1+\frac{T_{\text {ON }}}{T_{\text {OFF }}}\right) \times\left(\mathrm{I}_{\mathrm{O}}+\mathrm{I}_{\mathrm{B}}\right)$ | $2 \times\left(1+\frac{\mathrm{T}_{\mathrm{ON}}}{\mathrm{T}_{\mathrm{OFF}}}\right) \times \mathrm{I}_{\mathrm{O}}$ | $2 \times\left(1+\frac{\mathrm{T}_{\mathrm{ON}}}{\mathrm{T}_{\mathrm{OFF}}}\right) \times \mathrm{I}_{\mathrm{O}}$ |
| L (MIN) |  | $\frac{\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{CE}(\text { sat })}\right)^{2} \times \mathrm{T}_{\mathrm{ON}(\mathrm{MAX})^{2} \times \mathrm{f}_{\mathrm{OSC}}}}{2 \times \mathrm{V}_{\mathrm{O}} \times \mathrm{I}_{\mathrm{O}}}$ | $\frac{\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{CE}(\text { sat })}\right)^{2} \times \mathrm{T}_{\mathrm{ON}(\mathrm{MAX})^{2} \times \mathrm{f}_{\mathrm{OSC}}}^{2 \times \mathrm{V}_{\mathrm{O}} \times \mathrm{I}_{\mathrm{O}}} \text { ( }{ }^{\text {a }} \text { ( }}{}$ |
| R1 | $\left(\frac{V_{O}}{V_{\text {REF }}}-1\right) \times \mathrm{R} 2$ | $\left(\frac{V_{O}}{V_{\text {REF }}}-1\right) \times \mathrm{R} 2$ | $\left(\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{V}_{\mathrm{REF}}}-1\right) \times \mathrm{R} 2$ |
| $\mathrm{R}_{\mathrm{D} 1}$ | $\frac{V_{\mathrm{O}}-\left(\mathrm{V}_{\mathrm{BE}}+\mathrm{V}_{\mathrm{sat} 1}\right)}{\left(\mathrm{lpk} / \mathrm{h}_{\mathrm{FE}}\right) \times \mathrm{A} 1}$ | $\frac{\mathrm{V}_{\mathrm{O}}-\left(\mathrm{V}_{\mathrm{BE}}+\mathrm{V}_{\mathrm{sat} 1}\right)}{\left(\mathrm{lpk} / \mathrm{h}_{\mathrm{FE}}\right) \times \mathrm{A} 1}$ | $\frac{V_{\mathrm{IN}}-\left(\mathrm{V}_{\mathrm{BE}}+\mathrm{V}_{\mathrm{sat} 1}\right)}{\left(\mathrm{lpk} / \mathrm{h}_{\mathrm{FE}}\right) \times \mathrm{A} 1}$ |
| $\mathrm{R}_{\mathrm{D} 2}$ | $\frac{\mathrm{V}_{\mathrm{O}}-\left(\mathrm{V}_{\mathrm{BE}}+\mathrm{V}_{\mathrm{sat} 2}\right)}{\left(\mathrm{lpk} / \mathrm{h}_{\mathrm{FE}}\right) \times \mathrm{A} 2}$ | $\frac{\mathrm{V}_{\mathrm{O}}-\left(\mathrm{V}_{\mathrm{BE}}+\mathrm{V}_{\mathrm{sat} 2}\right)}{\left(\mathrm{lpk} / \mathrm{h}_{\mathrm{FE}}\right) \times \mathrm{A} 2}$ | $\frac{\mathrm{V}_{\mathrm{IN}}-\left(\mathrm{V}_{\mathrm{BE}}+\mathrm{V}_{\mathrm{sat} 2}\right)}{\left(\mathrm{lpk} / \mathrm{h}_{\mathrm{FE}}\right) \times \mathrm{A} 2}$ |


| Constants | STEP-DOWN Circuit |
| :---: | :---: |
| $\frac{\mathrm{T}_{\mathrm{ON}}}{\mathrm{~T}_{\mathrm{OFF}}}$ | $\frac{V_{O}+V_{F}}{V_{\text {IN }}-V_{\text {CE (sat) }}-V_{O}}$ |
| $\mathrm{T}_{\text {ON }}+\mathrm{T}_{\text {OFF }}$ | $\frac{1}{f_{\mathrm{OsC}}}$ |
| $\mathrm{T}_{\text {OFF (MIN) }}$ | $\frac{\mathrm{T}_{\mathrm{ON}}+\mathrm{T}_{\mathrm{OFF}}}{1+\frac{\mathrm{T}_{\mathrm{ON}}}{\mathrm{~T}_{\mathrm{OFF}}}}$ |
| $\mathrm{T}_{\text {ON (MAX) }}$ | $\frac{1}{f_{\text {OSC }}}-\mathrm{T}_{\text {OFF (MIN) }}$ |
| Ipk | $2 \times 10$ |
| L (MIN) | $\frac{\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {CE (sat) }}-\mathrm{V}_{\mathrm{O}}\right) \times \text { TON (MAX) }}{\Delta \mathrm{l}_{\mathrm{O}}}$ |
| R1 | $\left(\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{V}_{\mathrm{REF}}}-1\right) \times \mathrm{R} 2$ |
| $\mathrm{R}_{\mathrm{D} 1}$ | $\frac{V_{\mathrm{O}}-V_{\mathrm{BE}}-V_{\mathrm{sat} 1}}{\mathrm{lpk} / \mathrm{h}_{\mathrm{FE}}}$ |
| $\mathrm{R}_{\mathrm{D} 2}$ | $\frac{\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{sat} 2}}{\left(\mathrm{lpk} / \mathrm{h}_{\mathrm{FE}}\right) \times \mathrm{A} 3}$ |

Note:
$V_{F}$ : Forward voltage of external diode.
$V_{C E(\text { sat) }}$ : Saturation voltage of external transistor.
$V_{B E}$ : Voltage between Base - Emitter of external transistor.
$h_{F E}: h_{F E}$ of external transistor at saturating.
A1: Ratio of current into DRIVE1 terminal. (A1 = 0.8~0.9)
A2: Ratio of current into DRIVE2 terminal (A2 = $1-\mathrm{A} 1$ )
A3: Ratio of current into DRIVE2 terminal ( $\mathrm{A} 3=0.1 \sim 0.2$ )

- Set R2 to several $\mathrm{k} \Omega \sim$ several 10ths $\mathrm{k} \Omega$.
- Set current into DRIVE2 terminal more than $100 \mu \mathrm{~A}$.
(lpk / h $\mathrm{FE}_{\mathrm{FE}}$ ) $\times \mathrm{A} 2 \geq 100 \mu \mathrm{~A}$, (lpk / $\mathrm{h}_{\text {FE }}$ ) $\times \mathrm{A} 3 \geq 100 \mu \mathrm{~A}$
- Set $\Delta \mathrm{l}_{\mathrm{O}}$ to $1 / 5 \sim 1 / 3$ of maximum load current
- The maximum rating of current of external parts (transistor, diode and inductor) are 1.5 to 2 times of Ipk.


## Package Dimensions



RenesasTechnology Corp. Sales Straetegic Planning Div. Nippon Bldg., 2---2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Notes:

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including,
but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws
and regulations, and procedures required by such laws and reguation included in this document such as product data, diagram
document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com )
3. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular
With the exception of products specified by Renesas as suitable for automon and use of the information in this document or Renesas products. or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
4. Notw artificial life support devices or systems
(2) artificical implantations
(3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages
. Although Renesas endeavors to improve the quality and relifilied ranges.
and reilability of its products, $I C$ products have speciic characteristics such as the occurrence of failure at a certain aused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products Renesas shall have no liability for damages arising out of such detachment
13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.
http://www.renesas.com

## RENESAS SALES OFFICES

## RENESAS

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

## Renesas Technology America, Inc.

450 Holger Way, San Jose, CA $95134-1368$, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

## Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

## Renesas Technology Hong Kong Ltd

7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852>2265-6688, Fax: <852> 2730-6071

## Renesas Technology Taiwan Co., Ltd

10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

## Renesas Technology Korea Co., Ltd.

Kukje Center Bldg. 18th FI., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

