RENESAS

M51945A,B/M51946A,B

Voltage Detecting, System Resetting IC Series

REJ03D0774-0300 Rev.3.00 Sep 18, 2007

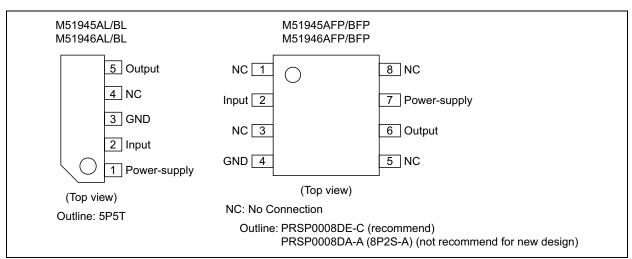
Description

M51945A,B/M51946A,B are semiconductor integrated circuits for resetting of all types of logic circuits such as CPUs, and has the feature of setting the detection voltage by adding external resistance.

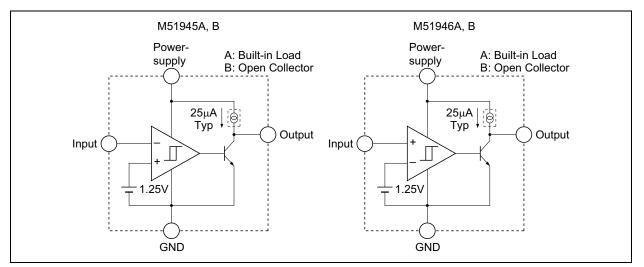
They fined extensive applications, including battery checking circuit, level detecting circuit and waveform shaping circuit.

Features

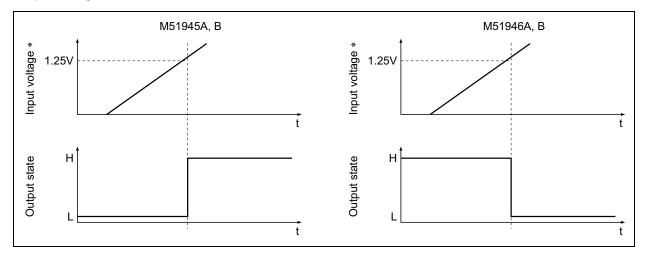
- Few external parts
- Low threshold operating voltage (Supply voltage to keep low-state at low supply voltage): 0.6 V (Typ) at $R_L = 22 \ k\Omega$
- Wide supply voltage range: 2 V to 17 V
- Wide application range


Application

• Reset circuit of Pch, Nch, CMOS, microcomputer, CPU and MCU, Reset of logic circuit, Battery check circuit, switching circuit back-up voltage, level detecting circuit, waveform shaping circuit, delay waveform generating circuit, DC/DC converter, over voltage protection circuit


Recommended Operating Condition

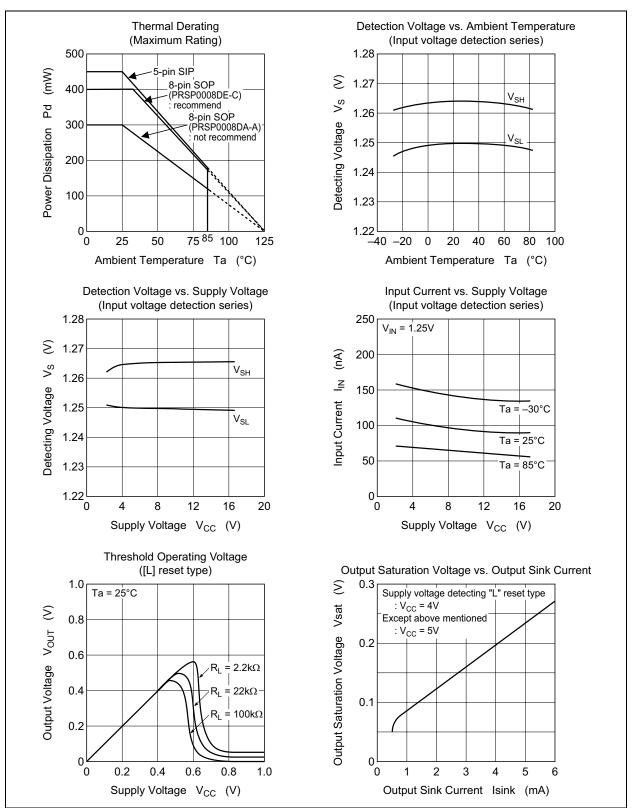
• Supply voltage range: 2 V to 17 V


Pin Arrangement

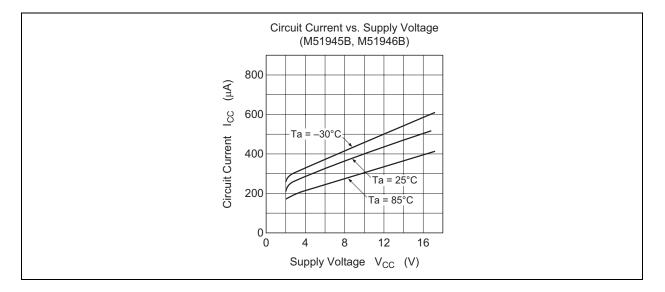
Block Diagram

Operating Waveform

Absolute Maximum Ratings


				$(Ta = 25^{\circ}C, unless otherwise noted)$		
Item Symbo		Ratings	Unit	Conditions		
Supply voltage	V _{CC}	18	V			
Output sink current	Isink	6	mA			
Output voltage	Vo	V _{cc}	V	Type A (output with constant current load)		
		18		Type B (open colle	ector output)	
Power dissipation	Pd	450	mW	5-pin SIP		
		400	1	8-pin SOP (PRSP0008DE-C): recommend		
		300		8-pin SOP (PRSP0008DA-A): not recommend		
Thermal derating	Κθ	4.5	mW/°C	Refer to the	5-pin SIP	
		4.4		thermal derating	8-pin SOP (PRSP0008DE-C)	
				curve.	: recommend	
		3			8-pin SOP (PRSP0008DA-A)	
					: not recommend	
Operating temperature	Topr	-30 to +85	°C			
Storage temperature	Tstg	-40 to +125	°C			
Input voltage range	V _{IN}	–0.3 to V _{CC}	V	$V_{CC} \leq 7 \ V$		
		-0.3 to +7		V _{CC} > 7 V		

Electrical Characteristics


 $(Ta = 25^{\circ}C, unless otherwise noted)$

Item	Symbol	Min	Тур	Max	Unit	Test Conditions		
Detecting voltage	Vs	1.20	1.25	1.30	V			
Hysteresis voltage	ΔV_S	9	15	23	mV			
Detecting voltage temperature coefficient	V _S /∆T	_	0.01	_	%/°C			
Supply voltage range	V _{cc}	2	_	17	V			
Input voltage range	Vin	-0.3	_	V _{cc}	V	$V_{CC} \leq 7V$		
		-0.3	_	7		$V_{CC} > 7V$		
Input current	I _{IN}	_	100	500	nA	V _{IN} = 1.25V		
Circuit current	I _{cc}	_	310	470	μA	Type A, V _{CC} = 5V		
		—	280	420		Type B, V _{CC} = 5V		
Output saturation	Vsat	—	0.2	0.4	V	L reset type, $V_{CC} = 5V$, $V_{IN} < 1.2V$, Isink = 4mA		
voltage		—	0.2	0.4		H reset type, $V_{CC} = 5V$, $V_{IN} > 1.35V$, Isink = 4mA		
Threshold operating	V _{OPL}	_	0.67	0.8	V	L reset type minimum supply voltage for IC operation	$R_{\text{L}} = 2.2 k \Omega, \text{Vsat} \leq 0.4 \text{V}$	
voltage		_	0.55	0.7			$R_L = 100 k\Omega$, Vsat $\leq 0.4 V$	
Output leakage current	I _{OH}	—	_	30	nA	Туре В		
Output load current	I _{oc}	-40	-25	-17	μΑ	Type A, V_{CC} = 5V, V_{O} = 1/2 × V_{CC}		
Output high voltage	V _{OH}	V _{CC} -0.2	V _{cc} -0.06	_	V	Туре А		
Propagation delay time	t _{PHL}	_	4	_	μS	us Response time when V_{CC} changes $H \rightarrow L$ Response time when V_{CC} changes $L \rightarrow H$		
	t _{PLH}	_	2	_				

Typical Characteristics

RENESAS

Example of Application Circuit

Reset Circuit of M5194xx Series

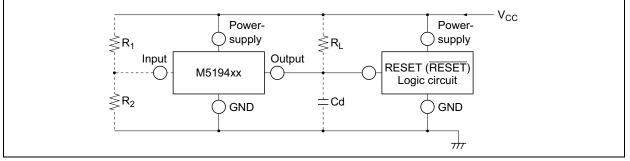


Figure 1 Reset Circuit of M5194xx Series

- Notes: 1. When the detecting supply voltage is 4.25 V, M51943 and M51944 are used and R_1 and R_2 are not necessary. When the voltage is anything except 4.25 V, M51945 and M51946 are used. In this case, the detecting supply voltage is $1.25 \times (R_1 + R_2)/R_2$ (V) approximately. The detecting supply voltage can be set between 2 V and 15 V.
 - 2. If the M5194xx and the logic circuit share a common power source, type A (built-in load type) can be used whether a pull-up resistor is included in the logic circuit or not.
 - 3. The logic circuit preferably should not have a pull-down resistor, but if one is present, add load resistor R_L to overcome the pull-down resistor.
 - 4. It is better to use the M5195xx series to cause a delay, but if the delay is caused by the M5194xx series, the delay capacitor Cd is applied between the output and GND.
 - 5. When the reset terminal in the logic circuit is of the low reset type, M51943 and M51945 are used and when the terminal is of the high reset type, M51944 and M51946 are used.
 - 6. When a delay is necessary at both rise time and fall time, M51945 and M51946 are used and the series resistors (R_{11} , R_{12}) are applied between the output and GND or instead of R_1 , and these connect the capacitor between the connection point and GND. The connection point of the capacitor is fixed according to the ratio of delay at fall/rise time.
 - 7. When a negative supply voltage is used, the supply voltage side of M5194xx and the GND side are connected to GND and the negative supply voltage respectively.

Notice for use

About the Power Supply Line

1. About bypass capacitor

Because the ripple and the spike of the high frequency noise and the low frequency are superimposed to the power supply line, it is necessary to remove these.

Therefore, please install C_1 and C_2 for the low frequency and for the high frequency between the power supply line and the GND line as shown in following figure 2.

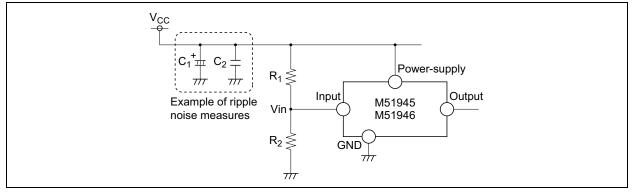


Figure 2 Example of Ripple Noise Measures

The sequence of voltage impression
Please do not impress the voltages to the input terminals earlier than the power supply terminal. Moreover, please do not open the power supply terminal with the voltage impressed to the input terminal.
(The setting of the bias of an internal circuit collapses, and a parasitic element might operate.)

About the Input Terminal

1. Setting range of input voltage

The following voltage is recommended to be input to the input terminal (pin 2).

about 0.8 (V) < Vin < V_{CC} - 0.3 (V) at V_{CC} \leq 7 V

about 0.8 (V) < Vin < 6.7 (V) at V_{CC} > 7 V

2. About using input terminal

Please do an enough verification to the transition characteristic etc. of the power supply when using independent power supply to input terminal (pin 2).

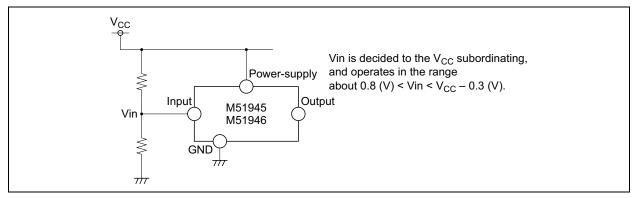
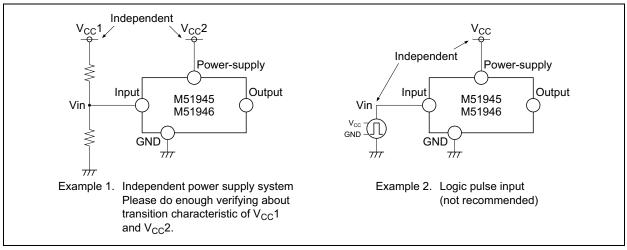



Figure 3 Recommended Example

3. Calculation of detecting voltage

Detecting voltage Vs can be calculated by the following expression. However, the error margin is caused in the detecting voltage because input current Iin (standard 100 nA) exists if it sets too big resistance.

Please set the constant to disregard this error margin.

$$V_{S} = 1.25 \times \left(\frac{R_{1} + R_{2}}{R_{2}}\right) + \frac{Iin \times R_{1}}{error margin}$$

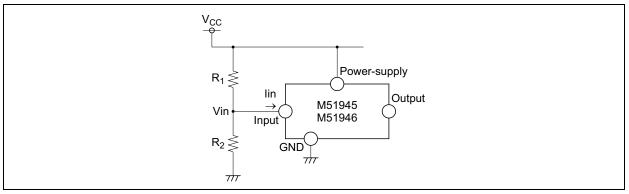


Figure 5 Influence of Input Current

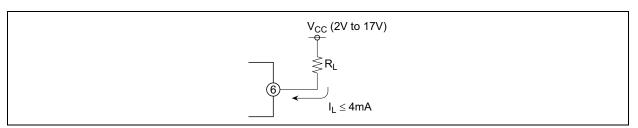
4. About the voltage input outside ratings

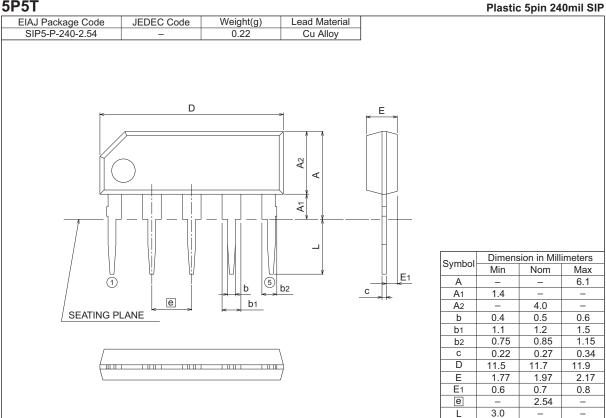
Please do not input the voltage outside ratings to the input terminal. An internal protection diode becomes order bias, and a large current flows.

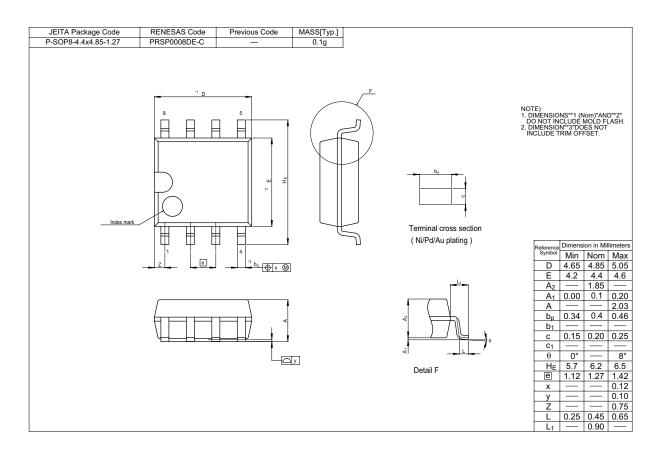
Setting of Output Load Resistance (M51945B/M51946B)

High level output voltage can be set without depending on the power-supply voltage because the output terminal is an open collector type. However, please guard the following notes.

- 1. Please set it in value (2 V to 17 V) within the range of the power-supply voltage recommendation. Moreover, please never impress the voltage of maximum ratings 18 V or more even momentarily either.
- 2. Please set output load resistance (pull-up resistance) R_L so that the output current (output inflow current I_L) at L level may become 4 mA or less. Moreover, please never exceed absolute maximum rating (6 mA).

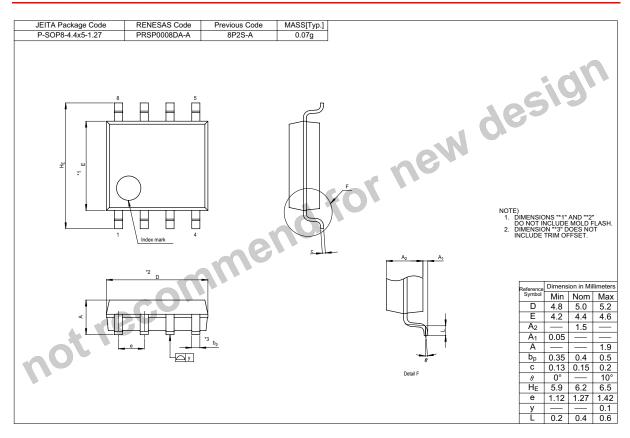



Figure 6 Output Load Resistance RL


Others

- Notes when IC is handled are published in our reliability handbook, and please refer it. The reliability handbook can be downloaded from our homepage (following URL). http://www.renesas.com/fmwk.jsp?cnt=reliability_root.jsp&fp=/products/common_info/reliability
- 2. Additionally, please inquire of our company when there is an uncertain point on use.

Package Dimensions


5P5T

REJ03D0774-0300 Rev.3.00 Sep 18, 2007 Page 9 of 10

RENESAS

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- <section-header>

 Panetase Decomponency of the best product of the segment of any intellectual property or other integers of the information in this document, our grants any license to any information in this document, our grants any license to any intellectual property or other rights arising out of the use of any information in this document.

 2. Resease shall have to liability for damages or infragment of any intellectual property or other rights arising out of the use of any information in this document.

 3. Resease shall have to liability for damages or infragment of any intellectual property or other rights arising out of the use of any information in this document.

 4. All information included in the document of the propose of milds are products or the terphology described in this document for the purpose of milds use. Whow reneases control is the date this describes of the terphology described in this document for the purpose of milds are products or the terphology described in the robust of the purpose of milds use. Whow reneases control is such 3. Such formation in the other exporting the products or the terphology described hereases are described are date that disclosed through our website. (Intrivivw reneases control is all disclosed through our website. (Intrivivw reneases control is all disclosed through our website. (Intrivivw reneases control is all disclosed through our website. (Intrivivw reneases control is all disclosed through our website. (Intrivivw reneases control is all disclosed through our website. (Intrivivw reneases control is all disclosed through our website. (Intrivivw reneases control is all disclosed through our website. (Intrivivw reneases control is all disclosed through our website. (Intrivivw reneases control is all disclosed through our website. (Intrivivw reneases control is all disclosed through our website. Intritrivitw reneases through our website. Intrivivitw

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com