Three-phase motor driver for CD-ROMs
 BA6858AFP / BA6858AFM / BA6859AFP / BA6859AFP-Y / BA6859AFM / BA6859AFS

The BA6858A and BA6859A series are ICs developed for CD-ROM spindle motor drives. In addition to the functions of the BA6849 series, (short brake, reverse-rotation prevention circuit, rotation direction dector, and FG output), the BA6858A and BA6859A series have a built-in brake mode switching pin. With torque command input, these series are compatible with the DSP3.3V. In addition, the BA6858A series has an FG composite output.

-Applications

CD-ROM, CD-R, CD-RW, DVD-ROM, and DVD-RAM

- Features

1) Three-phase, pseudo-linear drive system.
2) Built-in power save and thermal shutdown functions.
3) Built-in current limiter and Hall bias circuits.
4) Built-in FG output.
5) Built-in rotation direction detector.
6) Built-in reverse rotation prevention circuit.
7) Built-in short brake pin.
8) Built-in brake mode switching pin.
9) DSP3.3V compatible.
-Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Limits	Unit
Applied voltage (with 5 V power supply)		Vcc	7	V
Applied voltage (motor power supply)		VM	15	V
Power dissipation	BA6858AFM BA6859AFM	Pd	$2200 * 3$	mW
	BA6858AFP BA6859AFP		1700*1	mW
	BA6859AFP-Y		1450*2	mW
	BA6859AFS		1000*4	mW
Operating temperature		Topr	$-20 \sim+75$	${ }^{\circ} \mathrm{C}$
Storage temperature		Tstg	$-55 \sim+150 * 5$	${ }^{\circ} \mathrm{C}$
Output current		lout	1300*6	mA

* When mounted on a $70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ glass epoxy board.
*1 Reduced by 13.6 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
*2 Reduced by 11.6 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
*3 Reduced by 17.6 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
*4 Reduced by 8.0 mW for each increase in Ta of $1{ }^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
*5 Tj should not exceed $150^{\circ} \mathrm{C}$.
*6 Should not exceed Pd or ASO values.

Motor driver ICs
 BA6858AFP / BA6858AFM / BA6859AFP /

-Recommended operating conditions ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	$4.5 \sim 5.5$	V
	VM_{M}	$3.0 \sim 14$	V

-Block diagram

BA6858AFP / BA6858AFM

-Pin descriptions
BA6858AFP/BA6858AFM

Pin No.	Pin name	Function
2	A_{3}	Output
4	A_{2}	Output
7	A_{1}	Output
8	GND	GND
9	$\mathrm{H}_{1}{ }^{+}$	Hall signal input
10	$\mathrm{H}_{1}{ }^{-}$	Hall signal input
11	$\mathrm{H}_{2}{ }^{+}$	Hall signal input
12	$\mathrm{H}_{2}{ }^{-}$	Hall signal input
13	$\mathrm{H}_{3}{ }^{+}$	Hall signal input
14	$\mathrm{H}_{3}{ }^{-}$	Hall signal input
15	VH	Hall bias
16	BR	Brake mode switch
17	C_{NF}	For connection of phase compensation capacitor
18	SB	Short brake
19	FG2	Three-phase composite FG signal output
20	FR	Rotation direction detection
21	Ecr	Torque control reference
22	Ec	Torque control
23	PS	Power save
24	FG	FG signal output
25	Vcc	Power supply
27	Vm	Motor power supply
28	RNF	For connection of output current detection resistor
FIN	-	SUB GND

* Missing pin numbers are N.C.

BA6859AFP/BA6859AFM

Pin No.	Pin name	Function
2	A	Output
4	A_{2}	Output
7	A_{1}	Output
8	GND	GND
9	$\mathrm{H}_{1}{ }^{+}$	Hall signal input
10	$\mathrm{H}_{1}{ }^{-}$	Hall signal input
11	$\mathrm{H}_{2}{ }^{+}$	Hall signal input
12	$\mathrm{H}_{2}{ }^{-}$	Hall signal input
13	$\mathrm{H}_{3}{ }^{+}$	Hall signal input
14	$\mathrm{H}_{3}{ }^{-}$	Hall signal input
15	VH	Hall bias
16	BR	Brake mode switch
17	C_{NF}	For connection of phase compensation capacitor
18	SB	Short brake
20	FR	Rotation direction detection
21	Ecr	Torque control reference
22	Ec	Torque control
23	PS	Power save
24	FG	FG signal output
25	Vcc	Power supply
27	Vm	Motor power supply
28	Rnf	For connection of ourput current detection resistor
FIN	-	SUB GND

BA6859AFP-Y

Pin No.	Pin name	Function
4	A_{3}	Output
5	A_{2}	Output
6	A_{1}	Output
7	GND	GND
8	$\mathrm{H}_{1}{ }^{+}$	Hall signal input
9	$\mathrm{H}_{1}{ }^{-}$	Hall signal input
10	$\mathrm{H}_{2}{ }^{+}$	Hall signal input
11	$\mathrm{H}_{2}{ }^{-}$	Hall signal input
12	$\mathrm{H}_{3}+$	Hall signal input
13	$\mathrm{H}_{3}{ }^{-}$	Hall signal input
14	VH	Hall bias
15	BR	Brake mode switch
16	C_{NF}	For connection of phase compensation capacitior
17	SB	Short brake
18	FR	Rotation direction detection
19	Ecr	Torque control reference
20	Ec	Torque control
21	PS	Power save
22	FG	FG signal output
23	Vcc	Power supply
24	V_{M}	Motor power supply
25	RNF	For connection of output current detection resisior
FIN	-	SUB GND

BA6859AFS

Pin No.	Pin name	Function
1	-	SUB GND
2	A	Output
3	A_{2}	Output
5	A_{1}	Output
6	GND	GND
7	$\mathrm{H}_{1}{ }^{+}$	Hall signal input
8	$\mathrm{H}_{1}{ }^{-}$	Hall signal input
9	$\mathrm{H}_{2}{ }^{+}$	Hall signal input
10	$\mathrm{H}_{2}{ }^{-}$	Hall signal input
11	$\mathrm{H}_{3}{ }^{+}$	Hall signal input
12	$\mathrm{H}_{3}{ }^{-}$	Hall signal input
13	VH	Hall bias
14	BR	Brake mode switch
15	$\mathrm{CNF}^{\text {f }}$	For connection of phase compensation capacitor
16	SB	Short brake
17	FR	Rotation direction detection
18	Ecr	Torque control reference
19	Ec	Torque control
20	PS	Power save
21	FG	FG signal output
22	Voc	Power supply
23	V_{M}	Motor power supply
24	Rnf	For connection of output current detection resistor

Motor driver ICs
 BA6858AFP / BA6858AFM / BA6859AFP / BA6859AFP-Y / BA6859AFM / BA6859AFS

Olnput / output circuits
(1) Power save
(2) Torque command input

Fig. 1

Fig. 2
(3) Torque output ($\mathrm{A}_{1}, \mathrm{~A}_{2}$, and A_{3})

(4) Hall input $\left(\mathrm{H}_{1}^{+}, \mathrm{H}_{1}^{-}, \mathrm{H}_{2}^{+}, \mathrm{H}_{2}^{-}, \mathrm{H}_{3}^{+}, \mathrm{H}_{3}^{-}\right)$

Motor driver ICs
BA6858AFP / BA6858AFM / BA6859AFP / BA6859AFP-Y / BA6859AFM / BA6859AFS
(5) Hall bias

(6) FG output

Fig. 6
(7) FG2 Output

(8) FR output

Fig. 8
(9) Short brake

（10）Brake mode

Fig． 10
－Electrical characteristics（unless otherwise noted， $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=12 \mathrm{~V}$ ）

Parameter	Symbol	Min．	Typ．	Max．	Unit	Conditions
〈Total device〉						
Circuit current 1	Iccı	－	0	0.2	mA	In the power save ON state
Circuit current 2	Icc2	－	$\begin{aligned} & 5.8 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5(58 A) \\ & 7.5(59 A) \\ & \hline \end{aligned}$	mA	In the power save OFF state
〈Power save〉						
ON voltage range	Vpson	－	－	1.0	V	－
OFF voltage range	Vpsoff	2.5	－	－	V	－
〈Hall bias〉						
Hall bias voltage	Vнв	0.5	0.9	1.5	V	$1 \mathrm{HB}=10 \mathrm{~mA}$
〈Hall amplifier〉						
Input bias current	Iha	－	0.7	3.0	$\mu \mathrm{A}$	－
Same phase input voltage range	Vhar	1.0	－	4.0	V	－
Minimum input level	Vinh	50	－	－	mVp．p	－
H3 hysteresis level	Vhys	5	20	40	mV	－
〈Torque command〉						
Input voltage range	$\mathrm{Ec}_{\mathrm{c}}, \mathrm{E}_{\text {cr }}$	0.5	－	3.3	V	Can operate from 0 to Vcc．
＂－＂offset voltage	Ecoff ${ }^{-}$	－80	－50	－20	mV	$\mathrm{Ec}_{\mathrm{CR}}=1.9 \mathrm{~V}$
＂＋＂offset voltage	Ecoff ${ }^{+}$	20	50	80	mV	$\mathrm{ECR}_{\mathrm{R}}=1.9 \mathrm{~V}$
Input bias current	Ecin	－3	－	3	$\mu \mathrm{A}$	$\mathrm{Ec}_{\mathrm{c}}=\mathrm{E}_{\text {cr }}$
$1 / 0$ gain	Gec	0.56	0.7	0.84	A／V	$\mathrm{Ec}_{\mathrm{c}}=1.2 \mathrm{~V}, 1.7 \mathrm{~V}$
＜FG〉						
FG output＂H＂voltage	Vfgh	4.5	4.8	－	V	$\mathrm{IFG}_{\text {g }}=-20 \mu \mathrm{~A}$
FG output＂L＂voltage	Vfgl	－	0.25	0.4	V	$\mathrm{lFg}=3 \mathrm{~mA}$
〈FG2〉（BA6858A only）						
FG2 output high level voltage	$\mathrm{V}_{\text {FG2H }}$	4.6	4.9	－	V	$\mathrm{IFG}_{\mathrm{G} 2}=-20 \mu \mathrm{~A}$
FG2 output low level voltage	$\mathrm{V}_{\text {fgat }}$	－	0.25	0.4	V	$\mathrm{IFGG} 2=3 \mathrm{~mA}$
DUTY（reference value）	DU	－	50	－	\％	－

ONot designed for radiation resistance．

Parameter
\begin{tabular}{l\|c
\hline
\end{tabular}
SRotation detection〉
FR output high level voltage
VR output low level voltage

〈Output〉

Output saturation high level voltage	VoH	-	1.0	1.4	V	$\mathrm{lo}=-600 \mathrm{~mA}$
Output saturation low level voltage	VoL	-	0.4	0.7	V	$\mathrm{lo}=600 \mathrm{~mA}$
Pre－drive current	IvML	-	35	70	mA	$\mathrm{Ec}=0 \mathrm{~V}$ output open
Output limit current	ITL	560	700	840	mA	-

〈Short brake〉

ON voltage range	$V_{\text {sBon }}$	2.5	-	-	V	$\mathrm{BR}=0 \mathrm{~V}$
OFF voltage range	$\mathrm{V}_{\text {SBOFF }}$	-	-	1.0	V	$\mathrm{BR}=0 \mathrm{~V}$

〈Brake mode〉

ON voltage range	$V_{\text {Bron }}$	2.5	-	-	V	$E_{c}>E_{C R} S B$ open
OFF voltage range	$V_{\text {Broff }}$	-	-	1.0	V	$E_{c}>E_{C R} S B$ open

ONot designed for radiation resistance．
-Circuit operation
(1) Hall input to coil output

The phase relationship between the Hall input signals and the output current and voltage is shown in Fig.11. The motor position data input via the Hall pins is amplified by the Hall amplifier, and formed into waveforms by the matrix block. These signals are input to the output driver that supplies the drive current to the motor coils.

Fig. 11
(2) Torque command

The Rnf pin voltage with respect to the torque command (Ec) is as follows:

Fig. 12

	Rotation direction
$\mathrm{Ec}_{\mathrm{c}}<\mathrm{E}_{\mathrm{CR}}$	Forward
$\mathrm{Ec}_{\mathrm{c}}>\mathrm{E}_{\mathrm{CR}}$	Reverse *

* Stops after detecting reverse.

The I / O gain (Gec) from the Ec pin to the Rnf pin (output current) is determined by the R R_{NF} detector resistor.

$$
G_{E C}=0.35 / R_{N F}(A / V)
$$

The torque limit current ITL is given by:

$$
I_{T L}=0.35 / R_{\mathrm{NF}}(\mathrm{~A})
$$

(3) Reverse rotation detection function

Fig. 13
The reverse detection circuit construction is shown in Fig. 13.

1) Forward ($E_{c}<E_{c r}$)

The phase relationship between the Hall input signals

	FR signal output pin
Forward	L
Reverse	H

2) Reverse ($\mathrm{E}_{\mathrm{c}}>\mathrm{E}_{\mathrm{CR}}$)

The phase relationship between the signals $\mathrm{H}_{2}{ }^{+}$and $\mathrm{H}_{3}{ }^{+}$is opposite that for forward operation, and the reverse rotation detection circuit operates. The output goes OFF, and becomes open circuit.
(4) Short brake

When 2.5 V or more is applied to the short brake pin, the top-side output transistors of all phases go off, and the bottom-side output transistors go on. This applies braking to the motor. Short braking operates regardless of the torque command signal.
(5) Brake mode switching

When 2.5 V or more is applied to the BR pin, the brake mode for when $\mathrm{E}_{\mathrm{c}}>\mathrm{E}_{\mathrm{cr}}$ can be changed.

		$E_{C}<E_{C R}$	$E_{C}>E_{C R}$
BR	1.0 or less	Forward	Reverse brake
	2.5 or more	Forward	Short brake

(6) Power save

When 2.5 V or more is applied to the power save pin, all circuits are on. When 1.0 V or less is applied, the IC enters power save mode, and functions only for surpressing power consumption.

-Application example

Fig. 14
-Operation notes
(1) Torque command

(2) Switches

The switches have a temperature characteristic of approximately $-5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Take care with regard to the input voltage range.
(3) Hall input

The input circuit shown in Fig. 4 is used for the Hall inputs.
The Hall elements can be connected either in series or in parallel.

Set the Hall input voltage in the range 1.0 V to 4.0 V .
Set the resistance values between V_{H} and V_{cc} pins and the Hall elements after calculating the current to flow in Hall elements.
If there will not be a resistor connected between the Hall elements and the V_{H} pin, we recommend that $\mathrm{IvH}=5 \mathrm{~mA}$ or more.
(4) Thermal shutdown (TSD)

When the junction temperature reaches $175^{\circ} \mathrm{C}$ (Typ.), the $\mathrm{A}_{1}, \mathrm{~A}_{2}$, and A_{3} coil outputs go open circuit.
The thermal shutdown has approximately $15^{\circ} \mathrm{C}$ (Typ.) of hysteresis.

- Electrical characteristics curves

Fig. 17 Package derating curves

Fig. 20 Lower-side output saturation voltage vs. output current

- External dimensions (Units: mm)

