

MOS INTEGRATED CIRCUIT $\mu PD75P3018A$

4-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD75P3018A replaces the μ PD753017A's internal mask ROM with a one-time PROM, and features expanded ROM capacity. The μ PD75P3018A inherits the function of the μ PD75P3018, and enables high-speed operation at a low supply voltage of 1.8 V.

Because the μ PD75P3018A supports programming by users, it is suitable for use in evaluation of systems in development stages using the μ PD753012A, 753016A, or 753017A, and for use in small-scale production.

The following document describes further details of the functions. Please make sure to read this document before starting design.

μPD753017 User's Manual : U11282E

FEATURES

 \bigcirc Compatible with μ PD753017A

O Memory capacity:

PROM: 32768 × 8 bits
 RAM: 1024 × 4 bits

 \bigcirc Can operate in the same power supply voltage as the mask version μ PD753017A

• $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$

O LCD controller/driver

ORDERING INFORMATION

	Part Number	Package
	μPD75P3018AGC-3B9	80-pin plastic QFP (14 × 14 mm, resin thickness 2.7 mm)
*	μ PD75P3018AGC-3B9-A	80-pin plastic QFP (14 \times 14 mm, resin thickness 2.7 mm)
*	μ PD75P3018AGC-8BT	80-pin plastic QFP (14 \times 14 mm, resin thickness 1.4 mm)
*	μ PD75P3018AGC-8BT-A	80-pin plastic QFP (14 \times 14 mm, resin thickness 1.4 mm)
	μ PD75P3018AGK-BE9	80-pin plastic TQFP (fine pitch) (12 \times 12 mm, resin thickness 1.05 mm)
*	μ PD75P3018AGK-9EU 80-pin plastic TQFP (fine pitch) (12 $ imes$ 12 mm, resin thickness 1.00 mm	
*	μ PD75P3018AGK-9EU-A	80-pin plastic TQFP (fine pitch) (12 \times 12 mm, resin thickness 1.00 mm)

Caution Mask-option pull-up resistors are not provided in this device.

Remark Products with "-A" at the end of the part number are lead-free products.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

FUNCTION OUTLINE

	Item	Function		
Instruction executi	on time	• 0.95, 1.91, 3.81, 15.3 μ s (main system clock: at 4.19 MHz operation) • 0.67, 1.33, 2.67, 10.7 μ s (main system clock: at 6.0 MHz operation) • 122 μ s (subsystem clock: at 32.768 kHz operation)		
Internal memory	PROM	32768	× 8 bits	
	RAM	1024 >	4 bits	
General-purpose register			operation: 8×4 banks operation: 4×4 banks	
Input/output port	CMOS input	8 On-chip pull-up resistor connection can be specified by using software		
	CMOS input/output	16		
	CMOS output	8	Also used for segment pins	
	N-ch open-drain input/output	8	13 V breakdown voltage	
	Total	40		
LCD controller/driv	/er		nent number selection: 24/28/32 segments (can be changed to CMOS output port in unit of 4; max. 8) ay mode selection: Static, 1/2 duty (1/2 bias), 1/3 duty (1/2 bias) 1/3 duty (1/3 bias), 1/4 duty (1/3 bias)	
Timer		5 channels: • 8-bit timer/event counter: 3 channels (can be used for 16-bit timer/event counter, carrier generator, timer with gate) • Basic interval timer/watchdog timer: 1 channel • Watch timer: 1 channel		
Serial interface		3-wire serial I/O mode MSB or LSB can be selected for transferring first bit 2-wire serial I/O mode SBI mode		
Bit sequential buff	er (BSB)	16 bits		
Clock output (PCL	.)	 Φ, 524, 262, 65.5 kHz (main system clock: at 4.19 MHz operation) Φ, 750, 375, 93.8 kHz (main system clock: at 6.0 MHz operation) 		
Buzzer output (BU	IZ)	• 2, 4, 32 kHz (main system clock: at 4.19 MHz operation or subsystem clock: at 32.768 kHz operation) • 2.93, 5.86, 46.9 kHz (main system clock: at 6.0 MHz operation)		
Vectored interrupt		• External : 3 • Internal : 5		
Test input		External : 1 Internal : 1		
System clock oscillator		Ceramic or crystal oscillator for main system clock oscillation Crystal oscillator for subsystem clock oscillation		
Standby function		STOP/HALT mode		
Power supply volta	age	V _{DD} =	1.8 to 5.5 V	
Package		 80-pin plastic QFP (14 × 14 mm) 80-pin plastic TQFP (fine pitch) (12 × 12 mm) 		

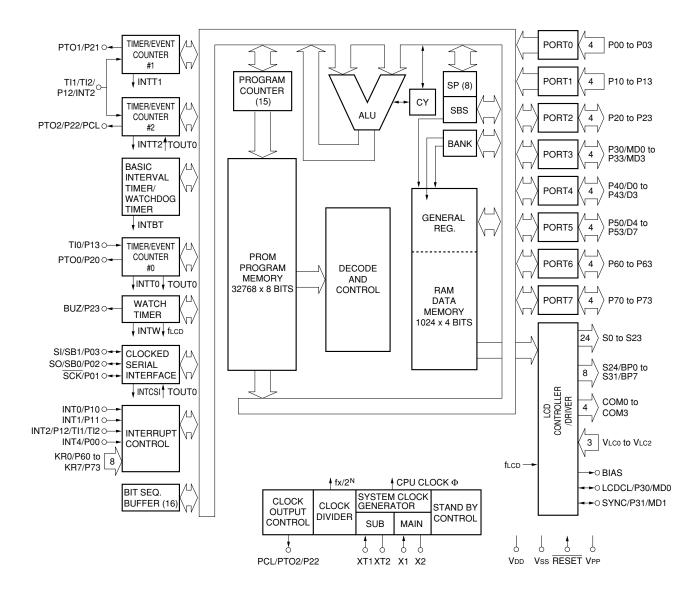


CONTENTS

1.	PIN CONFIGURATION (Top View)	4
2.	BLOCK DIAGRAM	5
3.	PIN FUNCTIONS	6
	3.1 Port Pins	6
	3.2 Non-port Pins	8
	3.3 Pin Input/Output Circuits	10
	3.4 Recommended Connection for Unused Pins	12
4.	SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE	13
	4.1 Difference between Mk I Mode and Mk II Mode	13
	4.2 Setting of Stack Bank Selection Register (SBS)	14
5.	DIFFERENCES BETWEEN μ PD75P3018A AND μ PD753012A, 753016A, AND 753017A	15
6.	MEMORY CONFIGURATION	16
	6.1 Program Counter (PC)	16
	6.2 Program Memory (PROM)	16
	6.3 Data Memory (RAM)	19
7.	INSTRUCTION SET	20
8.	ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY	30
	8.1 Operation Modes for Program Memory Write/Verify	30
	8.2 Program Memory Write Procedure	31
	8.3 Program Memory Read Procedure	32
	8.4 One-time PROM Screening	33
9.	ELECTRICAL SPECIFICATIONS	34
10.	PACKAGE DRAWINGS	48
11.	RECOMMENDED SOLDERING CONDITIONS	52
ΑP	PPENDIX A. μPD75316B, 753017A AND 75P3018A FUNCTION LIST	55
ΑP	PPENDIX B. DEVELOPMENT TOOLS	57
ΑP	PPENDIX C. RELATED DOCUMENTS	61

1. PIN CONFIGURATION (Top View)

- 80-pin plastic QFP (14 \times 14 mm)
- μ PD75P3018AGC-3B9, 75P3018AGC-3B9-A, 75P3018AGC-8BT, 75P3018AGC-8BT-A
 - 80-pin plastic TQFP (fine pitch) (12 × 12 mm)
- μ PD75P3018AGK-BE9, 75P3018AGK-9EU, 75P3018AGK-9EU-A


Note Connect the VPP directly to VDD during normal operation.

PIN IDENTIFICATIONS

BIAS	: LCD Power Supply Bias Control	P70-P73	: Port7
BP0-BP7	: Bit Port 0-7	PCL	: Programmable Clock
BUZ	: Buzzer Clock	PTO0-PTO2	: Programmable Timer Output 0-2
COM0-COM3	: Common Output 0-3	RESET	: Reset
D0-D7	: Data Bus 0-7	S0-S31	: Segment Output 0-31
INT0, 1, 4	: External Vectored Interrupt 0, 1, 4	SB0, SB1	: Serial Bus 0,1
INT2	: External Test Input 2	SCK	: Serial Clock
KR0-KR7	: Key Return 0-7	SI	: Serial Input
LCDCL	: LCD Clock	SO	: Serial Output
MD0-MD3	: Mode Selection 0-3	SYNC	: LCD Synchronization
P00-P03	: Port0	TI0-TI2	: Timer Input 0-2
P10-P13	: Port1	V_{DD}	: Positive Power Supply
P20-P23	: Port2	VLC0-VLC2	: LCD Power Supply 0-2
P30-P33	: Port3	V_{PP}	: Programming Power Supply
P40-P43	: Port4	Vss	: Ground
P50-P53	: Port5	X1, X2	: Main System Clock Oscillation 1, 2
P60-P63	: Port6	XT1, XT2	: Subsystem Clock Oscillation 1, 2

2. BLOCK DIAGRAM

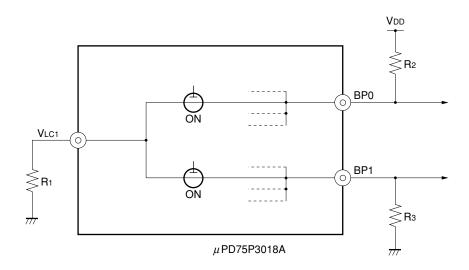
3. PIN FUNCTIONS

3.1 Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function	8-bit I/O	After Reset	I/O Circuit Type ^{Note 1}
P00	Input	INT4	This is a 4-bit input port (PORT0). P01 to P03 are 3-bit pins for which an internal	_	Input	
P01		SCK	pull-up resistor connection can be specified			<f>-A</f>
P02		SO/SB0	by software.			<f>-B</f>
P03		SI/SB1				<m>-C</m>
P10	Input	INT0	This is a 4-bit input port (PORT1).	_	Input	-C
P11		INT1	These are 4-bit pins for which an internal pull-up resistor connection can be specified by software.			
P12		TI1/TI2/INT2	P10/INT0 can select noise elimination circuit.			
P13		TIO				
P20	I/O	PTO0	This is a 4-bit I/O port (PORT2).	_	Input	E-B
P21		PTO1	These are 4-bit pins for which an internal pull-up resistor connection can be specified by software.			
P22		PCL/PTO2				
P23		BUZ				
P30	I/O	LCDCL/MD0	This is a programmable 4-bit I/O port (PORT3).	_	Input	E-B
P31		SYNC/MD1	Input and output in single-bit units can be specified. When set for 4-bit units, an internal pull-up resistor			
P32		MD2	connection can be specified by software.			
P33		MD3				
P40 ^{Note 2}	I/O	D0	This is an N-ch open-drain 4-bit I/O port (PORT4).	√	High	M-E
P41 ^{Note 2}		D1	When set to open-drain, voltage is 13 V. Also functions as data I/O pin (low-order 4 bits)		impedance	
P42Note 2		D2	for program memory (PROM) write/verify.			
P43Note 2		D3				
P50 ^{Note 2}	I/O	D4	This is an N-ch open-drain 4-bit I/O port (PORT5).		High	M-E
P51 ^{Note 2}		D5	When set to open-drain, voltage is 13 V. Also functions as data I/O pin (high-order 4 bits)		impedance	
P52 ^{Note 2}		D6	for program memory (PROM) write/verify.			
P53Note 2		D7				

Notes 1. Circuit types enclosed in brackets indicate Schmitt trigger input.

 $\textbf{2.} \ \ Low-level input leakage current increases when input instructions or bit manipulation instructions are executed.$


3.1 Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function	8-bit I/O	After Reset	I/O Circuit Type ^{Note 1}
P60	I/O	KR0	This is a programmable 4-bit I/O port (PORT6).	√	Input	<f>-A</f>
P61		KR1	Input and output in single-bit units can be specified. When set for 4-bit units, an internal pull-up resistor			
P62		KR2	connection can be specified by software.			
P63		KR3				
P70	I/O	KR4	This is a 4-bit I/O port (PORT7).		Input	<f>-A</f>
P71		KR5	When set for 4-bit units, an internal pull-up resistor connection can be specified by software.			
P72		KR6				
P73		KR7				
BP0	Output	S24	1-bit output port (BIT PORT). These pins are also	_	Note 2	H-A
BP1		S25	used as segment output pin.			
BP2		S26				
BP3		S27				
BP4	Output	S28				
BP5		S29				
BP6		S30				
BP7		S31				

Notes 1. Circuit types enclosed in brackets indicate Schmitt trigger input.

2. VLc1 is selected as the input source for BP0 to BP7. The output level varies depending on the external circuit for BP0 to BP7 and VLc1.

Example: As shown below, BP0 to BP7 are mutually connected via the μ PD75P3018A, so the output levels of BP0 to BP7 are determined by the sizes of R₁, R₂, and R₃.

3.2 Non-port Pins (1/2)

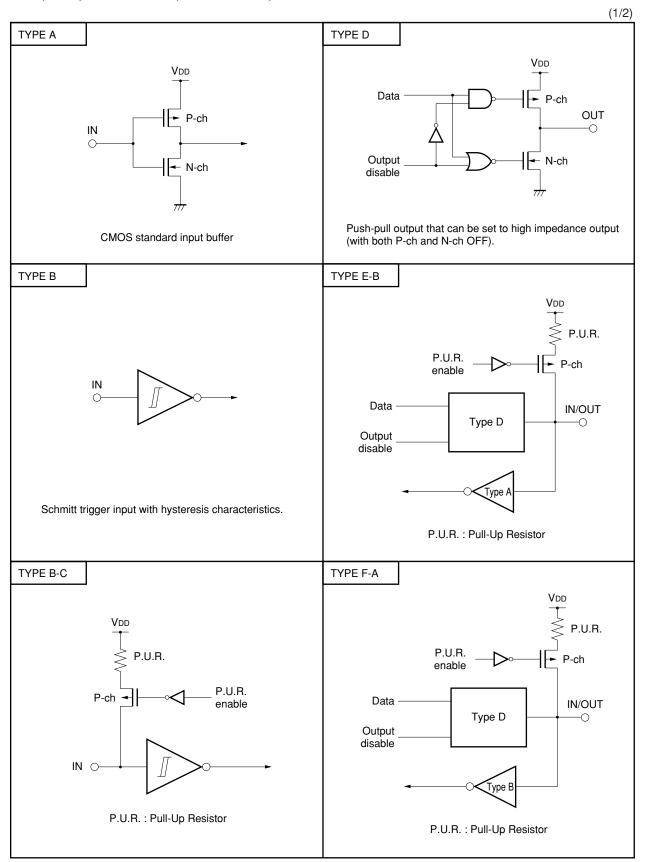
Pin Name	I/O	Alternate Function	Function		After Reset	I/O Circuit
TI0	Input	P13	External event pulse input to timer/even	t counter	Input	-C
TI1, TI2		P12/INT2				
PTO0	Output	P20	Timer/event counter output		Input	E-B
PTO1		P21				
PTO2		P22				
PCL		P22	Clock output			
BUZ		P23	Optional frequency output (for buzzer or s	ystem clock trimming)		
SCK	I/O	P01	Serial clock I/O		Input	<f>-A</f>
SO/SB0		P02	Serial data output Serial data bus I/O			<f>-B</f>
SI/SB1		P03	Serial data input Serial data bus I/O			<m>-C</m>
INT4	Input	P00	Edge detection vectored interrupt input (both rising and falling edges detection)			
INT0	Input	P10	Edge detection vectored interrupt input (detected edge is selectable)	Noise elimination circuit/ asynchronous is selectable	Input	-C
INT1		P11	INT0/P10 can select noise elimination circuit.	Asynchronous		
INT2		P12/TI1/TI2	Rising edge detection testable input	Asynchronous		
KR0-KR3	Input	P60-P63	Falling edge detection testable input		Input	<f>-A</f>
KR4-KR7	Input	P70-P73	Falling edge detection testable input		Input	<f>-A</f>
X1	Input	_	Ceramic/crystal oscillation circuit connection for main system clock. If using an external clock, input to X1 and input		_	_
X2			inverted phase to X2.			
XT1	Input	_	Crystal oscillation circuit connection for If using an external clock, input to XT1 a		_	_
XT2	_		phase to XT2. XT1 can be used as a 1-l			
RESET	Input	_	System reset input (low level active)		_	
MD0	Input	P30/LCDCL	Mode selection for program memory (PI	ROM) write/verify	Input	E-B
MD1		P31/SYNC				
MD2, MD3		P32, P33				
D0-D3	I/O	P40-P43	Data bus for program memory (PROM)	write/verify	Input	M-E
D4-D7		P50-P53				
VPPNote 2	_	_	Program power supply voltage for program memory (PROM) write/verify. For normal operation, connect directly to VDD. Apply +12.5 V for PROM write/verify.		_	_
VDD	_	_	Positive power supply		_	_
Vss	_		Ground		_	_

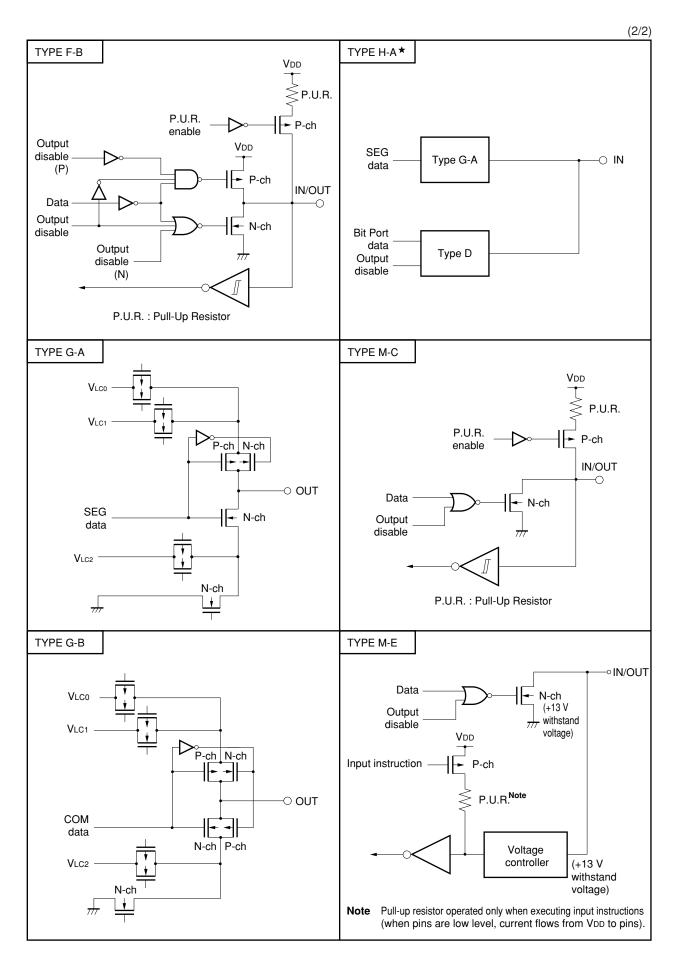
Notes 1. Circuit types enclosed in brackets indicate Schmitt trigger input.

^{2.} The V_{PP} pin does not operate correctly during normal operation unless connected to the V_{DD} pin.

3.2 Non-port Pins (2/2)

Pin Name	I/O	Alternate Function	Function	After Reset	I/O Circuit Type
S0-S23	Output	_	Segment signal output	Note 1	G-A
S24-S31	Output	BP0-BP7	Segment signal output	Note 1	H-A
COM0-COM3	Output	_	Common signal output	Note 1	G-B
VLC0-VLC2	_	_	Power source for LCD driver	_	_
BIAS	Output	_	Output for external split resistor cut	High impedance	_
LCDCLNote 2	I/O	P30/MD0	Clock output for driving external expansion driver	Input	E-B
SYNC ^{Note 2}	I/O	P31/MD1	Clock output for synchronization of external expansion driver	Input	E-B


Notes 1. The V_{LCX} (X = 0, 1, 2) shown below are selected as the input source for the display outputs. S0-S31: V_{LC1}, COM0-COM2: V_{LC2}, COM3: V_{LC0}


2. These pins are provided for future system expansion. Currently, only P30 and P31 are used.

3.3 Pin Input/Output Circuits

The input/output circuits for the μ PD75P3018A's pins are shown in abbreviated form below.

3.4 Recommended Connection for Unused Pins

Pin	Recommended Connection	
P00/INT4	Connect to Vss or VDD	
P01/SCK	Connect to Vss or VDD via a resistor individually	
P02/SO/SB0		
P03/SI/SB1	Connect to Vss	
P10/INT0, P11/INT1	Connect to Vss or VDD	
P12/TI1/TI2/INT2		
P13/TI0		
P20/PTO0	Input : Connect to Vss or Vpd via a resistor individually	
P21/PTO1	Output : Leave open	
P22/PTO2/PCL		
P23/BUZ		
P30/LCDCL/MD0		
P31/SYNC/MD1		
P32/MD2, P33/MD3		
P40/D0-P43/D3	Connect to Vss	
P50/D4-P53/D7		
P60/KR0-P63/KR3	Input : Connect to Vss or VDD via a resistor individually	
P70/KR4-P73/KR7	Output : Leave open	
S0-S23	Leave open	
S24/BP0-S31/BP7		
COM0-COM3		
VLC0-VLC2	Connect to Vss	
BIAS	Connect to Vss only when VLC0 to VLC2 are all not used. In other cases, leave open.	
XT1 ^{Note}	Connect to Vss	
XT2 ^{Note}	Leave open	

Note When subsystem clock is not used, specify SOS.0 = 1 (indicates that internal feedback resistor is disconnected).

4. SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE

Setting a stack bank selection (SBS) register for the μ PD75P3018A enables the program memory to be switched between Mk I mode and Mk II mode. This function is applicable when using the μ PD75P3018A to evaluate the μ PD753012A, 753016A, or 753017A.

When the SBS bit 3 is set to 1 : sets Mk I mode (supports Mk I mode for μPD753012A, 753016A, and 753017A) When the SBS bit 3 is set to 0 : sets Mk II mode (supports Mk II mode for µPD753012A, 753016A, and 753017A)

4.1 Difference between Mk I Mode and Mk II Mode

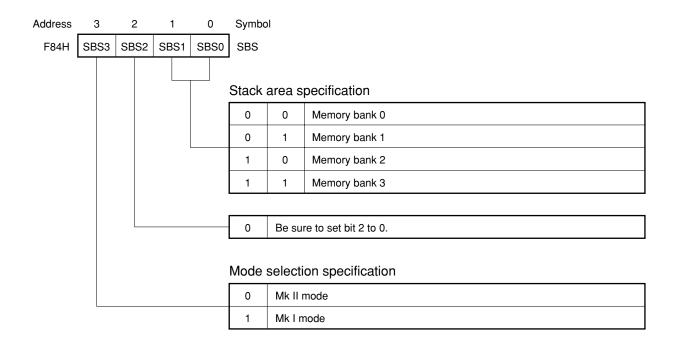
Table 4-1 lists points of difference between the Mk I mode and the Mk II mode for the μPD75P3018A.

Table 4-1. Difference between Mk I Mode and Mk II Mode

Item		Mk I Mode	Mk II Mode	
Program counter		PC ₁₃₋₀ PC ₁₄ is fixed at 0	PC14-0	
Program memo	ory (bytes)	16384	32768	
Data memory (bits)	1024 × 4		
Stack Stack bank		Selectable via memory banks 0 to 3		
No. of stack bytes		2 bytes	3 bytes	
Instruction	BRA !addr1 instruction	Not available	Available	
	CALLA !addr1 instruction			
Instruction	CALL !addr instruction	3 machine cycles	4 machine cycles	
execution time CALLF !faddr instruction		2 machine cycles	3 machine cycles	
Supported mas	sk ROMs	When set to Mk I mode: μPD753012A, 753016A, and 753017A	When set to Mk II mode: μPD753012A, 753016A, and 753017A	

Caution The Mk II mode supports a program area exceeding 16 Kbytes for the 75X and 75XL series. Therefore, this mode is effective for enhancing software compatibility with products that have a program area of more than 16 Kbytes.

With regard to the number of stack bytes during execution of subroutine call instructions, the usable area increases by 1 byte per stack compared to the Mk I mode when the Mk II mode is selected. However, when the CALL !addr and CALLF !faddr instructions are used, the machine cycle becomes longer by 1 machine cycle. Therefore, if more emphasis is placed on RAM use efficiency and processing performance than on software compatibility, the Mk I mode should be used.


4.2 Setting of Stack Bank Selection Register (SBS)

Use the stack bank selection register to switch between Mk I mode and Mk II mode. Figure 4-1 shows the format for doing this.

The stack bank selection register is set using a 4-bit memory manipulation instruction. When using the Mk I mode, be sure to initialize the stack bank selection register to 10XXB^{Note} at the beginning of the program. When using the Mk II mode, be sure to initialize it to 00XXB^{Note}.

Note Set the desired value for XX.

Figure 4-1. Format of Stack Bank Selection Register

- Cautions 1. SBS3 is set to "1" after RESET input, and consequently the CPU operates in Mk I mode. When using instructions for Mk II mode, set SBS3 to "0" and set Mk II mode before using the instructions.
 - 2. When using Mk II mode, execute a subroutine call instruction and an interrupt instruction after RESET input and after setting the stack bank selection register.

5. DIFFERENCES BETWEEN μ PD75P3018A AND μ PD753012A, 753016A, AND 753017A

The μ PD75P3018A replaces the internal mask ROM in the μ PD753012A, 753016A, and 753017A with a one-time PROM and features expanded ROM capacity. The μ PD75P3018A's Mk I mode supports the Mk I mode in the μ PD753012A, 753016A, and 753017A and the μ PD75P3018A's Mk II mode supports the Mk II mode in the μ PD753012A, 753016A, and 753017A.

Table 5-1 lists differences among the μ PD75P3018A and the μ PD753012A, 753016A, and 753017A. Be sure to check the differences among these products before using them with PROMs for debugging or prototype testing of application systems or, later, when using them with a mask ROM for full-scale production.

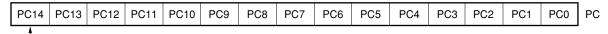
For the CPU functions and internal hardwares, refer to μ PD753017 User's Manual (U11282E).

Table 5-1. Differences between μ PD75P3018A and μ PD753012A, 753016A, and 753017A

	Item		μPD753016A	μPD753017A	μPD75P3018A	
Program counter		14 bits 15 bits		15 bits		
Program memory	(bytes)	Mask ROM			One-time PROM	
During Mk I mode		12288	16384	16384	16384	
	During Mk II mode	12288	16384	24576	32768	
Data memory (× 4	1 bits)	1024				
Mask options	Mask options Pull-up resistor for PORT4 and PORT5		Yes (Can be specified whether to incorporate or not)			
	LCD split resistor					
	Feedback resistor for subsystem clock	Yes (Can be specif	No (used)			
	Wait time during RESET	Yes (Can be specif	No (Fixed at 2 ¹⁵ /fx) ^{Note}			
Pin configuration	Pin Nos. 29 to 32	P40 to P43	P40/D0 to P43/D3			
	Pin Nos. 34 to 37	P50 to P53	P50/D4 to P53/D7			
	Pin No. 50	P30/LCDCL	P30/LCDCL/MD0			
	Pin No. 51	P31/SYNC	P31/SYNC/MD1			
	Pin Nos. 52 and 53	P32, P33	P32/MD2, P33/MD3			
	Pin No. 57	IC	VPP			
Other		Noise resistance and noise radiation may differ due to the different circuit sizes and mask layouts.				

Note For 2¹⁷/fx, during 6.0 MHz operation is 21.8 ms, and during 4.19 MHz operation is 31.3 ms. For 2¹⁵/fx, during 6.0 MHz operation is 5.46 ms, and during 4.19 MHz operation is 7.81 ms.

Caution Noise resistance and noise radiation are different in PROM and mask ROMs. In transferring to mask ROM version from the PROM version in a process between prototype development and full production, be sure to fully evaluate the mask ROM version's CS (not ES).


6. MEMORY CONFIGURATION

6.1 Program Counter (PC) ... 15 bits

This is a 15-bit binary counter that stores program memory address data.

Bit 15 is valid during Mk II mode. But PC14 is fixed at zero during Mk I mode, and the lower 14 bits are all valid.

Figure 6-1. Configuration of Program Counter

Fixed at zero during Mk I mode

6.2 Program Memory (PROM) ... 32768×8 bits

The program memory consists of 32768×8 -bit one-time PROM. The program memory address can be selected as shown below by setting the stack bank selection (SBS) register.

	Mk I Mode	Mk II Mode
Usable address	0000H to 3FFFH	0000H to 7FFFH

Figures 6-2 and 6-3 show the addressing ranges for the program memory and branch instruction and the subroutine call instruction, during Mk I and Mk II modes.

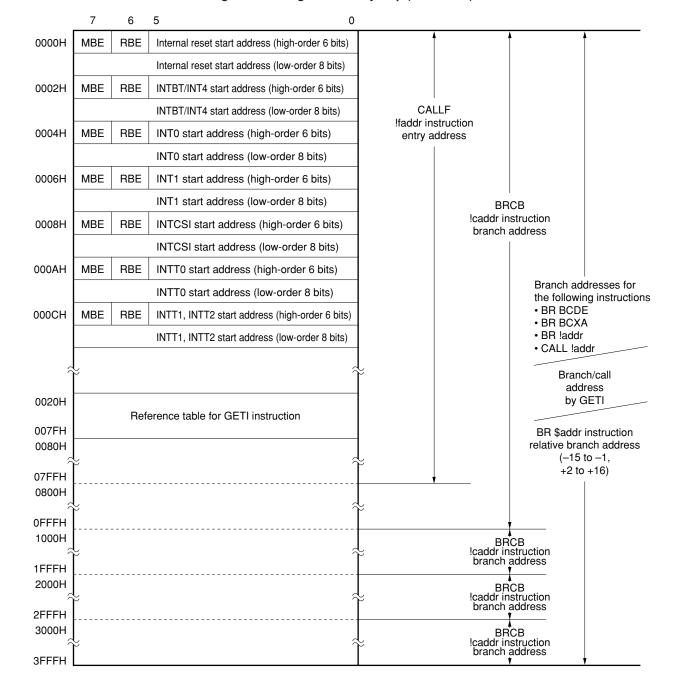
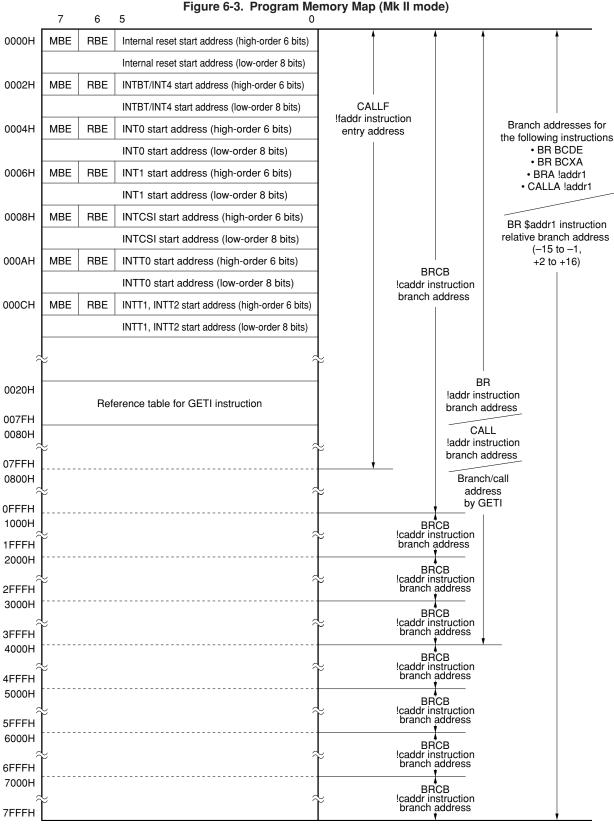



Figure 6-2. Program Memory Map (Mk I mode)

Remark For instructions other than those noted above, the BR PCDE and BR PCXA instructions can be used to branch to addresses with changes in the PC's low-order 8 bits only.

Caution To allow the vectored interrupt's 14-bit start address (noted above), set the address within a 16K area (0000H to 3FFFH).

Remark For instructions other than those noted above, the BR PCDE and BR PCXA instructions can be used to branch to addresses with changes in the PC's low-order 8 bits only.

Memory bank

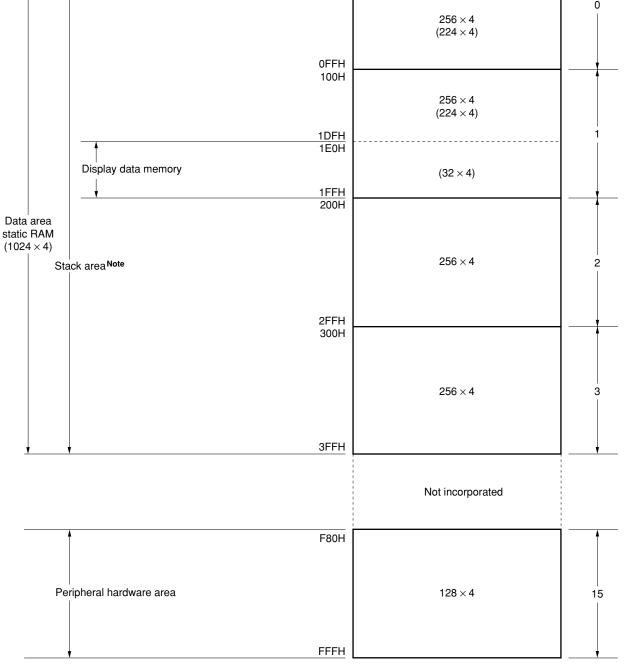

6.3 Data Memory (RAM) ... 1024×4 bits

Figure 6-4 shows the data memory configuration.

Data memory consists of a data area and a peripheral hardware area. The data area consists of 1024 × 4-bit static RAM.

Data memory 000H General-purpose register area (32×4) 01FH 020H 256 × 4 (224×4) 0FFH 100H 256×4 (224×4)

Figure 6-4. Data Memory Map

Note Memory bank 0, 1, 2, or 3 can be selected as the stack area.

7. INSTRUCTION SET

(1) Representation and coding formats for operands

In the instruction's operand area, use the following coding format to describe operands corresponding to the instruction's operand representations (for further description, see the RA75X Assembler Package User's Manual Language

★ (U12385E)). When there are several codes, select and use just one. Codes that consist of uppercase letters and + or – symbols are key words that should be entered as they are.

For immediate data, enter an appropriate numerical value or label.

Enter register flag symbols as label descriptors instead of mem, fmem, pmem, bit, etc. (For details, refer to the μ PD753017 User's Manual (U11282E)). The number of labels that can be entered for fmem and pmem are restricted.

Representation	Coding Format
reg	X, A, B, C, D, E, H, L
reg1	X, B, C, D, E, H, L
rp	XA, BC, DE, HL
rp1	BC, DE, HL
rp2	BC, DE
rp'	XA, BC, DE, HL, XA', BC', DE', HL'
rp'1	BC, DE, HL, XA', BC', DE', HL'
rpa	HL, HL+, HL-, DE, DL
rpa1	DE, DL
n4	4-bit immediate data or label
n8	8-bit immediate data or label
mem	8-bit immediate data or label ^{Note}
bit	2-bit immediate data or label
fmem	FB0H-FBFH, FF0H-FFFH immediate data or label
pmem	FC0H-FFFH immediate data or label
addr	0000H-3FFFH immediate data or label
addr1	0000H-7FFFH immediate data or label (Mk II mode only)
caddr	12-bit immediate data or label
faddr	11-bit immediate data or label
taddr	20H-7FH immediate data (however, bit0 = 0) or label
PORTn	PORT0-PORT7
IEXXX	IEBT, IECSI, IET0, IET1, IET2, IE0-IE2, IE4, IEW
RBn	RB0-RB3
MBn	MB0-MB3, MB15

Note When processing 8-bit data, only even-numbered addresses can be specified.

(2) Operation legend

A : A register; 4-bit accumulator

B : B register
C : C register
D : D register
E : E register
H : H register
L : L register
X : X register

XA : Register pair (XA); 8-bit accumulator

BC : Register pair (BC)
DE : Register pair (DE)
HL : Register pair (HL)

XA' : Expansion register pair (XA')
BC' : Expansion register pair (BC')
DE' : Expansion register pair (DE')
HL' : Expansion register pair (HL')

PC: Program counter SP: Stack pointer

CY : Carry flag; bit accumulator
PSW : Program status word
MBE : Memory bank enable flag
RBE : Register bank enable flag

PORTn : Port n (n = 0 to 7)

IME : Interrupt master enable flag
IPS : Interrupt priority selection register

IEXXX : Interrupt enable flag

RBS : Register bank selection register
MBS : Memory bank selection register
PCC : Processor clock control register
. : Delimiter for address and bit

(XX) : Addressed dataXXH : Hexadecimal data

(3) Description of symbols used in addressing area

	MB = MBE • MBS	'	
*1	MBS = 0-3, 15		
*2	MB = 0		
*3	MBE = 0 : MB = 0 (000H-07FH)		
	MB = 15 (F80H-FFFH)	Data m addre	
	MBE = 1 : MB = MBS		
	MBS = 0-3, 15		
*4	MB = 15, fmem = FB0H-FBFH, FF0H-FFFH		
*5	MB = 15, pmem = FC0H-FFFH	,	,
*6	addr = 0000H-3FFFH	'	•
*7	addr, addr1 = (Current PC) -15 to (Current PC) -1		
	(Current PC) +2 to (Current PC) +16		
*8	caddr = 0000H-0FFFH (PC14, 13, 12 = 000B) or		
	1000H-1FFFH (PC14, 13, 12 = 001B) or		
	2000H-2FFFH (PC14, 13, 12 = 010B) or		
	3000H-3FFFH (PC14, 13, 12 = 011B) or		
	4000H-4FFFH (PC14, 13, 12 = 100B: Mk II mode only) or	Program addre	
	5000H-5FFFH (PC14, 13, $12 = 101B$: Mk II mode only) or		
	6000H-6FFFH (PC14, 13, 12 = 110B: Mk II mode only) or		
	7000H-7F7FH (PC14, 13, 12 = 111B: Mk II mode only)		
*9	faddr = 0000H-07FFH		
*10	taddr = 0020H-007FH		
*11	addr1 = 0000H-7FFFH (Mk II mode only)	,	,

Remarks 1. MB indicates access-enabled memory banks.

- 2. In area *2, MB = 0 for both MBE and MBS.
- 3. In areas *4 and *5, MB = 15 for both MBE and MBS.
- **4.** Areas *6 to *11 indicate corresponding address-enabled areas.

(4) Description of machine cycles

S indicates the number of machine cycles required for skipping of skip-specified instructions. The value of S varies as shown below.

- No skip S = 0
- Skipped instruction is 1-byte or 2-byte instruction S = 1

Note 3-byte instructions: BR !addr, BRA !addr1, CALL !addr, CALLA !addr1

Caution The GETI instruction is skipped for one machine cycle.

One machine cycle equals one cycle (= tcy) of the CPU clock Φ . Use the PCC setting to select among four cycle times.

Instruction Group	Mnemonic	Operand	No. of Bytes	Machine Cycle	Operation	Addressing Area	Skip Condition
Transfer	MOV	A, #n4	1	1	A ← n4		String-effect A
		reg1, #n4	2	2	reg1← n4		
		XA, #n8	2	2	XA ← n8		String-effect A
		HL, #n8	2	2	HL ← n8		String-effect B
		rp2, #n8	2	2	rp2 ← n8		
		A, @HL	1	1	$A \leftarrow (HL)$	*1	
		A, @HL+	1	2+S	$A \leftarrow (HL)$, then $L \leftarrow L+1$	*1	L=0
		A, @HL-	1	2+S	$A \leftarrow (HL)$, then $L \leftarrow L-1$	*1	L=FH
		A, @rpa1	1	1	A ← (rpa1)	*2	
		XA, @HL	2	2	XA ← (HL)	*1	
		@HL, A	1	1	$(HL) \leftarrow A$	*1	
		@HL, XA	2	2	$(HL) \leftarrow XA$	*1	
		A, mem	2	2	A ← (mem)	*3	
		XA, mem	2	2	XA ← (mem)	*3	
		mem, A	2	2	(mem) ← A	*3	
		mem, XA	2	2	(mem) ← XA	*3	
		A, reg	2	2	A ← reg		
		XA, rp'	2	2	XA ← rp'		
		reg1, A	2	2	reg1 ← A		
		rp'1, XA	2	2	rp'1 ← XA		
	XCH	A, @HL	1	1	$A \leftrightarrow (HL)$	*1	
		A, @HL+	1	2+S	$A \leftrightarrow (HL)$, then $L \leftarrow L+1$	*1	L=0
		A, @HL-	1	2+S	$A \leftrightarrow (HL)$, then $L \leftarrow L-1$	*1	L=FH
		A, @rpa1	1	1	$A \leftrightarrow (rpa1)$	*2	
		XA, @HL	2	2	$XA \leftrightarrow (HL)$	*1	
		A, mem	2	2	$A \leftrightarrow (mem)$	*3	
		XA, mem	2	2	$XA \leftrightarrow (mem)$	*3	
		A, reg1	1	1	A ↔ reg1		
		XA, rp'	2	2	XA ↔ rp'		
Гable	MOVTNote 1	XA, @PCDE	1	3	XA ← (PC13-8+DE)ROM		
eference					XA ← (PC14-8+DE)ROM	1	
		XA, @PCXA	1	3	XA ← (PC13-8+XA)ROM		
					XA ← (PC14-8+XA)ROM		
		XA, @BCDE	1	3	$XA \leftarrow (BCDE)_{ROM^{Note 2}}$	*6	
					$XA \leftarrow (BCDE)ROM^{Note 2}$	*11	
		XA, @BCXA	1	3	$XA \leftarrow (BCXA)ROM^{Note 2}$	*6	
					$XA \leftarrow (BCXA)ROM^{Note 2}$	*11	

Notes 1. Shaded areas indicate support for Mk II mode only. Other areas indicate support for Mk I mode only.

2. Only the low-order 3 bits in the B register are valid.

Instruction Group	Mnemonic	Operand	No. of Bytes	Machine Cycle	Operation	Addressing Area	Skip Condition
Bit transfer	MOV1	CY, fmem.bit	2	2	CY← (fmem.bit)	*4	
		CY, pmem.@L	2	2	$CY \leftarrow (pmem7-2+L3-2.bit(L1-0))$	*5	
		CY, @H+mem.bit	2	2	CY ← (H+mem3-0.bit)	*1	
		fmem.bit, CY	2	2	$(fmem.bit) \leftarrow CY$	*4	
		pmem.@L, CY	2	2	$(pmem7-2+L3-2.bit(L1-0)) \leftarrow CY$	*5	
		@H+mem.bit, CY	2	2	(H+mem₃-o.bit) ← CY	*1	
Arithmetic	ADDS	A, #n4	1	1+S	A ← A+n4		carry
		XA, #n8	2	2+S	$XA \leftarrow XA+n8$		carry
		A, @HL	1	1+S	$A \leftarrow A\text{+}(HL)$	*1	carry
		XA, rp'	2	2+S	$XA \leftarrow XA + rp'$		carry
		rp'1, XA	2	2+S	rp'1 ← rp'1+XA		carry
	ADDC	A, @HL	1	1	$A,CY \leftarrow A + (HL) + CY$	*1	
		XA, rp'	2	2	$XA, CY \leftarrow XA+rp'+CY$		
		rp'1, XA	2	2	$rp'1, CY \leftarrow rp'1+XA+CY$		
	SUBS	A, @HL	1	1+S	$A \leftarrow A-(HL)$	*1	borrow
		XA, rp'	2	2+S	XA ← XA–rp'		borrow
		rp'1, XA	2	2+S	rp'1 ← rp'1–XA		borrow
	SUBC	A, @HL	1	1	$A,CY\leftarrowA\!\!-\!\!(HL)\!\!-\!\!CY$	*1	
		XA, rp'	2	2	XA, CY ← XA–rp'–CY		
		rp'1, XA	2	2	rp'1, CY ← rp'1–XA–CY		
	AND	A, #n4	2	2	$A \leftarrow A \wedge n4$		
		A, @HL	1	1	$A \leftarrow A \land (HL)$	*1	
		XA, rp'	2	2	$XA \leftarrow XA \wedge rp'$		
		rp'1, XA	2	2	$rp'1 \leftarrow rp'1 \land XA$		
	OR	A, #n4	2	2	$A \leftarrow A \lor n4$		
		A, @HL	1	1	$A \leftarrow A \vee (HL)$	*1	
		XA, rp'	2	2	$XA \leftarrow XA \lor rp'$		
		rp'1, XA	2	2	$rp'1 \leftarrow rp'1 \lor XA$		
	XOR	A, #n4	2	2	A ← A ∀ n4		
		A, @HL	1	1	$A \leftarrow A \lor (HL)$	*1	
		XA, rp'	2	2	$XA \leftarrow XA \lor rp'$		
		rp'1, XA	2	2	rp'1 ← rp'1 ∀ XA		
Accumulator	RORC	Α	1	1	$CY \leftarrow A_0, A_3 \leftarrow CY, A_{n-1} \leftarrow A_n$		
manipulation	NOT	Α	2	2	$A \leftarrow \overline{A}$		
Increment/	INCS	reg	1	1+S	reg ← reg+1		reg=0
decrement		rp1	1	1+S	rp1 ← rp1+1		rp1=00H
		@HL	2	2+S	(HL) ← (HL)+1	*1	(HL)=0
		mem	2	2+S	$(mem) \leftarrow (mem)+1$	*3	(mem)=0
	DECS	reg	1	1+S	reg ← reg-1		reg=FH
		rp'	2	2+S	rp' ← rp'–1		rp'=FFH

Instruction Group	Mnemonic	Operand	No. of Bytes	Machine Cycle	Operation	Addressing Area	Skip Condition
Comparison	SKE	reg, #n4	2	2+S	Skip if reg=n4		reg=n4
		@HL, #n4	2	2+S	Skip if (HL)=n4	*1	(HL)=n4
		A, @HL	1	1+S	Skip if A=(HL)	*1	A=(HL)
		XA, @HL	2	2+S	Skip if XA=(HL)	*1	XA=(HL)
		A, reg	2	2+S	Skip if A=reg		A=reg
		XA, rp'	2	2+S	Skip if XA=rp'		XA=rp'
Carry flag	SET1	CY	1	1	CY ← 1		
manipulation	CLR1	CY	1	1	$CY \leftarrow 0$		
	SKT	CY	1	1+S	Skip if CY=1		CY=1
	NOT1	CY	1	1	$CY \leftarrow \overline{CY}$		
Memory bit	SET1	mem.bit	2	2	(mem.bit) ← 1	*3	
manipulation		fmem.bit	2	2	(fmem.bit) ← 1	*4	
		pmem.@L	2	2	(pmem7-2+L3-2.bit(L1-0)) ← 1	*5	
		@H+mem.bit	2	2	(H+mem₃-o.bit)← 1	*1	
	CLR1	mem.bit	2	2	(mem.bit) ← 0	*3	
		fmem.bit	2	2	(fmem.bit)← 0	*4	
		pmem.@L	2	2	(pmem7-2+L3-2.bit(L1-0))←0	*5	
		@H+mem.bit	2	2	(H+mem₃-o.bit)← 0	*1	
	SKT	mem.bit	2	2+S	Skip if(mem.bit)=1	*3	(mem.bit)=1
		fmem.bit	2	2+S	Skip if(fmem.bit)=1	*4	(fmem.bit)=1
		pmem.@L	2	2+S	Skip if(pmem7-2+L3-2.bit(L1-0))=1	*5	(pmem.@L)=1
		@H+mem.bit	2	2+S	Skip if(H+mem3-0.bit)=1	*1	(@H+mem.bit)=1
	SKF	mem.bit	2	2+S	Skip if(mem.bit)=0	*3	(mem.bit)=0
		fmem.bit	2	2+S	Skip if(fmem.bit)=0	*4	(fmem.bit)=0
		pmem.@L	2	2+S	Skip if(pmem7-2+L3-2.bit(L1-0))=0	*5	(pmem.@L)=0
		@H+mem.bit	2	2+S	Skip if(H+mem3-0.bit)=0	*1	(@H+mem.bit)=0
	SKTCLR	fmem.bit	2	2+S	Skip if(fmem.bit)=1 and clear	*4	(fmem.bit)=1
		pmem.@L	2	2+S	Skip if(pmem7-2+L3-2.bit (L1-0))=1 and clear	*5	(pmem.@L)=1
		@H+mem.bit	2	2+S	Skip if(H+mem3-0.bit)=1 and clear	*1	(@H+mem.bit)=1
	AND1	CY, fmem.bit	2	2	$CY \leftarrow CY_{\wedge}$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	$CY \leftarrow CY_{\land} (pmem7-2+L3-2.bit(L1-0))$	*5	
		CY, @H+mem.bit	2	2	$CY \leftarrow C \land (H+mem3-0.bit)$	*1	
	OR1	CY, fmem.bit	2	2	$CY \leftarrow CY \lor (fmem.bit)$	*4	
		CY, pmem.@L	2	2	$CY \leftarrow CY \lor (pmem7-2+L3-2.bit(L1-0))$	*5	
		CY, @H+mem.bit	2	2	$CY \leftarrow CY \lor (H+mem3-0.bit)$	*1	
	XOR1	CY, fmem.bit	2	2	$CY \leftarrow CY \forall (fmem.bit)$	*4	
		CY, pmem.@L	2	2	$CY \leftarrow CY \forall (pmem7-2+L3-2.bit(L1-0))$	*5	
		CY, @H+mem.bit	2	2	CY ← C ∀ (H+mem₃-o.bit)	*1	

Instruction Group	Mnemonic	Operand	No. of Bytes	Machine Cycle	Operation	Addressing Area	Skip Condition
Branch	BR ^{Note 1}	addr	_	_	PC14 ← 0, PC13-0 ← addr (Use the assembler to select the most appropriate instruction among the following. • BR !addr • BRCB !caddr • BR \$addr	*6	
		addr1	-	_	PC14-0 ← addr1 (Use the assembler to select the most appropriate instruction among the following. • BRA !addr1 • BR !addr • BRCB !caddr • BR \$addr1	*11	
		!addr	3	3	PC14 ← 0, PC13-0 ← addr	*6	
		\$addr	1	2	PC14 ← 0, PC13-0 ← addr	*7	
		\$addr1	1	2	PC14-0 ← addr1		
		PCDE	2	3	PC14 ← 0, PC13-0 ← PC13-8+DE		
					PC14-0 ← PC14-8+DE		
		PCXA	2	3	PC14 ← 0, PC13-0 ← PC13-8+XA		
					PC14-0 ← PC14-8+XA		
		BCDE	2	3	PC14 ← 0, PC13-0 ← BCDE ^{Note 2}	*6	
					PC14-0 ← BCDE ^{Note 2}	*11	
		BCXA	2	3	PC14 ← 0, PC13-0 ← BCXA ^{Note 2}	*6	
					PC14-0 ← BCXA ^{Note 2}	*11	
	BRA ^{Note 1}	!addr	3	3	PC14 ← 0, PC13-0 ← addr	*6	
			3	3	PC14-0 ← addr1	*11	
	BRCBNote 1	!caddr	2	2	PC14 ← 0, PC13-0 ← PC13, 12+caddr11-0	*8	
					PC14-0 ← PC14, 13, 12+caddr11-0		

Notes 1. Shaded areas indicate support for Mk II mode only. Other areas indicate support for Mk I mode only.

2. The only following bits are valid in the B register.

For Mk I mode: Low-order 2 bits
For Mk II mode: Low-order 3 bits

Instruction Group	Mnemonic	Operand	No. of Bytes	Machine Cycle	Operation	Addressing Area	Skip Condition
Subroutine	CALLANote	!addr1	3	3	(SP–5) ← 0, PC14-12	*11	
stack control					$(SP-6)(SP-3)(SP-4) \leftarrow PC_{11-0}$		
					$(SP-2) \leftarrow X,X,MBE,RBE$		
					$PC_{14-0} \leftarrow addr1, SP \leftarrow SP-6$		
	CALLNote	!addr	3	3	$(SP-4)(SP-1)(SP-2) \leftarrow PC_{11-0}$	*6	
					$(SP-3) \leftarrow MBE, RBE, PC13, 12$		
					$PC14 \leftarrow 0, PC13-0 \leftarrow addr, SP \leftarrow SP-4$		
				4	(SP–5) ← 0, PC14-12		
					$(SP-6)(SP-3)(SP-4) \leftarrow PC_{11-0}$		
					(SP–2)← X, X, MBE, RBE		
					$PC_{14} \leftarrow 0$, $PC_{13-0} \leftarrow addr$, $SP \leftarrow SP-6$		
	CALLFNote	!faddr	2	2	$(SP-4)(SP-1)(SP-2) \leftarrow PC_{11-0}$	*9	
					(SP-3) ← MBE, RBE, PC13, 12		
					$PC14 \leftarrow 0, PC13-0 \leftarrow 000 + faddr, SP \leftarrow SP-4$		
				3	(SP–5) ← 0, PC14-12		
					$(SP-6)(SP-3)(SP-4) \leftarrow PC_{11-0}$		
					$(SP-2) \leftarrow X, X, MBE, RBE$		
					$PC_{14-0} \leftarrow 0000 + faddr, SP \leftarrow SP-6$		
	RETNote		1	3	MBE, RBE, PC13, 12 ← (SP+1)		
					$PC_{11-0} \leftarrow (SP)(SP+3)(SP+2)$		
					$PC_{14} \leftarrow 0$, $SP \leftarrow SP+4$		
					$X, X, MBE, RBE \leftarrow (SP+4)$		
					0, PC14-12 ← (SP+1)		
					PC ₁₁₋₀ ← (SP)(SP+3)(SP+2)		
					SP ← SP+6		
	RETSNote		1	3+S	MBE, RBE, PC13, 12 ← (SP+1)		Unconditional
					$PC_{11-0} \leftarrow (SP)(SP+3)(SP+2)$		
					$PC_{14} \leftarrow 0$, $SP \leftarrow SP+4$		
					then skip unconditionally		
					$X, X, MBE, RBE \leftarrow (SP+4)$		
					0, PC14-12 ← (SP+1)		
					PC11-0 ← (SP)(SP+3)(SP+2)		
					SP ← SP+6		
					then skip unconditionally		
	RETI ^{Note}		1	3	MBE, RBE, PC13, 12 ← (SP+1), PC14 ← 0		
					$PC11-0 \leftarrow (SP)(SP+3)(SP+2)$		
					$PSW \leftarrow (SP+4)(SP+5), SP \leftarrow SP+6$		
					0, PC14-12 ← (SP+1)		
					$PC11-0 \leftarrow (SP)(SP+3)(SP+2)$		
					$PSW \leftarrow (SP+4)(SP+5), SP \leftarrow SP+6$		

Note Shaded areas indicate support for Mk II mode only. Other areas indicate support for Mk I mode only.

Instruction Group	Mnemonic	Operand	No. of Bytes	Machine Cycle	Operation	Addressing Area	Skip Condition
Subroutine	PUSH	rp	1	1	$(SP-1)(SP-2) \leftarrow rp, SP \leftarrow SP-2$		
stack control							
POP		rp	1	1	$rp \leftarrow (SP+1)(SP), SP \leftarrow SP+2$		
		BS	2	2	$MBS \leftarrow (SP+1),RBS \leftarrow (SP),SP \leftarrow SP+2$		
Interrupt	EI		2	2	IME(IPS.3) ← 1		
control		IEXXX	2	2	IEXXX ← 1		
	DI		2	2	IME(IPS.3) ← 0		
		IEXXX	2	2	IEXXX ← 0		
I/O	INNote 1	A, PORTn	2	2	$A \leftarrow PORTn$ (n=0-7)		
		XA, PORTn	2	2	XA ← PORTn+1, PORTn (n=4, 6)		
	OUTNote 1	PORTn, A	2	2	$PORTn \leftarrow A$ (n=2-7)		
		PORTn, XA	2	2	PORTn+1, PORTn ← XA (n=4, 6)		
CPU control	HALT		2	2	Set HALT Mode(PCC.2 ← 1)		
	STOP		2	2	Set STOP Mode(PCC.3 ←1)		
	NOP		1	1	No Operation		
Special	SEL	RBn	2	2	RBS ← n (n=0-3)		
		MBn	2	2	MBS ← n (n=0-3, 15)		
	GETI ^{Note 2, 3}	taddr	1	3	When using TBR instruction	*10	
					PC13-0 \leftarrow (taddr)5-0+(taddr+1), PC14 \leftarrow 0		
					When using TCALL instruction		
					(SP-4)(SP-1)(SP-2) ← PC11-0		
					(SP–3) ← MBE, RBE, PC13, 12, PC14 ← 0		
					PC13-0 ← (taddr)5-0+(taddr+1)		
					SP ← SP–4		
					When using instruction other than TBR or TCALL Execute (taddr)(taddr+1) instructions		Determined by referenced instruction
			1	3	When using TBR instruction	*10	
					$PC_{13-0} \leftarrow (taddr)_{5-0} + (taddr+1), PC_{14} \leftarrow 0$		
				4	When using TCALL instruction		
					(SP–5) ← 0, PC14-12		
					(SP-6)(SP-3)(SP-4) ← PC11-0		
					$(SP-2) \leftarrow X, X, MBE, RBE, PC_{14} \leftarrow 0$		
					PC13-0 ← (taddr)5-0+(taddr+1)		
					SP ← SP–6		
				3	When using instruction other than TBR or TCALL Execute (taddr)(taddr+1) instructions		Determined by referenced instruction

Notes 1. Before executing the IN or OUT instruction, set MBE to 0 or 1 and set MBS to 15.

- 2. TBR and TCALL instructions are assembler pseudo-instructions for the GETI instruction's table definitions.
- 3. Shaded areas indicate support for Mk II mode only. Other areas indicate support for Mk I mode only.

8. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY

The program memory contained in the μ PD75P3018A is a 32768 × 8-bit one-time PROM that can be electrically written one time only. The pins listed in the table below are used for this one-time PROM's write/verify operations. Clock input from the X1 pin is used instead of address input as a method for updating addresses.

Pin	Function
VPP	Pin where program voltage is applied during program memory write/verify (usually VDD potential)
X1, X2	Clock input pins for address updating during program memory write/verify. Input the X1 pin's inverted signal to the X2 pin.
MD0-MD3	Operation mode selection pin for program memory write/verify
D0/P40 to D3/P43 (low-order 4 bits) D4/P50 to D7/P53 (high-order 4 bits)	8-bit data I/O pins for program memory write/verify
VDD	Pin where power supply voltage is applied. Applies $V_{\text{DD}} = 1.8$ to 5.5 V in normal operation mode and +6 V for program memory write/verify.

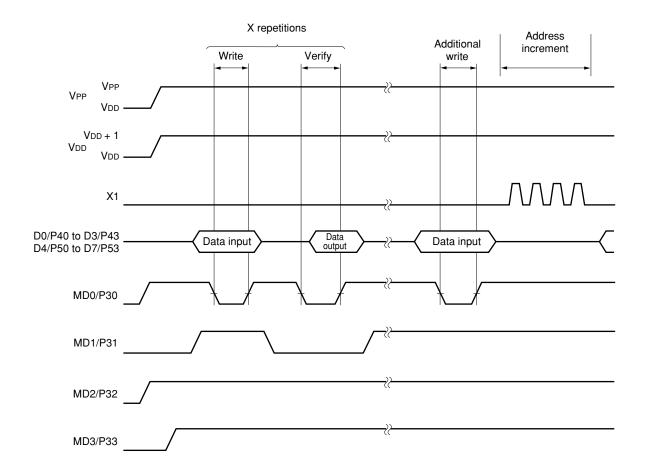
★ Caution Pins not used for program memory write/verify should be connected to Vss via a resistor individually.

8.1 Operation Modes for Program Memory Write/Verify

When +6 V is applied to the V_{DD} pin and +12.5 V to the V_{PP} pin, the μ PD75P3018A enters the program memory write/verify mode. The following operation modes can be specified by setting pins MD0 to MD3 as shown below.

Ор	Operation Mode Specification					Operation Mode
VPP	VDD	MD0	MD1	MD2	MD3	
+12.5 V	+6 V	Н	L	Н	L	Zero-clear program memory address
		L	Н	Н	Н	Write mode
		L	L	Н	Н	Verify mode
		Н	Х	Н	Н	Program inhibit mode

X: L or H

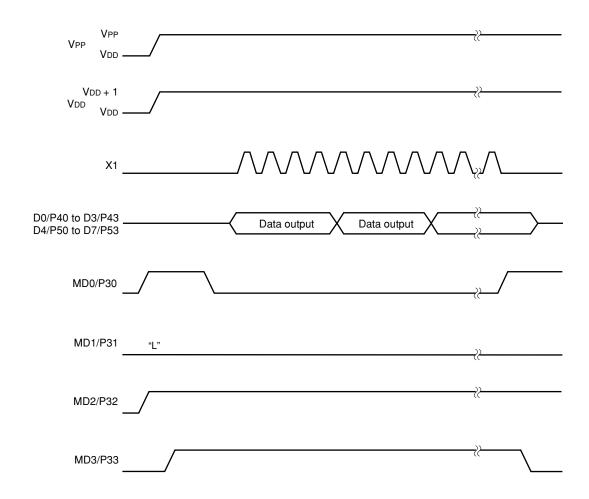


8.2 Program Memory Write Procedure

Program memory can be written at high speed using the following procedure.

- (1) Pull unused pins to Vss through resistors. Set the X1 pin low.
- (2) Supply 5 V to the VDD and VPP pins.
- (3) Wait 10 μ s.
- (4) Select the zero-clear program memory address mode.
- (5) Supply 6 V to the VDD and 12.5 V to the VPP pins.
- (6) Write data in the 1 ms write mode.
- (7) Select the verify mode. If the data is correct, go to step (8) and if not, repeat steps (6) and (7).
- (8) (X : number of write operations from steps (6) and (7)) \times 1 ms additional write.
- (9) Apply four pulses to the X1 pin to increment the program memory address by one.
- (10) Repeat steps (6) to (9) until the end address is reached.
- (11) Select the zero-clear program memory address mode.
- (12) Return the VDD and VPP pins back to 5 V.
- (13) Turn off the power.

The following figure shows steps (2) to (9).



8.3 Program Memory Read Procedure

The μ PD75P3018A can read program memory contents using the following procedure.

- (1) Pull unused pins to Vss through resistors. Set the X1 pin low.
- (2) Supply 5 V to the VDD and VPP pins.
- (3) Wait 10 μ s.
- (4) Select the zero-clear program memory address mode.
- (5) Supply 6 V to the VDD and 12.5 V to the VPP pins.
- (6) Select the verify mode. Apply four pulses to the X1 pin. Every four clock pulses will output the data stored in one address.
- (7) Select the zero-clear program memory address mode.
- (8) Return the VDD and VPP pins back to 5 V.
- (9) Turn off the power.

The following figure shows steps (2) to (7).

8.4 One-time PROM Screening

Due to its structure, the one-time PROM cannot be fully tested before shipment by NEC Electronics. Therefore, NEC Electronics recommends that after the required data is written and the PROM is stored under the temperature and time conditions shown below, the PROM should be verified via a screening.

Storage Temperature	Storage Time
125°C	24 hours

9. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.3 to +7.0	V
PROM supply voltage	VPP		-0.3 to +13.5	V
Input voltage	VII	Other than ports 4 and 5	-0.3 to V _{DD} + 0.3	V
	V _{I2}	Ports 4 and 5 (During N-ch open drain)	-0.3 to +14	V
Output voltage	Vo		-0.3 to V _{DD} + 0.3	V
High-level output current	Іон	Per pin	-10	mA
		Total of all pins	-30	mA
Low-level output current	Іоь	Per pin	30	mA
		Total of all pins	220	mA
Operating ambient temperature	Та		-40 to +85 ^{Note}	°C
Storage temperature	T _{stg}		-65 to +150	°C

Note To drive LCD in normal mode, $T_A = -10 \text{ to } +85^{\circ}\text{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Capacitance (TA = 25° C, V_{DD} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz			15	pF
Output capacitance	Соит	Unmeasured pins returned to 0 V			15	pF
I/O capacitance	Сю				15	pF

Main System Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	X1 X2 C1 C2 C2	Oscillation frequency (fx) ^{Note 1}		1.0		6.0 ^{Note 2}	MHz
		Oscillation stabilization timeNote 3	After V _{DD} has reached MIN. value of oscillation voltage range			4	ms
Crystal resonator	X1 X2 C2 VDD	Oscillation frequency (fx) ^{Note 1}		1.0		6.0 ^{Note 2}	MHz
		Oscillation stabilization timeNote 3	V _{DD} = 4.5 to 5.5 V			10	ms
						30	
External clock	X1 X2 X	X1 input frequency (fx) ^{Note 1}		1.0		6.0 ^{Note 2}	MHz
		X1 input high-/ low-level width (txH, txL)		83.3		500	ns

Notes 1. The oscillation frequency and X1 input frequency shown above indicate characteristics of the oscillator only. For the instruction execution time, refer to **AC Characteristics**.

- 2. If the oscillation frequency is 4.19 MHz < fx \leq 6.0 MHz at 1.8 V \leq V DD < 2.7 V, do not select processor clock control register (PCC) = 0011. If PCC = 0011, one machine cycle is less than 0.95 μ s, falling short of the rated value of 0.95 μ s.
- 3. The oscillation stabilization time is the time required for oscillation to be stabilized after VDD has been applied or STOP mode has been released.

Caution When using the main system clock oscillator, wire the portion enclosed in the broken line in the above figure as follows to prevent adverse influence due to wiring capacitance:

- Keep the wiring length as short as possible.
- · Do not cross the wiring with other signal lines.
- · Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- · Always keep the ground point of the capacitor of the oscillator at the same potential as VDD.
- Do not ground to a power supply pattern through which a high current flows.
- Do not extract signals from the oscillator.
- Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Subsystem Clock Oscillator Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	XT1 XT2 R C3 C4	Oscillation frequency (fxT)Note 1		32	32.768	35	kHz
		Oscillation stabilization time ^{Note 2}	V _{DD} = 4.5 to 5.5 V		1.0	2	s
						10	
External clock	XT1 XT2	XT1 input frequency (fxT)Note 1		32		100	kHz
	A	XT1 input high-/ low-level width (txth, txtl)		5		15	μs

- **Notes 1.** The oscillation frequency and XT1 input frequency shown above indicate characteristics of the oscillator only. For the instruction execution time, refer to **AC Characteristics**.
 - 2. The oscillation stabilization time is the time required for oscillation to be stabilized after VDD has been applied.

Caution When using the subsystem clock oscillator, wire the portion enclosed in the broken line in the above figure as follows to prevent adverse influence due to wiring capacitance:

- · Keep the wiring length as short as possible.
- Do not cross the wiring with other signal lines.
- · Do not route the wiring in the vicinity of a line through which a high alternating current flows.
- Always keep the ground point of the capacitor of the oscillator at the same potential as VDD.
- Do not ground to a power supply pattern through which a high current flows.
- Do not extract signals from the oscillator.

The subsystem clock oscillator has a low amplification factor to reduce current consumption and is more susceptible to noise than the main system clock oscillator. Therefore, exercise utmost care in wiring the subsystem clock oscillator.

★ Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

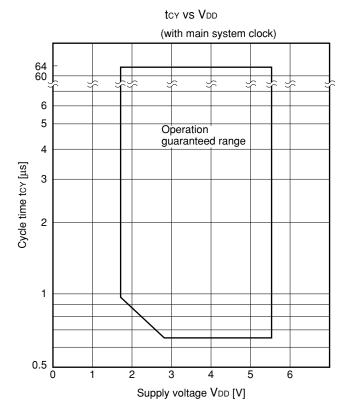
DC Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Parameter	Symbol		Conditions			MIN.	TYP.	MAX.	Unit
Low-level output	loL	Per pin						15	mA
current		Total of all pi	ns					150	mA
High-level input	V _{IH1}	Ports 2, 3		2.7 V	≤ V _{DD} ≤ 5.5 V	0.7V _{DD}		V _{DD}	V
voltage				1.8 V	≤ V _{DD} < 2.7 V	0.9V _{DD}		V _{DD}	V
	V _{IH2}	Ports 0, 1, 6,	7, RESET	2.7 V	≤ V _{DD} ≤ 5.5 V	0.8V _{DD}		V _{DD}	V
				1.8 V	≤ V _{DD} < 2.7 V	0.9V _{DD}		V _{DD}	V
	V _{IH3}	Ports 4, 5		2.7 V	≤ V _{DD} ≤ 5.5 V	0.7V _{DD}		13	V
		(N-ch open-c	Irain)	1.8 V	≤ V _{DD} < 2.7 V	0.9V _{DD}		13	V
	V _{IH4}	X1, XT1				V _{DD} - 0.1		V _{DD}	V
Low-level input	V _{IL1}	Ports 2 to 5		2.7 V	≤ V _{DD} ≤ 5.5 V	0		0.3V _{DD}	V
voltage				1.8 V	≤ V _{DD} < 2.7 V	0		0.1V _{DD}	V
	V _{IL2}	Ports 0, 1, 6,	7, RESET	2.7 V	≤ V _{DD} ≤ 5.5 V	0		0.2V _{DD}	V
				1.8 V	≤ V _{DD} < 2.7 V	0		0.1V _{DD}	V
	VIL3	X1, XT1		1		0		0.1	V
High-level output	Vон	SCK, SO, Po	SCK, SO, Ports 2, 3, 6, 7, BP0 to BP7			V _{DD} - 0.5			V
voltage		lон = −1.0 m/	A						
Low-level output	V _{OL1}	SCK, SO, Po	orts 2 to 7,	ts 2 to 7, IoL = 15 mA			0.2	2.0	V
voltage		BP0 to BP7	$V_{DD} = 4.5 \text{ to } 5.5 \text{ V}$						
				lol =	1.6 mA			0.4	V
	V _{OL2}	SB0, SB1	N-ch open-drain					0.2V _{DD}	V
			Pull-up resistor ≥ 1	$k\Omega$					
High-level input	Ішн1	VIN = VDD	Pins other than X1	, XT1				3	μΑ
leakage current	ILIH2		X1, XT1					20	μΑ
	Ішнз	VIN = 13 V	Ports 4, 5 (N-ch op	en-dra	in)			20	μΑ
Low-level input	ILIL1	VIN = 0 V	Pins other than X1	, XT1,	Ports 4, 5			-3	μΑ
leakage current	ILIL2		X1, XT1					-20	μΑ
	ILIL3		Ports 4, 5 (N-ch op	en-dra	in)			-3	μΑ
			When input instruc	tion is	not executed				
			Ports 4, 5 (N-ch op	en-				-30	μΑ
			drain). When input	t	V _{DD} = 5.0 V		-10	-27	μΑ
			instruction is execu	uted	V _{DD} = 3.0 V		-3	-8	μΑ
High-level output	ILOH1	Vout = Vdd	SCK, SO/SB0, SB	1, Ports	2, 3, 6, 7			3	μΑ
leakage current	Ісон2	Vоит = 13 V	Ports 4, 5 (N-ch op	en-dra	in)			20	μΑ
Low-level output	ILOL	Vout = 0 V	•					-3	μΑ
leakage current									
Internal pull-up	RL	VIN = 0 V	Ports 0 to 3, 6, 7 (6	except	P00 pin)	50	100	200	kΩ
resistor									

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol			Conditio	ns		MIN.	TYP.	MAX.	Unit
LCD drive voltage	VLCD	VAC0 = 0	TA = -4	10 to +8	5°C		2.7		V _{DD}	V
			T _A = -1	0 to +85	°C		2.2		V _{DD}	V
		VAC0 = 1					1.8		V _{DD}	V
VAC currentNote 1	Ivac	VAC0 = 1, VDD	= 2.0 V	= 2.0 V ±10%				1	4	μΑ
LCD output voltage	Vodc	lo = ±1.0 μA	VLCD0 =	VLCD			0		±0.2	V
deviationNote 2			VLCD1 =	VLCD X	2/3					
(common)			VLCD2 =	VLCD X	1/3					
LCD output voltage	Vods	$I_0 = \pm 0.5 \ \mu A$	1.8 V ≤	VLCD ≤	V _{DD}		0		±0.2	V
deviationNote 2										
(segment)										
Supply currentNote 3	I _{DD1}	6.0 MHz ^{Note 4}	V _{DD} = 5	.0 V ±10	0%Note 5			3.7	11.0	mA
		crystal	V _{DD} = 3	.0 V ±10	0%Note 6			0.73	2.2	mA
	I _{DD2}	oscillation	HALT	V _{DD} = 5	5.0 V ±10)%		0.92	2.6	mA
		C1 = C2 = 22 pF	mode	V _{DD} = 3	8.0 V ±10)%		0.3	0.9	mA
	I _{DD1}	4.19 MHz ^{Note 4}	$V_{DD} = 5$	$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 5}}$				2.7	8.0	mA
		crystal	V _{DD} = 3	V _{DD} = 3.0 V ±10% ^{Note 6}				0.57	1.7	mA
	I _{DD2}	oscillation	HALT	V _{DD} = 5	5.0 V ±10)%		0.90	2.5	mA
		C1 = C2 = 22 pF	mode	V _{DD} = 3	8.0 V ±10)%		0.28	0.8	mA
	IDD3	32.768	Low-	V _{DD} = 3	8.0 V ±10)%		42	126	μΑ
		kHz ^{Note 7}	voltage	$V_{DD} = 2$	2.0 V ±10)%		37	110	μΑ
		crystal	mode ^{Note 8}	V _{DD} = 3	3.0 V, TA	= 25°C		42	84	μΑ
		oscillation	Low current consump-	V _{DD} = 3	3.0 V ±10)%		39	117	μΑ
			tion mode ^{Note 9}	V _{DD} = 3	3.0 V, TA	= 25°C		39	78	μΑ
	I _{DD4}		HALT	Low-	V _{DD} = 3	.0 V ±10%		8.5	25	μΑ
			mode	voltage	V _{DD} = 2	.0 V ±10%		5.8	17	μΑ
				mode ^{Note 8}	V DD = 3	0.0 V, T _A = 25°C		8.5	17	μΑ
				Low current consump-	V _{DD} = 3	.0 V ±10%		3.5	12	μΑ
				tion mode ^{Note 9}		.0 V, T _A = 25°C		3.5	7	μΑ
	I _{DD5}		VDD = 5.0 V ±10%					0.05	10	μΑ
		STOP mode	$V_{DD} = 3$.0 V ±10	0%	T. 0500		0.02	5	μΑ
						T _A = 25°C		0.02	3	μΑ

- **Notes 1.** Clear VAC0 to 0 in the low current consumption mode and STOP mode. When VAC0 is set to 1, the current increases by about 1 μ A.
 - 2. Voltage deviation is the difference between the ideal values (VLCDn; n = 0, 1, 2) of the segment and common outputs and the output voltage.
 - 3. The current flowing through the internal pull-up resistor is not included.
 - 4. Including the case when the subsystem clock oscillates.
 - 5. When the device operates in high-speed mode with the processor clock control register (PCC) set to 0011.
 - 6. When the device operates in low-speed mode with PCC set to 0000.
 - 7. When the device operates on the subsystem clock, with the system clock control register (SCC) set to 1001 and oscillation of the main system clock stopped.
 - 8. When the sub-oscillation circuit control register (SOS) is set to 0000.
 - 9. When the SOS is set to 0010.
 - 10. When the SOS is set to 00x1, and the feedback resistor of the sub-oscillator is cut (x: don't care).


AC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Conditions	Conditions			MAX.	Unit
CPU clock cycle time Note 1	tcy	Operation with V _{DD} = 2.7 to 5.5 V		0.67		64	μs
(minimum instruction execution		main system clock		0.95		64	μs
time = 1 machine cycle)		Operation with subsystem	clock	114	122	125	μs
TI0, TI1, TI2 input frequency	f⊤ı	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$		0		1.0	MHz
				0		275	kHz
TI0, TI1, TI2 input high-/	tтін, tті∟	V _{DD} = 2.7 to 5.5 V		0.48			μs
low-level width				1.8			μs
Interrupt input high-/low-level	tinth, tintl	INT0	IM02 = 0	Note 2			μs
width			IM02 = 1	10			μs
		INT1, 2, 4		10			μs
		KR0-7		10			μs
RESET low-level width	trsl			10			μs

Notes 1. The cycle time (minimum instruction execution time) of the CPU clock (Φ) is determined by the oscillation frequency of the connected resonator (and external clock), the system clock control register (SCC), and processor clock control register (PCC).

The figure on the right shows the supply voltage V_{DD} vs. cycle time toy characteristics when the device operates with the main system clock.

2. 2tcy or 128/fx depending on the setting of the interrupt mode register (IM0).

Serial transfer operation

2-wire and 3-wire serial I/O modes (SCK ... internal clock output): (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Conditi	Conditions			MAX.	Unit
SCK cycle time	tkcY1	V _{DD} = 2.7 to 5.5 V	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$				ns
				3800			ns
SCK high-/low-level width	tkl1, tkH1	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				ns
				tkcy1/2-150			ns
SI ^{Note 1} setup time (to SCK ↑)	tsik1	V _{DD} = 2.7 to 5.5 V		150			ns
				500			ns
SI ^{Note 1} hold time (from SCK ↑)	tksi1	V _{DD} = 2.7 to 5.5 V		400			ns
				600			ns
$\overline{\operatorname{SCK}} \downarrow \to \operatorname{SO^{Note 1}}$ output	tkso1	$R_L = 1 \text{ k}\Omega, \text{ Note 2}$	V _{DD} = 2.7 to 5.5 V	0		250	ns
delay time		C _L = 100 pF		0		1000	ns

Notes 1. In 2-wire serial I/O mode, read SB0 or SB1 instead.

2. RL and CL respectively indicate the load resistance and load capacitance of the SO output line.

2-wire and 3-wire serial I/O modes (\overline{SCK} ... external clock input): (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Conditi	MIN.	TYP.	MAX.	Unit	
SCK cycle time	tKCY2	V _{DD} = 2.7 to 5.5 V	/DD = 2.7 to 5.5 V				ns
				3200			ns
SCK high-/low-level width	tkl2, tkH2	7 _{DD} = 2.7 to 5.5 V		400			ns
				1600			ns
SI ^{Note 1} setup time (to SCK ↑)	tsik2	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				ns
				150			ns
SI ^{Note 1} hold time (from SCK ↑)	tksi2	V _{DD} = 2.7 to 5.5 V		400			ns
				600			ns
$\overline{\operatorname{SCK}} \downarrow \to \operatorname{SO^{Note 1}}$ output	tkso2	$R_L = 1 \text{ k}\Omega, \text{ Note 2}$	V _{DD} = 2.7 to 5.5 V	0		300	ns
delay time		C _L = 100 pF		0		1000	ns

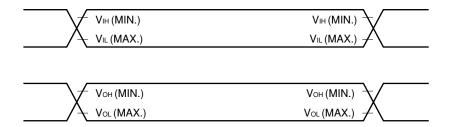
Notes 1. In 2-wire serial I/O mode, read SB0 or SB1 instead.

2. RL and CL respectively indicate the load resistance and load capacitance of the SO output line.

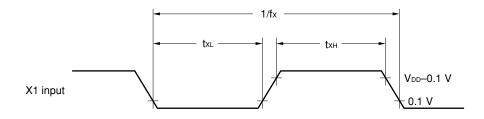
SBI mode (\overline{SCK} ... internal clock output (master)): (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

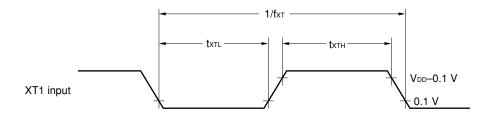
Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tксүз	$V_{\text{DD}} = 2.7 \text{ to } 5.5 \text{ V}$		1300			ns
				3800			ns
SCK high-/low-level width	tкьз, tкнз	V _{DD} = 2.7 to 5.5 V		tксүз/2-50			ns
				tксүз/2-150			ns
SB0, 1 setup time	tsik3	V _{DD} = 2.7 to 5.5 V		150			ns
(to SCK ↑)				500			ns
SB0, 1 hold time (from SCK 1)	t KSI3			tксүз/2			ns
$\overline{SCK}\downarrow \to SB0$, 1 output	tkso3	$R_L = 1 \text{ k}\Omega, ^{Note}$	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		250	ns
delay time		C _L = 100 pF		0		1000	ns
$\overline{SCK} \uparrow \to SB0, 1 \downarrow$	tкsв			tксүз			ns
SB0, 1 $\downarrow \rightarrow \overline{\text{SCK}} \downarrow$	t sbk			tксүз			ns
SB0, 1 low-level width	tsbl		<u> </u>	tксүз			ns
SB0, 1 high-level width	tsвн			tксүз			ns

Note RL and CL respectively indicate the load resistance and load capacitance of the SB0, 1 output line.

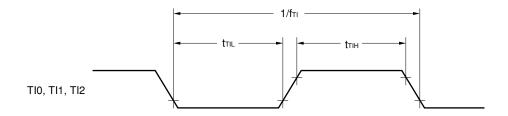

SBI mode (\overline{SCK} ... external clock input (slave)): (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tkcy4	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$		800			ns
				3200			ns
SCK high-/low-level width	tkl4, tkH4	V _{DD} = 2.7 to 5.5 V		400			ns
				1600			ns
SB0, 1 setup time	tsik4	V _{DD} = 2.7 to 5.5 V	V _{DD} = 2.7 to 5.5 V				ns
(to SCK ↑)				150			ns
SB0, 1 hold time (from SCK ↑)	tksi4			tkcy4/2			ns
$\overline{SCK}\downarrow \to SB0$, 1 output	tkso4	$R_L = 1 \text{ k}\Omega, \text{ Note}$	V _{DD} = 2.7 to 5.5 V	0		300	ns
delay time		C _L = 100 pF		0		1000	ns
$\overline{SCK} \uparrow \to SB0, 1 \downarrow$	tksb			tkcy4			ns
SB0, 1 $\downarrow \rightarrow \overline{\text{SCK}} \downarrow$	tsвк			tkcy4			ns
SB0, 1 low-level width	tsbl			tkcy4			ns
SB0, 1 high-level width	tsвн			tkcy4			ns

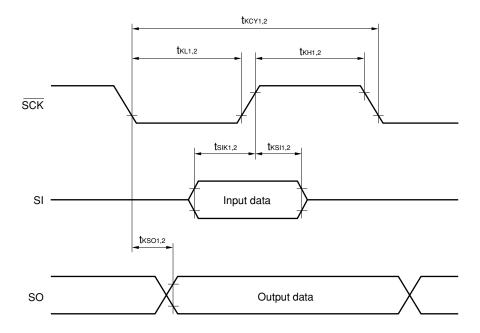

Note RL and CL respectively indicate the load resistance and load capacitance of the SB0, 1 output line.

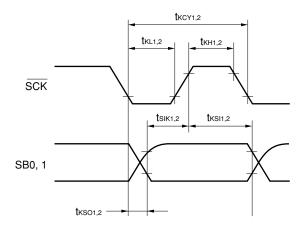


AC Timing Test Points (except X1 and XT1 inputs)



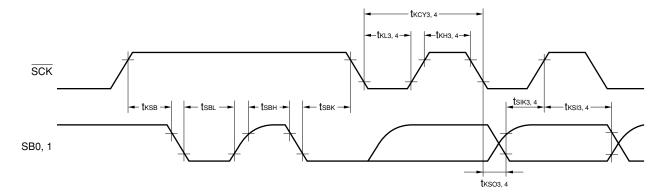
Clock Timing

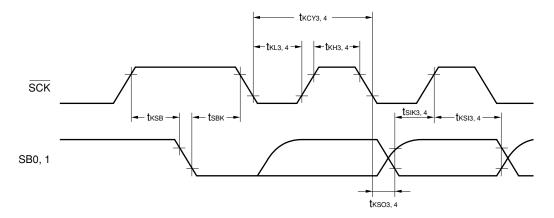

TI0, TI1, TI2 Timing



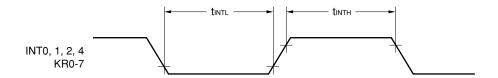
Serial Transfer Timing

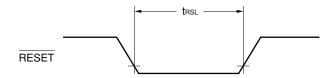
3-wire Serial I/O Mode


2-wire Serial I/O Mode



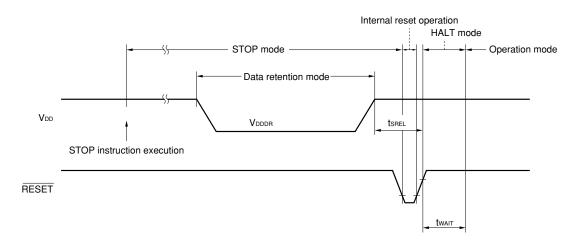
Serial Transfer Timing


Bus Release Signal Transfer

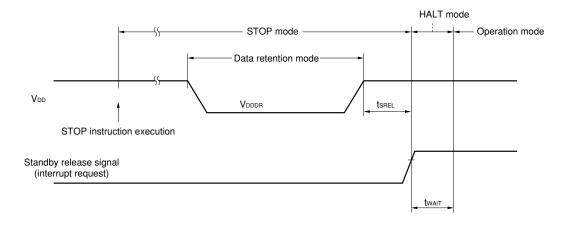

Command Signal Transfer

Interrupt Input Timing

RESET Input Timing


Data retention characteristics of data memory in STOP mode and at low supply voltage (TA = -40 to +85°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power	VDDDR		1.8		5.5	V
supply voltage						
Release signal setup time	tsrel		0			μs
Oscillation stabilization	twait	Released by RESET		215/fx		ms
wait time ^{Note 1}		Released by interrupt request		Note 2		ms


- **Notes 1.** The oscillation stabilization wait time is the time during which the CPU stops operating to prevent unstable operation when oscillation is started.
 - 2. Set by the basic interval timer mode register (BTM). (Refer to the table below.)

BTM3	BTM2	BTM1	BTM0	Wait	Time
DINIS	DIWZ	DIMI	D I IVIO	fx = 4.19 MHz	fx = 6.0 MHz
_	0	0	0	2 ²⁰ /fx (approx. 250 ms)	2 ²⁰ /fx (approx. 175 ms)
_	0	1	1	217/fx (approx. 31.3 ms)	217/fx (approx. 21.8 ms)
_	1	0	1	2 ¹⁵ /fx (approx. 7.81 ms)	2 ¹⁵ /fx (approx. 5.46 ms)
_	1	1	1	2 ¹³ /fx (approx. 1.95 ms)	2 ¹³ /fx (approx. 1.37 ms)

Data Retention Timing (when STOP mode released by RESET)

Data Retention Timing (standby release signal: when STOP mode released by interrupt signal)

DC Programming Characteristics (TA = 25 \pm 5°C, VDD = 6.0 \pm 0.25 V, VPP = 12.5 \pm 0.3 V, Vss = 0 V)

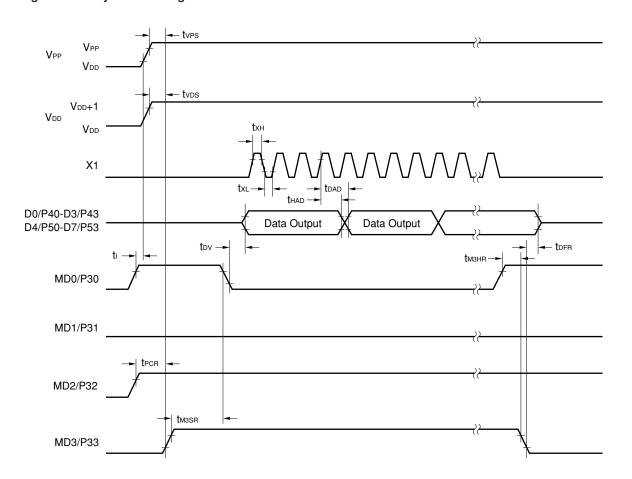
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-level input voltage	V _{IH1}	Pins other than X1, X2	0.7V _{DD}		V _{DD}	V
	V _{IH2}	X1, X2	V _{DD} - 0.5		V _{DD}	V
Low-level input voltage	V _{IL1}	Pins other than X1, X2	0		0.3V _{DD}	V
	V _{IL2}	X1, X2	0		0.4	V
Input leakage current	lu	VIN = VIL OR VIH			10	μΑ
High-level output voltage	Vон	lон = −1 mA	V _{DD} - 1.0			V
Low-level output voltage	VoL	lo _L = 1.6 mA			0.4	V
V _{DD} supply current	IDD				30	mA
VPP supply current	IPP	MD0 = VIL, MD1 = VIH			30	mA

Cautions 1. Ensure that VPP does not exceed +13.5 V including overshoot.

2. VdD must be applied before VPP, and cut after VPP.

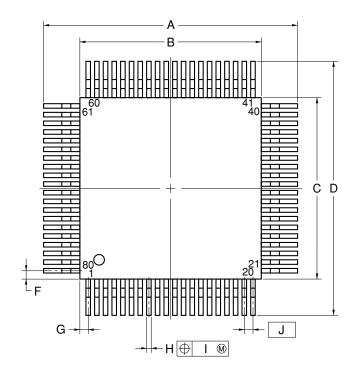
AC Programming Characteristics (TA = 25 \pm 5°C, VDD = 6.0 \pm 0.25 V, VPP = 12.5 \pm 0.3 V, Vss = 0 V)

Parameter	Symbol	Note 1	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time ^{Note 2} (to MD0↓)	tas	tas		2			μs
MD1 setup time (to MD0↓)	t _{M1S}	toes		2			μs
Data setup time (to MD0↓)	tos	tos		2			μs
Address hold time ^{Note 2} (from MD0 [↑])	tан	tан		2			μs
Data hold time (from MD0↑)	tон	tон		2			μs
MD0↑→Data output float delay time	t DF	t DF		0		130	ns
V _{PP} setup time (to MD3 [↑])	tvps	tvps		2			μs
V _{DD} setup time (to MD3 [↑])	tvos	tvcs		2			μs
Initial program pulse width	t PW	tpw		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD0 setup time (to MD1↑)	tmos	tces		2			μs
MD0↓→Data output delay time	tov	t DV	MD0 = MD1 = VIL			1	μs
MD1 hold time (from MD0↑)	t м1H	t oeh	tм1H + tм1R ≥ 50 μs	2			μs
MD1 recovery time (from MD0↓)	t M1R	t or		2			μs
Program counter reset time	t PCR	_		10			μs
X1 input high-/low-level widths	tхн, tхь	_		0.125			μs
X1 input frequency	fx	_				4.19	MHz
Initial mode setting time	tı	_		2			μs
MD3 setup time (to MD1↑)	tмзs	_		2			μs
MD3 hold time (from MD1 \downarrow)	tмзн	_		2			μs
MD3 setup time (to MD0↓)	t _{M3SR}	_	Program memory read	2			μs
Data output delay time from addressNote 2	t DAD	tacc	Program memory read			2	μs
Data output hold time from addressNote 2	thad	tон	Program memory read	0		130	μs
MD3 hold time (from MD0↑)	tмзня		Program memory read	2			μs
MD3↓→Data output float delay time	tofr	_	Program memory read			2	μs

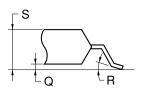

Notes 1. Symbol of corresponding μ PD27C256A

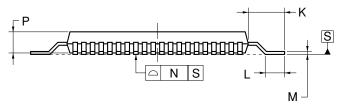
2. The internal address signal is incremented by 1 on the 4th rise of the X1 input, and is not connected to a pin.

Program Memory Write Timing



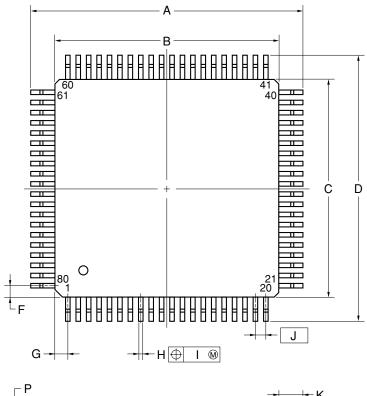
Program Memory Read Timing



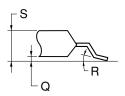

10. PACKAGE DRAWINGS

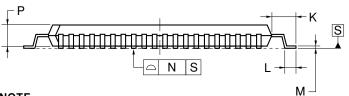
*80-PIN PLASTIC QFP (14x14)

detail of lead end


NOTE

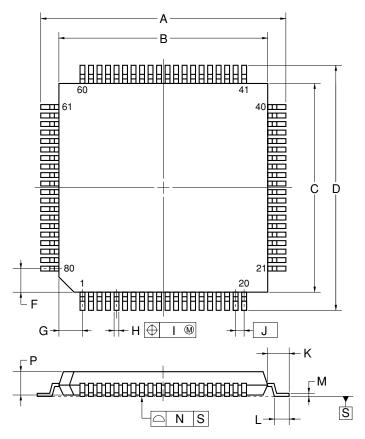
Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS
Α	17.2±0.4
В	14.0±0.2
С	14.0±0.2
D	17.2±0.4
F	0.825
G	0.825
Н	0.30±0.10
- 1	0.13
J	0.65 (T.P.)
K	1.6±0.2
L	0.8±0.2
М	$0.15^{+0.10}_{-0.05}$
N	0.10
Р	2.7±0.1
Q	0.1±0.1
R	5°±5°
S	3.0 MAX.


S80GC-65-3B9-6

80-PIN PLASTIC QFP (14x14)

detail of lead end


NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

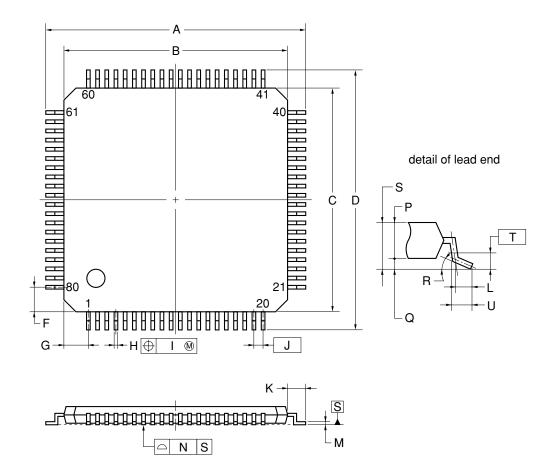
ITEM	MILLIMETERS
Α	17.20±0.20
В	14.00±0.20
С	14.00±0.20
D	17.20±0.20
F	0.825
G	0.825
Н	0.32±0.06
ı	0.13
J	0.65 (T.P.)
K	1.60±0.20
L	0.80±0.20
М	$0.17^{+0.03}_{-0.07}$
N	0.10
Р	1.40±0.10
Q	0.125±0.075
R	3°+7°
S	1.70 MAX.

P80GC-65-8BT-1

★ 80 PIN PLASTIC TQFP (FINE PITCH) (12x12)

S

detail of lead end


NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	14.00±0.20
В	12.00±0.20
С	12.00±0.20
D	14.00±0.20
F	1.25
G	1.25
Н	0.22+0.05
I	0.10
J	0.50 (T.P.)
K	1.00±0.20
L	0.50±0.20
М	$0.145^{+0.055}_{-0.045}$
N	0.10
Р	1.05±0.07
Q	0.10±0.05
R	5°±5°
S	1.27 MAX.
	DOOCK ED BED 6

P80GK-50-BE9-6

★ 80-PIN PLASTIC TQFP (FINE PITCH) (12x12)

NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	14.0±0.2
В	12.0±0.2
С	12.0±0.2
D	14.0±0.2
F	1.25
G	1.25
Н	0.22±0.05
I	0.08
J	0.5 (T.P.)
K	1.0±0.2
L	0.5
М	0.145±0.05
Ν	0.08
Р	1.0
Q	0.1±0.05
R	3°+4°
S	1.1±0.1
Т	0.25
U	0.6±0.15
	D80GK-50-0FII-1

P80GK-50-9EU-1

11. RECOMMENDED SOLDERING CONDITIONS

The μ PD75P3018A should be soldered and mounted under the following recommended conditions. For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Table 11-1. Surface Mounting Type Soldering Conditions (1/3)

(1) μ PD75P3018AGC-3B9: 80-pin plastic QFP (14 × 14 mm, resin thickness 2.7 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Three times or less	VP15-00-3
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

Remark For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

\star (2) μ PD75P3018AGC-8BT: 80-pin plastic QFP (14 \times 14 mm, resin thickness 1.4 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Twice or less	IR35-00-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Twice or less	VP15-00-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

Remark For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

Table 11-1. Surface Mounting Type Soldering Conditions (2/3)

★ (3) µPD75P3018AGK-BE9: 80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.05 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Three times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	VP15-107-3
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remark For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

★ (4) µPD75P3018AGK-9EU: 80-pin plastic TQFP (fine pitch) (12 × 12 mm, resin thickness 1.00 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Twice or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Twice or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 10 to 72 hours)	VP15-107-2
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remark For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

Table 11-1. Surface Mounting Type Soldering Conditions (3/3)

 \star (5) μ PD75P3018AGC-3B9-A: 80-pin plastic QFP (14 \times 14 mm, resin thickness 2.7 mm) μ PD75P3018AGC-8BT-A: 80-pin plastic QFP (14 \times 14 mm, resin thickness 1.4 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: Three times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	
Wave soldering	For details, contact an NEC Electronics sales representative.	_
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

- **Remarks 1.** Products with "-A" at the end of the part number are lead-free products.
 - 2. For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.
- \bigstar (6) μ PD75P3018AGK-9EU-A: 80-pin plastic TQFP (fine pitch) (12 \times 12 mm, resin thickness 1.00 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher), Count: Three times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	IR60-207-3
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

- **Remarks 1.** Products with "-A" at the end of the part number are lead-free products.
 - 2. For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

54

APPENDIX A. μ PD75316B, 753017A AND 75P3018A FUNCTION LIST

Parameter		μPD75316B	μPD753017A	μPD75P3018A	
Program memory		Mask ROM 0000H-3F7FH (16256 × 8 bits)	Mask ROM 0000H-5FFFH (24576 × 8 bits)	One-time PROM 0000H-7FFFH (32768 × 8 bits)	
Data memory		000H-3FFH (1024 × 4 bits)			
CPU		75X Standard	75XL CPU		
Instruction execution time	When main system clock is selected	0.95, 1.91, or 15.3 μs (at 4.19 MHz operation)	• 0.95, 1.91, 3.81, or 15.3 μs (at 4.19 MHz operation) • 0.67, 1.33, 2.67, or 10.7 μs (at 6.0 MHz operation)		
	When subsystem clock is selected	122 μs (at 32.768 kHz opera	122 μs (at 32.768 kHz operation)		
Pin connection	29 to 32	P40 to P43		P40/D0 to P43/D3	
	34 to 37	P50 to P53		P50/D4 to P53/D7	
	44	P12/INT2	P12/INT2/TI1/TI2		
	47	P21	P21/PTO1		
	48	P22/PCL	P22/PCL/PTO2		
	50 to 53	P30 to P33		P30/MD0 to P33/MD3	
	57	IC		V _{PP}	
Stack	SBS register	None	SBS.3 = 1; Mk I mode selection SBS.3 = 0; Mk II mode selection		
	Stack area	000H-0FFH	n00H-nFFH (n = 0-3)		
	Subroutine call instruction stack operation	2-byte stack	Mk I mode: 2-byte stack Mk II mode: 3-byte stack		
Instruction	BRA !addr1 CALLA !addr1	Unavailable Mk I mode: unavailable Mk II mode: available			
	MOVT XA, @BCDE MOVT XA, @BCXA BR BCDE BR BCXA		Available		
	CALL !addr	3 machine cycles	Mk I mode: 3 machine cycles	Mk II mode: 4 machine cycles	
	CALLF !faddr	2 machine cycles	Mk I mode: 2 machine cycles	Mk II mode: 3 machine cycles	
Mask option		Yes		None	
Timer		3 channels: • Basic interval timer : 1 channel • 8-bit timer/event counter : 1 channel • Watch timer: 1 channel	5 channels: Basic interval timer/watchdog timer: 1 channel 8-bit timer/event counter: 3 channels (can be used as 16-bit timer/event counter, carrier generatimer with gate) Watch timer: 1 channel		

Parameter		μPD75316B	μPD753017A	μPD75P3018A	
Clock output (PCL)		Φ, 524, 262, 65.5 kHz (Main system clock: at 4.19 MHz operation)	 Φ, 524, 262, 65.5 kHz (Main system clock: at 4.19 MHz operation) Φ, 750, 375, 93.8 kHz (Main system clock: at 6.0 MHz operation) 		
BUZ output (BUZ)		2 kHz (Main system clock: at 4.19 MHz operation)	• 2, 4, 32 kHz (Main system clock: at 4.19 MHz operation or subsystem clock: at 32.768 kHz operation) • 2.93, 5.86, 46.9 kHz (Main system clock: at 6.0 MHz operation)		
Serial interface		3 modes are available • 3-wire serial I/O mode MSB/LSB can be selected for transfer first bit • 2-wire serial I/O mode • SBI mode			
SOS register Feedback resistor cut flag (SOS.0)		None	Provided		
	Sub-oscillator current cut flag (SOS.1)	None	Provided		
Register bank	selection register (RBS)	None	Yes		
Standby releas	e by INT0	Unavailable	Available		
Interrupt priority	y selection register (IPS)	None	Yes		
Vectored interr	upt	External: 3, Internal: 3	External: 3, Internal: 5		
Supply voltage		V _{DD} = 2.0 to 6.0 V	V _{DD} = 1.8 to 5.5 V		
Operating ambient temperature		T _A = -40 to +85°C			
Package		80-pin plastic TQFP (fine pitch) (12 × 12 mm) 80-pin plastic QFP (14 × 14 mm)			

APPENDIX B. DEVELOPMENT TOOLS

The following development tools have been provided for system development using the μ PD75P3018A. In the 75XL Series, the relocatable assembler common to series is used in combination with the device file of each type.

*	RA75X relocatable assembler	Host machine			Part No. (name)
			OS	Supply medium	
		PC-9800 Series	MS-DOS TM (Ver.3.30 to Ver.6.2 ^{Note})	3.5" 2HD	μS5A13RA75X
		IBM PC/AT™	Refer to "OS for	3.5" 2HC	μS7B13RA75X
		or compatible	IBM PCs"		

*	Device file	Host machine			Part No. (name)
			OS	Supply medium	
		PC-9800 Series	MS-DOS (Ver.3.30 to Ver.6.2 ^{Note})	3.5" 2HD	μS5A13DF753017
		IBM PC/AT	Refer to "OS for	3.5" 2HC	μS7B13DF753017
		or compatible	IBM PCs"		

Note Ver. 5.00 or later includes a task swapping function, but this software is not able to use that function.

Remark Operation of the assembler and device file is guaranteed only when using the host machine and OS described above.

PROM Write Tools

	Hardware	PG-1500	This is a PROM programmer that can program single-chip microcontroller with PROM in stand alone mode or under control of host machine when connected with supplied accessory board and optional programmer adapter. It can also program typical PROMs in capacities ranging from 256 K to 4 M bits.				
		PA-75P316BGC	This is a PROM programmer adapter for the μ PD75P3018AGC-3B9. It can be used when connected to a PG-1500.				
		PA-75P316BGK	This is a PROM programmer adapter for the μ PD75P3018AGK-BE9. It can be used when connected to a PG-1500.				
*		PA-75P3018AGC-8BT	This is a PROM progra	PD75P3018AGC-8BT.			
*		PA-75P3018AGK-9EU	This is a PROM programmer adapter for the μ PD75P3018AGK-9EU. It can be used when connected to a PG-1500.				
	Software	PG-1500 controller	Connects PG-1500 to host machine with serial and parallel interface and controls PG-15 host machine.				
			Host machine			Part No. (name)	
				OS	Supply medium		
			PC-9800 Series	MS-DOS	3.5" 2HD	μS5A13PG1500	
				(Ver.3.30 to Ver.6.2 ^{Note})			
			IBM PC/AT	Refer to "OS for	3.5" 2HD	μS7B13PG1500	
			or compatible	IBM PCs"			

Note Ver. 5.00 or later includes a task swapping function, but this software is not able to use that function.

Remark Operation of the PG-1500 controller is guaranteed only when using the host machine and OS described above.

Debugging Tools

In-circuit emulators (IE-75000-R and IE-75001-R) are provided as program debugging tools for the μ PD75P3018A. Various system configurations using these in-circuit emulators are listed below.

Hardware	dware IE-75000-R ^{Note 1}		The IE-75000-R is an in-circuit emulator to be used for hardware and software debugging during development of application systems using the 75X or 75XL Series products. For development of the μ PD75P3018A, the IE-75000-R is used with optional emulation board (IE-75300-R-EM) and emulation probe (EP-753018GC-R or EP-753018GK-R). Highly efficient debugging can be performed when connected to host machine and PROM programmer. The IE-75000-R includes a connected emulation board (IE-75000-R-EM).				
	IE-7	'5001-R	The IE-75001-R is an in-circuit emulator to be used for hardware and software debugging during development of application systems using the 75X or 75XL Series products. The IE-75001-R is used with optional emulation board (IE-75300-R-EM) and emulation probe (EP-753018GC-R or EP-753018GK-R). Highly efficient debugging can be performed when connected to host machine and PROM programmer.				
	IE-7	75300-R-EM	This is an emulation board for evaluating application systems using the μ PD75P3018A. It is used in combination with the IE-75000-R or IE-75001-R.				
	EP-753018GC-R		This is an emulation probe for the μ PD75P3018AGC. When being used, it is connected with the IE-75000-R or IE-75001-R and the IE-75300-R-EM.				
		EV-9200GC-80	It includes a 80-pin conversion socket (EV-9200GC-80) to facilitate connections with target system.				
	EP-	753018GK-R	This is an emulation probe for the μ PD75P3018AGK. When being used, it is connected with the IE-75000-R or IE-75001-R and the IE-75300-R-EM.				
		TGK-080SDWNote 2	It includes a 80-pin conversion adapter (TGK-080SDW) to facilitate connections with targ system.			onnections with target	
Software	re IE control program		This program can control the IE-75000-R or IE-75001-R on a host machine when connected to the IE-75000-R or IE-75001-R via an RS-232-C or Centronics interface.				
			Host machine			Part No. (name)	
				OS	Supply medium		
			PC-9800 Series	MS-DOS	3.5" 2HD	μS5A13IE75X	
				(Ver.3.30 to Ver.6.2 ^{Note 3}	5" 2HD	μS5A10IE75X	
			IBM PC/AT	Refer to "OS for	3.5" 2HC	μS7B13IE75X	
			or compatible	IBM PCs"	5" 2HC	μS7B10IE75X	

Notes 1. This is a maintenance product.

2. This is a product of TOKYO ELETECH CORPORATION.

For further information, contact: Daimaru Kogyo, Ltd.

Tokyo Electronics Department (TEL +81-3-3820-7112)

Osaka Electronics 2nd Department (TEL +81-6-6244-6672)

3. Ver. 5.00 or later includes a task swapping function, but this software is not able to use that function.

Remark Operation of the IE control program is guaranteed only when using the host machine and OS described above.

OS for IBM PCs

The following operating systems for the IBM PC are supported.

OS	Version
PC DOS™	Ver.5.02 to Ver.6.3
	J6.1/V to J6.3/V
MS-DOS	Ver.5.0 to Ver.6.22
	5.0/V to 6.2/V
IBM DOS™	J5.02/V

Caution Ver. 5.0 or later includes a task swapping function, but this software is not able to use that function.

★ APPENDIX C. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Device Related Documents

Document Name	Document No.		
Document Name	Japanese	English	
μPD753012A, 753016A, 753017A Data Sheet	U11662J	U11662E	
μPD75P3018A Data Sheet	U11917J	U11917E	
		(This document)	
μPD753017 User's Manual	U11282J	U11282E	
μPD753017 Instruction Table	IEM-5598	_	
75XL Series Selection Guide	U10453J	U10453E	

Development Tool Related Documents

Document Name			Document No.	
	Document Name	Japanese	English	
Hardware	Hardware IE-75000-R/IE-75001-R User's Manual		EEU-846	EEU-1416
	IE-75300-R-EM User's Manual		U11354J	U11354E
	EP-753017GC/GK-R User's Manual		EEU-967	EEU-1495
	PG-1500 User's Manual		U11940E	U11940E
Software	RA75X Assembler Package	Operation	U12622J	U12622E
	User's Manual	Language	U12385J	U12385E
	PG-1500 Controller User's Manual	PC-9800 Series (MS-DOS) base	EEU-704	EEU-1291
		IBM PC Series (PC DOS) base	EEU-5008	U10540E

Other Related Documents

Document Name	Document No.		
Document Name	Japanese	English	
SEMICONDUCTOR SELECTION GUIDE Products & Package (CD-ROM)	X13769X		
Semiconductor Device Mounting Technology Manual	C10535J	C10535E	
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E	
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E	
Guide to Prevent Damage for Semiconductor Devices Electrostatic Discharge (ESD)	C11892J	C11892E	
Guide to Microcontroller-Related Products by Third Parties	U11416J	_	

Caution The above related documents are subject to change without notice. For design purpose, etc., be sure to use the latest documents.

NOTES FOR CMOS DEVICES -

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT]

http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH

Santa Clara, California Tel: 408-588-6000 800-366-9782

Duesseldorf, Germany Tel: 0211-65030

• Sucursal en España

Madrid, Spain Tel: 091-504 27 87

Succursale Française

Vélizy-Villacoublay, France Tel: 01-30-675800

• Filiale Italiana

Milano, Italy Tel: 02-66 75 41

Branch The Netherlands

Eindhoven, The Netherlands Tel: 040-2654010

Tyskland Filial

Taeby, Sweden Tel: 08-63 87 200

United Kingdom Branch

Milton Keynes, UK Tel: 01908-691-133

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-558-3737

NEC Electronics Shanghai Ltd.

Shanghai, P.R. China Tel: 021-5888-5400

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore

Tel: 6253-8311

J05.6

MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of August, 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
 "Specific"
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02.11-1