DATA SHEET

MOS INTEGRATED CIRCUIT

μPD754302,754304,754302(A),754304(A)

4-BIT SINGLE-CHIP MICROCONTROLLER

The μ PD754304 is one of the "75XL Series" 4-bit single-chip microcontrollers with data processing capability comparable to that of 8-bit microcontrollers. The μ PD754303(A) has a higher reliability than the μ PD754304. The microcontrollers in the 75XL Series have expanded CPU functions than those of the 75X Series and can operate

at a voltage of as low as 1.8 V; therefore, they are ideal for battery-driven application systems.

As the one-time PROM version of the μ PD754304, the μ PD75P4308 is ideal for evaluation of a system under development or for small-scale production of application systems.

Detailed information about functions can be found in the following document. Be sure to read the following document before designing.

μ PD754304 User's Manual: U10123E

FEATURES

EC

- Low-voltage operation: VDD = 1.8 to 5.5 V
- Internal memory
 - Program memory (ROM):

2048 × 8 bits (µPD754302, 754302(A))

4096 × 8 bits (μ PD754304, 754304(A))

- Data memory (RAM): 256×4 bits
- Variable instruction execution time effective for highspeed operation and power saving
 - 0.95, 1.91, 3.81, or 15.3 μs (at 4.19 MHz)
 - 0.67, 1.33, 2.67, or 10.7 μs (at 6.0 MHz)
- · Internal serial interface (1 channel)
- Powerful timer function (3 channels)
- Inherits instruction set of existing 75X Series for easy replacement

APPLICATIONS

- μPD754302, 754302(A)
 Cordless telephones, TVs, VCRs, audio systems, household appliances, office machines, etc.
- μPD754304, 754304(A)
 Automotive appliance, etc.
- The μPD754302 and 754304 differ from the μPD754302(A) and 754304(A) only in terms of their quality grade.
 Unless otherwise specified, the μPD754304 is treated as a representative model in this Data Sheet.
 For the models other than the μPD754304, μPD754304 can be read as the other model name.
 If different descriptions are made for the μPD754302 and 754304, the (A) models correspond as follows:

 μ PD754302 \rightarrow μ PD754302(A), μ PD754304 \rightarrow μ PD754304(A)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

ORDERING INFORMATION

	Parts Number	Package	Quality Grade
	μ PD754302GS-×××	36-pin plastic shrink SOP (300 mil, 0.8 mm pitch)	Standard
*	μPD754302GS-×××-Α	36-pin plastic shrink SOP (300 mil, 0.8 mm pitch)	Standard
	μ PD754304GS- \times \times	36-pin plastic shrink SOP (300 mil, 0.8 mm pitch)	Standard
*	μPD754304GS-×××-Α	36-pin plastic shrink SOP (300 mil, 0.8 mm pitch)	Standard
*	μ PD754302GS(A)- \times ×	36-pin plastic shrink SOP (300 mil, 0.8 mm pitch)	Special
*	μ PD754304GS(A)- \times ×	36-pin plastic shrink SOP (300 mil, 0.8 mm pitch)	Special

Remarks 1. Products with "-A" at the end of the part number are lead-free products.2. ××× indicates ROM code suffix.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Electronics Corporation to know the specification of quality grade on the devices and its recommended applications.

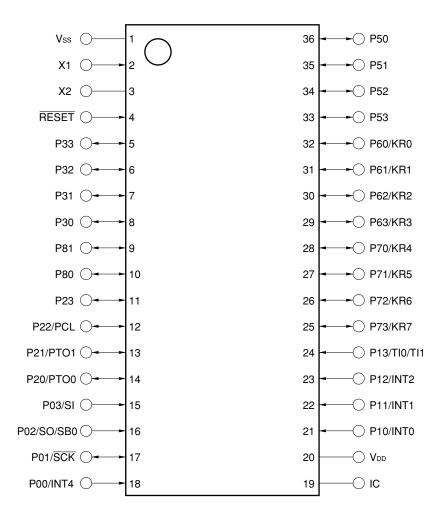
\star Difference between μ PD75430× and μ PD75430×(A)

Parts Number	μPD754302	μPD754302(A)	
Item	μ PD754304	μPD754304(A)	
Quality grade	Standard	Special	

Functional Outline

	Parameter			Function		
Instruction execution time			0.95, 1.91, 3.81, 15.3 μ s (@ 4.19 MHz with system clock)			
				 0.67, 1.33, 2.67, 10.7 μs (@ 6.0 MHz with system clock) 		
On-chip	memory	ROM	204	2048 × 8 bits (µPD754302)		
			409	06 × 8 bits (μPD754304)		
		RAM	256	3 × 4 bits		
General	purpose register			-bit operation: 8 × 4 banks 3-bit operation: 4 × 4 banks		
Input/	CMOS input		8	On-chip pull-up resistors can be specified by software: 7		
output port	CMOS input/ou	itput	18	On-chip pull-up resistors can be specified by software: 18		
	N-ch open-drai input/output pir		4	13 V withstand voltage. On-chip pull-up resistors can be specified by mask option.		
	Total		30			
Timer			3 channels8-bit timer/event counter: 2 channels (16-bit timer/event counter)			
			Basic interval timer/watchdog timer: 1 channel			
Serial in	terface		 3-wire serial I/O mode MSB or LSB can be selected for transferring top bit 2-wire serial I/O mode 			
Bit sequ	ential buffer		16 bits			
Clock ou	itput (PCL)		 Φ, 524, 262, 65.5 kHz (@ 4.19 MHz with system clock) Φ, 750, 375, 93.8 kHz (@ 6.0 MHz with system clock) 			
Vectored	d interrupts		External: 3, Internal: 4			
Test inp	ut		External: 1			
System clock oscillator			Ceramic or crystal oscillator			
Standby	function		STO	OP/HALT mode		
Operatir tempera	ig ambient ture		$T_{A} = -40 \text{ to } +85 ^{\circ}\text{C}$			
Power s	upply voltage		V _{DD} = 1.8 to 5.5 V			
Package)		36-	pin plastic shrink SOP (300 mil, 0.8-mm pitch)		

CONTENTS

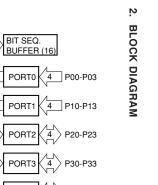

	1.	PIN CONFIGURATION (Top View) 6
	2.	BLOCK DIAGRAM ······8
	3.	PIN FUNCTION93.1Port Pins3.2Non-port Pins10103.3Pin Input/Output Circuits11113.4Recommended Connections for Unused Pins13
		SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE 14 4.1 Difference between Mk I and Mk II Modes 14 4.2 Setting Method of Stack Bank Select Register (SBS) 15
	5.	MEMORY CONFIGURATION 16
	6.	PERIPHERAL HARDWARE FUNCTIONS206.1Digital Input Ports206.2Clock Generator216.3Clock Output Circuit226.4Basic Interval Timer/Watchdog Timer236.5Timer/Event Counter246.6Serial Interface276.7Bit Sequential Buffer29
	7.	INTERRUPT FUNCTION AND TEST FUNCTION 30
	8.	STANDBY FUNCTION 32
	9.	RESET FUNCTION 33
*	10.	MASK OPTION 36
	11.	INSTRUCTION SETS 37
	12.	ELECTRICAL SPECIFICATIONS 49
	13.	CHARACTERISTICS CURVES (REFERENCE VALUES) 61
	14.	PACKAGE DRAWING 63
	15.	RECOMMENDED SOLDERING CONDITIONS 64

APPENDIX A.	COMPARISON OF FUNCTIONS AMONG μ PD750004, 754304, AND 75P430865
APPENDIX B.	DEVELOPMENT TOOLS 67
APPENDIX C.	RELATED DOCUMENTS70

1. PIN CONFIGURATION (Top View)

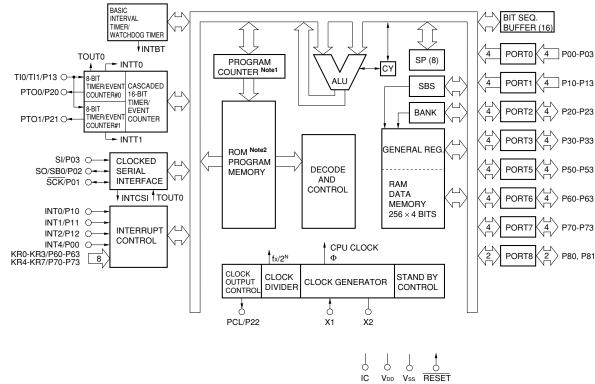
36-pin plastic shrink SOP (300 mil, 0.8-mm pitch)

- ★ μPD754302GS-×××, μPD754302GS-×××-A, μPD754302GS(A)-×××
- ★ μPD754304GS-xxx, μPD754304GS-xxx-A, μPD754304GS(A)-xxx



IC: Internally Connected (Connect directly this pin to VDD.)

PIN IDENTIFICATION


P00-P03:	PORT0
P10-P13 :	PORT1
P20-P23 :	PORT2
P30-P33 :	PORT3
P50-P53 :	PORT5
P60-P63 :	PORT6
P70-P73 :	PORT7
P80, P81:	PORT8
KR0-KR7:	Key Return 0-7
SCK :	Serial Clock
SI :	Serial Input
SO :	Serial Output
SB0 :	Serial data Bus 0

Reset Input
Timer Input 0, 1
Programmable Timer Output 0, 1
Programmable Clock
External Vectored Interrupt 0, 1, 4
External Test Input 2
GND
System Clock Oscillation 1, 2
Internally Connected
Positive Power Supply

NEC

- Notes 1. The μ PD754302 and μ PD754304 program counters are 11 and 12 bits, respectively.
 - 2. The ROM capacity of the μ PD754302 is 2048 \times 8 bits, and that of the μ PD754304 is 4096 \times 8 bits.

IC Vdd

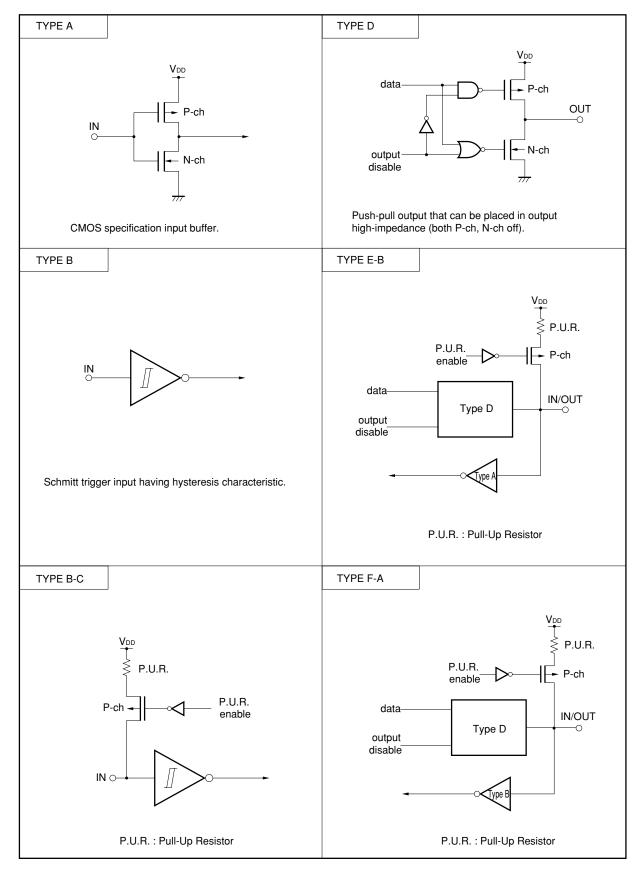
3. PIN FUNCTION

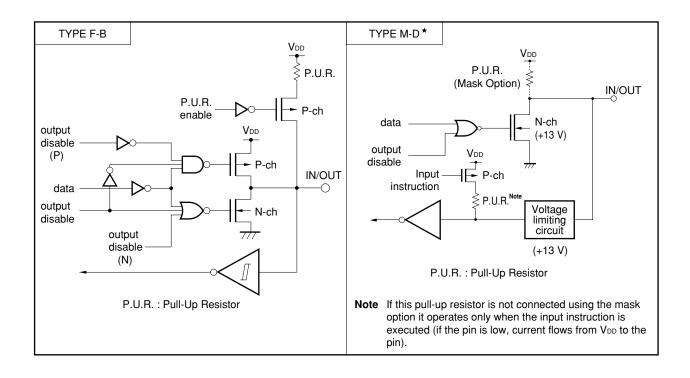
3.1 Port Pins

Pin Name	Input/Output	Alternate Function	Function	8-bit I/O	After Reset	I/O Circuit TYPE Note 1
P00	Input	INT4	4-bit input port (PORT0).	×	Input	B
P01	Input/Output	SCK	For P01 to P03, on-chip pull-up resistors			Ē-A
P02	Input/Output	SO/SB0	can be specified by software in 3-bit units.			(F)-В
P03	Input	SI	-			B-C
P10	Input	INT0	4-bit input port (PORT1).	×	Input	B-C
P11	-	INT1	On-chip pull-up resistors can be specified			
P12		INT2	by software in 4-bit units. Noise elimination circuit can be selected			
P13		TI0/TI1	(Only P10/INT0)			
P20	Input/Output	PTO0	4-bit input/output port (PORT2).	×	Input	E-B
P21		PTO1	On-chip pull-up resistors can be specified			
P22		PCL	by software in 4-bit units.			
P23	-	-	-			
P30	Input/Output	-	Programmable 4-bit input/output port	×	Input	E-B
P31	-	_	(PORT3).			
P32	-	-	This port can be specified for input/output bit-wise. On-chip pull-up resistor can be			
P33	-	_	specified by software in 4-bit units.			
P50-P53 Note 2	Input/Output	_	N-ch open-drain 4-bit input/output port (PORT5). A pull-up resistor can be contained bit-wise (mask option). Withstand voltage is 13 V in open-drain mode.		High level (when pull-up resistors are provided) or high- impedance	M-D
P60	Input/Output	KR0	Programmable 4-bit input/output port	\checkmark	Input	F-A
P61	-	KR1	(PORT6). This port can be specified for input/output			
P62	-	KR2	bit-wise.			
P63	-	KR3	On-chip pull-up resistors can be specified by software in 4-bit units.			
P70	Input/Output	KR4	4-bit input/output port (PORT7).		Input	F-A
P71		KR5	On-chip pull-up resistors can be specified			
P72		KR6	by software in 4-bit units.			
P73		KR7	1			
P80	Input/Output		2-bit input/output port (PORT8).	×	Input	E-B
P81		_	On-chip pull-up resistors can be specified by software in 2-bit units.			

Notes 1. Circled characters indicate the Schmitt-trigger input.

2. If on-chip pull-up resistors are not specified by mask option (when used as N-ch open-drain input port), low level input leakage current increases when input or bit manipulation instruction is executed.


3.2 Non-port Pins


Pin Name	Input/Output	Alternate Function	Function		After Reset	I/O Circuit TYPE ^{Note}
TIO/TI1	Input	P13	Inputs external event pulses to the timer/event counter.		Input	B-C
PTO0	Output	P20	Timer/event counter output		Input	E-B
PTO1		P21				
PCL		P22	Clock output			
SCK	Input/Output	P01	Serial clock input/output		Input	F-A
SO/SB0		P02	Serial data output Serial data bus input/outpu	t	-	́F-в
SI	Input	P03	Serial data input			B-C
INT4	Input	P00	Edge detection vectored interrupt input (both rising edge and falling edge detection)		Input	B
INTO	Input	P10	Edge detection vectored interrupt input (detection edge can be selected). INT0/P10 can select a	Asynchronous with noise elimination circuit can be selected	Input	B-C
INT1		P11	noise elimination circuit.	Asynchronous		
INT2	Input	P12	Edge detection testable input (rising edge detection)	Asynchronous	Input	B-C
KR0-KR3	Input	P60-P63	Testable input (falling edge	detection)	Input	F-A
KR4-KR7	_	P70-P73	-			
X1	Input	-	Crystal/ceramic connection clock oscillator. When inpu	utting the external	_	_
X2	-		clock, input the external clock to pin X1, and the inverted phase of the external clock to pin X2.			
RESET	Input	_	System reset input (low-level active)		_	B
IC	-	-	Internally connected. Connect directly to VDD.		-	-
Vdd	-	-	Positive power supply		-	-
Vss	_	_	Ground potential		-	-

Note Circled characters indicate the Schmitt-trigger input.

3.3 Pin Input/Output Circuits

The μ PD754304 pin input/output circuits are shown schematically.

 \star

* *

 \star

3.4 Recommended Connections for Unused Pins

Table 3-1	List of	Recommended	Connections	for	Unused Pins
-----------	---------	-------------	-------------	-----	-------------

Pin	Recommended Connection
P00/INT4	Connect to Vss or VDD
P01/SCK	Connect to Vss or VDD through the resistor individually
P02/SO/SB0	_
P03/SI	Connect to Vss
P10/INT0-P12/INT2	Connect to Vss or VDD
P13/TI0/TI1	_
P20/PTO0	Input state : Connect to Vss or Vbb through the resistor
P21/PTO1	individually
P22/PCL	Output state : Leave open
P23	_
P30-P33	_
P50-P53	Input state : Connect to Vss
	Output state : Connect to Vss (Pull-up resistor by mask
	option should not be connected)
P60/KR0-P63/KR3	Input state : Connect to Vss or Vpp through the resistor
P70/KR4-P73/KR7	individually
P80, P81	Output state : Leave open
IC	Connect to VDD directly

4. SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE

4.1 Difference between Mk I and Mk II Modes

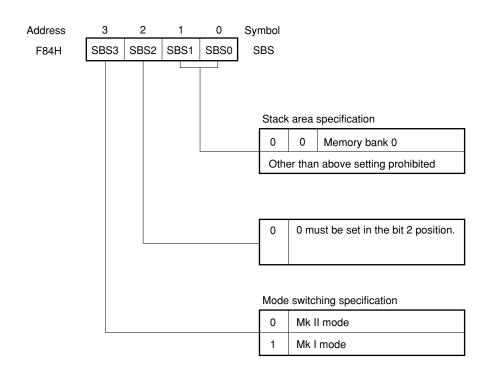
The CPU of μ PD754304 has the following two modes: Mk I and Mk II, either of which can be selected. The mode can be switched by the bit 3 of the stack bank select register (SBS).

- Mk I mode: Can be used in the 75XL CPU with a ROM capacity of up to 16K bytes.
- Mk II mode: Can be used in all the 75XL CPU's including those products whose ROM capacity is more than 16K bytes.

	Mk I mode	Mk II mode
Number of stack bytes for subroutine instructions	2 bytes	3 bytes
BRA laddr1 instruction CALLA laddr1 instruction	Not available	Available
CALL laddr instruction	3 machine cycles	4 machine cycles
CALLF Ifaddr instruction	2 machine cycles	3 machine cycles

Table 4-1. Differences between Mk I Mode and Mk II Mode

*


Caution The Mk II mode supports a program area exceeding 16K bytes in the 75X and 75XL series. This mode can improve software compatibility with products with a program area of more than 16K bytes.

When Mk II mode is selected, the number of stack bytes when a subroutine call instruction is executed is greater by 1 byte per stack compared with the Mk I mode. When the CALL !addr or CALLF !faddr instruction is used, one more machine cycle is required. To emphasize the efficiency of the RAM and processing speed rather than software compatibility, therefore, use the Mk I mode.

4.2 Setting Method of Stack Bank Select Register (SBS)

Switching between the Mk I mode and Mk II mode can be done by the SBS. Figure 4-1 shows the format. The SBS is set by a 4-bit memory manipulation instruction.

When using the Mk I mode, the SBS must be initialized to 1000B at the beginning of a program. When using the Mk II mode, it must be initialized to 0000B.

Figure 4-1. Stack Bank Select Register Format

Caution Since SBS. 3 is set to "1" after a RESET signal is generated, the CPU operates in the Mk I mode. When executing an instruction in the Mk II mode, set SBS. 3 to "0" to select the Mk II mode.

NEC

5. MEMORY CONFIGURATION

- Program Memory (ROM) 2048 \times 8 bits (µPD754302) 4096 \times 8 bits (µPD754304)
 - Addresses 0000H and 0001H
 Vector table wherein the program start address and the values set for the RBE and MBE at the time a RESET signal is generated are written. Reset and start are possible at an arbitrary address.
 - Addresses 0002H-000DH

Vector table wherein the program start address and values set for the RBE and MBE by the vectored interrupts are written. Interrupt execution can be started at an arbitrary address.

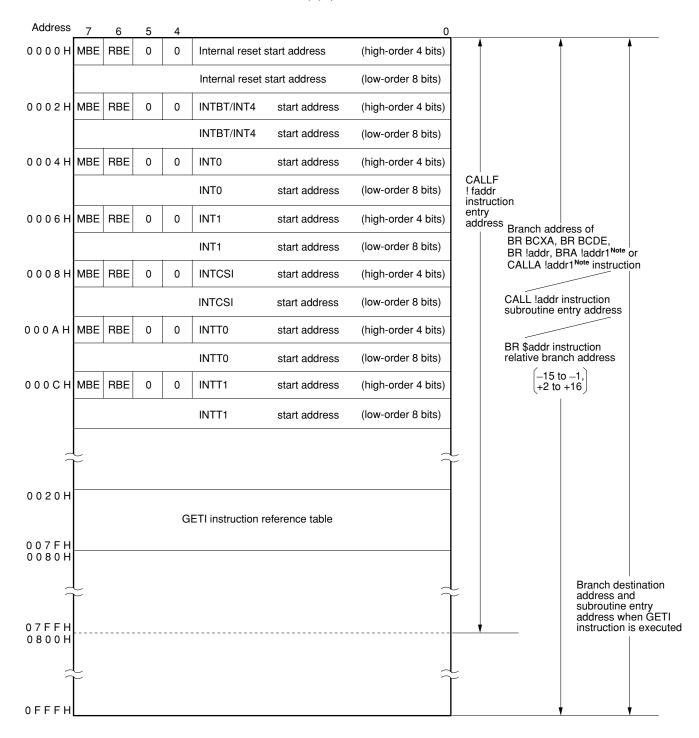
- Addresses 0020H-007FH
 Table area referenced by the GETI instruction ^{Note}.
 - **Note** The GETI instruction realizes a 1-byte instruction on behalf of an arbitrary 2-byte instruction, 3-byte instruction, or two 1-byte instructions. It is used to decrease the program steps.

• Data Memory (RAM)

- Data area 256 words × 4 bits (000H-0FFH)
- Peripheral hardware area 128 words × 4 bits (F80H-FFFH)

Data Sheet U10797EJ2V1DS

Figure 5-1. Program Memory Map (1/2)


(a) μPD754302

Note Can be used in the Mk II mode only.

Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order eight bits of PC by executing the BR PCDE or BR PCXA instruction.

Figure 5-1. Program Memory Map (2/2)

(b) *µ***PD754304**

★ Note Can be used in the Mk II mode only.

Remark In addition to the above, a branch can be taken to the address indicated by changing only the low-order eight bits of PC by executing the BR PCDE or BR PCXA instruction.

			Data memory	Memory bank
A	A	0 0 0 H General-purpose register area 0 1 F H	(32 × 4)	
Data area static RAM (256 × 4) Stat	ck area		256 × 4 (224 × 4)	0
¥	•	0 F F H	Not incorporated	<u>↓</u>
A		F 8 0 H		
Peripheral ha	ardware area		128×4	 15
_		FFFH		↓

Figure 5-2. Data Memory Map

6. PERIPHERAL HARDWARE FUNCTIONS

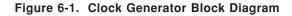
6.1 Digital Input Ports

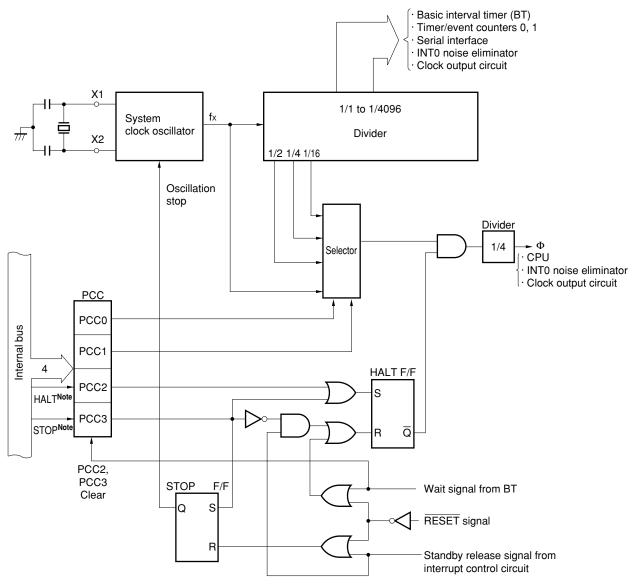
The following three types of I/O ports are provided.

CMOS input (Ports 0, 1)	:	8
• CMOS I/O (Ports 2, 3, 6 to 8)	:	18
N-ch open-drain I/O (Port 5)	:	4
Total		30

Port Name	Function	Operation	Remark	
PORT0	4-bit input		When serial interface function is used, multiplexed pin has output function depending on operation mode.	
PORT1		Input port.	Multiplexed with INT0 through INT2 and TI0/TI1 pins.	
PORT2	4-bit I/O	Can be set in input or output mode in 4-bit units.		Multiplexed with PTO0, PTO1, and PCL pins.
PORT3		Can be set in input or output	_	
PORT5	4-bit I/O (N-ch open- drain, 13 V)	Can be set in input or output mode in 4-bit units. Pull-up resistor can be connected in 1-bit units by mask option.		
PORT6	4-bit I/O	Can be set in input or output mode in 1-bit units.Ports 6 and 7 are used in pairs and can input or		Multiplexed with KR0 through KR3 pins.
PORT7		Can be set in input or output data in 8-bit units.		Multiplexed with KR4 through KR7 pins.
PORT8	2-bit I/O	Can be set in input or output mode in 2-bit units.		—

Table 6-1. Types and Features of Digital Ports


6.2 Clock Generator

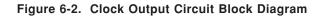

Clock generator configuration

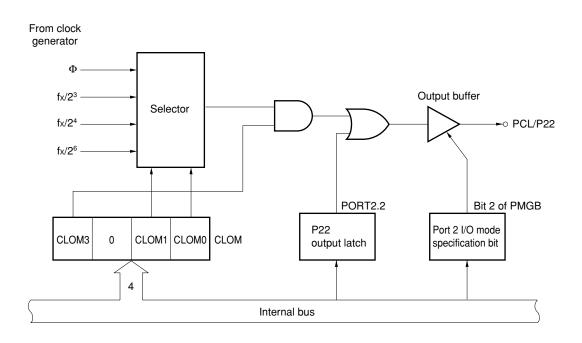
The clock generator provides the clock signals to the CPU and peripheral hardware and its configuration is shown in Figure 6-1.

The operation of the clock generator is set with the processor clock control register (PCC). The instruction execution time can be changed.

- + 0.95, 1.91, 3.81, 15.3 μs (system clock operating at 4.19 MHz)
- + 0.67, 1.33, 2.67, 10.7 μs (system clock operating at 6.0 MHz)

Note Instruction execution

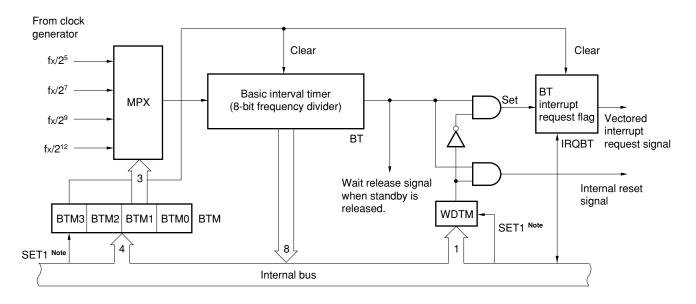

Remarks 1. fx = System clock frequency


- **2.** Φ = CPU clock
- 3. PCC: Processor Clock Control Register
- 4. One clock cycle (tcr) of the CPU clock is equal to one machine cycle of the instruction.

6.3 Clock Output Circuit

The clock output circuit outputs clock pulses from the P22/PCL pin, and is used to apply for remote controller waveform output or to supply clock pulse peripheral LSIs.

- Clock output (PCL) : Φ, 524, 262, 65.5 kHz (during 4.19-MHz operation)
 - Φ , 750, 375, 93.8 kHz (during 6.0-MHz operation)


Remark Special care has been taken in designing the chip so that small-width pulses may not be output when switching clock output enable/disable.

6.4 Basic Interval Timer/Watchdog Timer

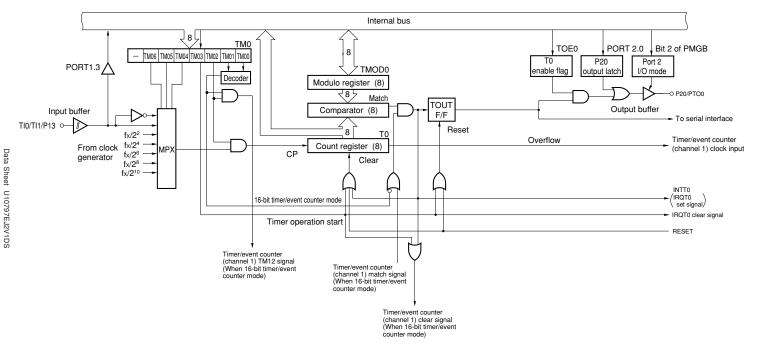
The basic interval timer/watchdog timer has the following functions.

- · Interval timer operation to generate a reference time interrupt
- · Watchdog timer operation to detect a runaway of program and reset the CPU
- · Selects and counts the wait time when the standby mode is released
- · Reads the contents of counting

Note Instruction execution

6.5 Timer/Event Counter

The μ PD754304 has two channels of timer/event counters. Its configuration is shown in Figures 6-4 and 6-5.


The timer/event counter has the following functions.

- Programmable interval timer operation
- Square wave output of any frequency to the PTOn pin (n = 0, 1)
- Event counter operation
- Divides the frequency of signal input via the TIn pin to 1-Nth of the original signal and outputs the divided frequency to the PTOn pin (frequency divider operation).
- · Supplies the shift clock to the serial interface circuit.
- · Reads the count value.

The timer/event counter operates in the following two modes as set by the mode register.

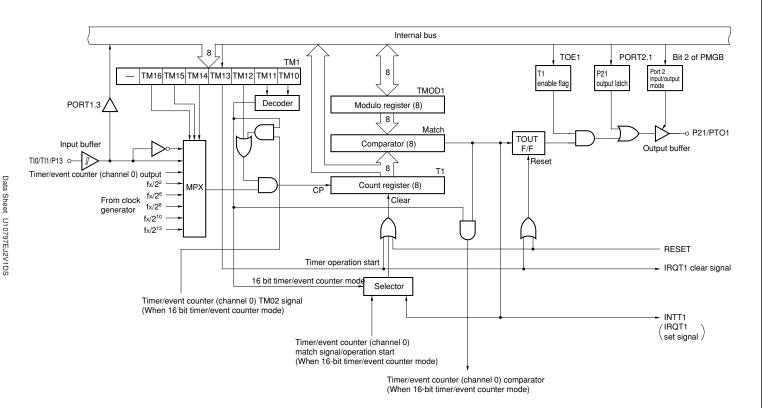
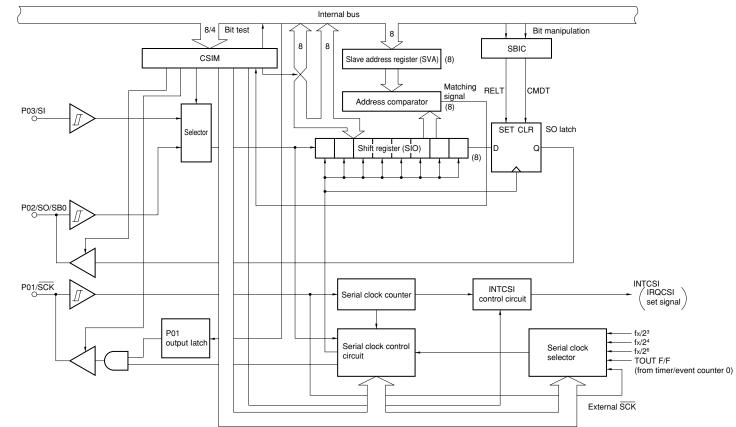

Mode	Channel	Channel 0	Channel 1
8-bit timer/event counter mode			\checkmark
16-bit timer/event counter mode	١	1	

Table 6-2. Operation Modes of Timer/Event Counter

Figure 6-4. Timer/Event Counter (Channel 0) Block Diagram

Figure 6-5. Timer/Event Counter (Channel 1) Block Diagram


26

6.6 Serial Interface

The μ PD754304 incorporates the clocked 8-bit serial interface, and the following three modes are provided.

- · Operation stop mode
- 3-wire serial I/O mode
- 2-wire serial I/O mode

28

ZEC

6.7 Bit Sequential Buffer 16 Bits

The bit sequential buffer (BSB) is a special data memory for bit manipulation and the bit manipulation can be easily performed by changing the address specification and bit specification in sequence, therefore it is useful when processing a long data bit-wise.

The data memory is composed of 16 bits and the pmem.@L addressing of a bit manipulation instruction is possible. The bit can be specified indirectly by the L register. In this case, processing can be done by moving the specified bit in sequence by incrementing and decrementing the L register in the program loop.

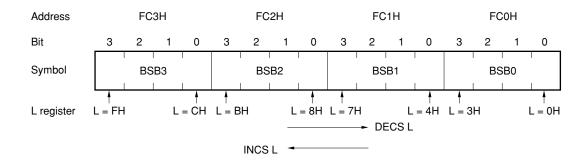


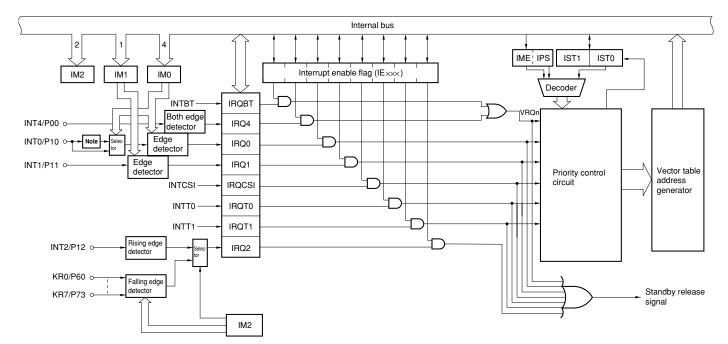
Figure 6-7. Bit Sequential Buffer Format

Remarks 1. In the pmem.@L addressing, the specified bit moves corresponding to the L register.

2. In the pmem.@L addressing, the BSB can be manipulated regardless of MBE/MSB specification.

7. INTERRUPT FUNCTION AND TEST FUNCTION

The μ PD754304 has seven kinds of interrupt sources and one kind of test source. Two types of edge detection testable inputs are provided for INT2 of the test source.


The interrupt control circuit of the μ PD754304 has the following functions.

(1) Interrupt function

- Vectored interrupt function for hardware control, enabling/disabling the interrupt acceptance by the interrupt enable flag (IExxx) and interrupt master enable flag (IME).
- Can set any interrupt start address.
- Multiple interrupts wherein the order of priority can be specified by the interrupt priority select register (IPS).
- Test function of interrupt request flag (IRQ×××). An interrupt generated can be checked by software.
- Release the standby mode. A release interrupt can be selected by the interrupt enable flag.

(2) Test function

- Test request flag (IRQxxx) generation can be checked by software.
- Release the standby mode. The test source to be released can be selected by the test enable flag.

Figure 7-1. Interrupt Control Circuit Block Diagram

Note Noise eliminator (Standby release is disabled when noise eliminator is selected.)

<u>ω</u>

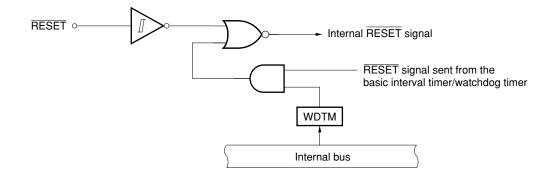
µPD754302, 754304, 754302(A), 754304(A)

8. STANDBY FUNCTION

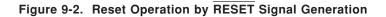
In order to save dissipation power while a program is in a standby mode, two types of standby modes (STOP mode and HALT mode) are provided for the μ PD754304.

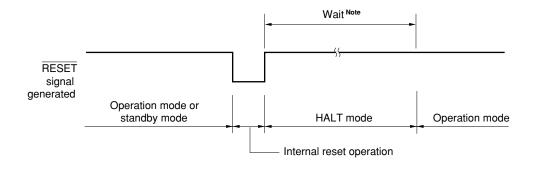
ltem	Mode	STOP mode	HALT mode	
Set instruct	ion	STOP instruction	HALT instruction	
Operation Clock generator status		The system clock stops oscillation.	Only the CPU clock Φ halts (oscillation continues).	
	Basic interval timer/ Watchdog timer	Operation stops.	Operable (The IRQBT is set in the reference interval).	
	Serial interface	Operable only when an external SCK input is selected as the serial clock.	Operable	
	Timer/event counter	Operable only when a signal input to the TI0 and TI1 pins are specified as the count clock.	Operable	
External interrupt CPU		The INT1, 2, and 4 are operable. Only the INT0 is not operated ^{Note} .		
		The operation stops.		
Release signal		Interrupt request signal sent from the operable hardware enabled by the interrupt enable flag or $\overline{\text{RESET}}$ signal input.		

Table 8-1.	Operation	Status in	Standby	Mode
------------	-----------	-----------	---------	------


Note Operable only when the noise eliminator is not used (IM02 = 1) by bit 2 of the edge detection mode register (IM0).

32


9. RESET FUNCTION


There are two reset inputs: external RESET signal and RESET signal sent from the basic interval timer/ watchdog timer. When either one of the RESET signals are input, an internal RESET signal is generated. Figure 9-1 shows the circuit diagram of the above two inputs.

Generation of the RESET signal initializes each hardware as listed in Table 9-1. Figure 9-2 shows the timing chart of the reset operation.

Note The following two times can be selected by the mask option. 2¹⁷/fx (21.8 ms : @ 6.0 MHz, 31.3 ms: @ 4.19 MHz) 2¹⁵/fx (5.46 ms : @ 6.0 MHz, 7.81 ms: @ 4.19 MHz)

	Hardware		RESET signal generation in the standby mode	RESET signal generation
Program counter (PC)		Sets the low-order 3 bits of program memory's address 0000H to the PC10-PC8 and the contents of address 0001H to the PC7-PC0.	Sets the low-order 3 bits of program memory's address 0000H to the PC10-PC8 and the contents of address 0001H to the PC7-PC0.	
		μPD754304	Sets the low-order 4 bits of program memory's address 0000H to the PC11-PC8 and the contents of address 0001H to the PC7-PC0.	Sets the low-order 4 bits of program memory's address 0000H to the PC11-PC8 and the contents of address 0001H to the PC7-PC0.
PSW 0	Carry flag (CY)		Held	Undefined
	Skip flag (SK0-SK2)		0	0
	Interrupt status flag (IST0, IST	1)	0	0
Bank enable flag (MBE, RBE)		Sets the bit 6 of program memory's address 0000H to the RBE and bit 7 to the MBE.	Sets the bit 6 of program memory's address 0000H to the RBE and bit 7 to the MBE.	
Stack pointer (SP)		Undefined	Undefined	
Stack ban	k select register (SBS)		1000B	1000B
Data memory (RAM)		Held	Undefined	
General-purpose register (X, A, H, L, D, E, B, C)		Held	Undefined	
Bank sele	ct register (MBS, RBS)		0, 0	0, 0
Basic interv	val Counter (BT)		Undefined	Undefined
timer/watch	dog Mode register (BTM)		0	0
timer	Watchdog timer enable fla	g (WDTM)	0	0
Timer/eve	nt Counter (T0)		0	0
counter (T	0) Modulo register (TMOD	0)	FFH	FFH
	Mode register (TM0)		0	0
	TOE0, TOUT F/F		0, 0	0, 0
Timer/eve	nt Counter (T1)		0	0
counter (T	1) Modulo register (TMOD	1)	FFH	FFH
	Mode register (TM1)		0	0
	TOE1, TOUT F/F		0, 0	0, 0
Serial	Shift register (SIO)		Held	Undefined
interface	Operation mode register	(CSIM)	0	0
	SBI control register (SB	IC)	0	0
	Slave address register	(SVA)	Held	Undefined
Clock genera	ator, Processor clock control re	gister (PCC)	0	0
clock output circuit	Clock output mode regi	ster (CLOM)	0	0

Table 9-1.	Status of	Each Hardware	After Reset (1/2)
------------	-----------	----------------------	-------------------

	Hardware	RESET signal generation in the standby mode	RESET signal generation in operation
Interrupt	Interrupt request flag (IRQ×××)	Reset (0)	Reset (0)
function	Interrupt enable flag (IE×××)	0	0
	Interrupt priority select register (IPS)	0	0
	INT0, 1, 2 mode registers (IM0, IM1, IM2)	0, 0, 0	0, 0, 0
Digital port	Output buffer	Off	Off
	Output latch	Cleared (0)	Cleared (0)
	I/O mode registers (PMGA, B, C)	0	0
	Pull-up resistor setting registers (POGA, B)	0	0
Bit sequential t	ouffers (BSB0-BSB3)	Held	Undefined

Table 9-1. Status of Each Hardware After Reset (2/2)

***** 10. MASK OPTION

The μ PD754304 has the following mask options:

Mask option of P50 through P53

Pull-up resistors can be connected to these pins.

- (1) Specify connection of a pull-up resistor in 1-bit units.
- (2) Do not specify connection of a pull-up resistor.

Standby function mask option

The wait time when the $\overrightarrow{\text{RESET}}$ signal is input can be selected.

- (1) $2^{17}/fx$ (21.8 ms: fx = 6.0 MHz, 31.3 ms: fx = 4.19 MHz)
- (2) $2^{15}/fx$ (5.46 ms: fx = 6.0 MHz, 7.81 ms: fx = 4.19 MHz)

11. INSTRUCTION SETS

(1) Expression formats and description methods of operands

The operand is described in the operand column of each instruction in accordance with the description method for the operand expression format of the instruction. For details, refer to **RA75X ASSEMBLER PACKAGE USERS' MANUAL**—**LANGUAGE (EEU-1363)**. If there are several elements, one of them is selected. Capital letters and the + and – symbols are key words and are described as they are. For immediate data, appropriate numbers and labels are described.

Instead of the labels such as mem, fmem, pmem, and bit, the symbols of the register flags can be described. However, there are restrictions in the labels that can be described for fmem and pmem. For details, refer to the μ PD754304 USER'S MANUAL (U10123E).

Representation format	Description method
reg	X, A, B, C, D, E, H, L
reg1	X, B, C, D, E, H, L
rp	XA, BC, DE, HL
rp1	BC, DE, HL
rp2	BC, DE
rp'	XA, BC, DE, HL, XA', BC', DE', HL'
rp'1	BC, DE, HL, XA', BC', DE', HL'
rpa	HL, HL+, HL–, DE, DL
rpa1	DE, DL
n4	4-bit immediate data or label
n8	8-bit immediate data or label
mem	8-bit immediate data or label ^{Note}
bit	2-bit immediate data or label
fmem	FB0H-FBFH, FF0H-FFFH immediate data or label
pmem	FC0H-FFFH immediate data or label
addr addr1 caddr	0000H-07FFH immediate data or label (μPD754302) 0000H-0FFFH immediate data or label (μPD754304) 0000H-07FFH immediate data or label (μPD754302) 0000H-0FFFH immediate data or label (μPD754304) 12-bit immediate data or label
faddr	11-bit immediate data or label
taddr	20H-7FH immediate data (where bit 0 = 0) or label
PORTn	PORTO-PORT3, PORT5-PORT8
IExxx	IEBT, IET0, IET1, IE0-IE2, IE4, IECSI
RBn	RB0-RB3
MBn	MB0, MB15

Note mem can be only used for even address in 8-bit data processing.

, 0	
А	: A register; 4-bit accumulator
В	: B register
С	: C register
D	: D register
Е	: E register
Н	: H register
L	: L register
Х	: X register
XA	: XA register pair; 8-bit accumulator
BC	: BC register pair
DE	: DE register pair
HL	: HL register pair
XA'	: XA' expanded register pair
BC'	: BC' expanded register pair
DE'	: DE' expanded register pair
HL'	: HL' expanded register pair
PC	: Program counter
SP	: Stack pointer
CY	: Carry flag; bit accumulator
PSW	: Program status word
MBE	: Memory bank enable flag
RBE	: Register bank enable flag
PORTn	: Port n (n = 0-3, 5-8)
IME	: Interrupt master enable flag
IPS	: Interrupt priority select register
IExxx	: Interrupt enable flag
RBS	: Register bank select register
MBS	: Memory bank select register
PCC	: Processor clock control register
	: Separation between address and bit
$(\times\!\times)$: The contents addressed by $\times\!\!\times$
××Н	: Hexadecimal data

(2) Legend in explanation of operation

38

*1	MB = MBE•MBS		Î Î
	(MBS = 0, 15)		
*2	MB = 0		
*3	MBE = 0 : MB =	0 (000H-07FH)	
	MB =	15 (F80H-FFFH)	Data memory addressing
	MBE = 1 : MB =	MBS (MBS = 0, 15)	
*4	MB = 15, fmem =	FB0H-FBFH, FF0H-FFFH	
*5	MB = 15, pmem =	= FC0H-FFFH	↓
*6	μPD754302	addr = 0000H-07FFH	1
	μPD754304	addr = 0000H-0FFFH	
*7	addr = (Curren	t PC) – 15 to (Current PC) – 1	
	(Curren	t PC) + 2 to (Current PC) + 16	
	addr1 = (Current	t PC) – 15 to (Current PC) – 1	
	(Curren	t PC) + 2 to (Current PC) + 16	
*8	μPD754302	caddr = 0000H-07FFH	Program memory addressing
	μPD754304	caddr = 0000H-0FFFH (PC ₁₂ = 0)	
*9	faddr = 0000H-07	/FFH	
*10	taddr = 0020H-00)7FH	
*11	μPD754302	addr1 = 0000H-07FFH	
	μPD754304	addr1 = 0000H-0FFFH	

(3) Explanation of symbols under addressing area column

Remarks 1. MB indicates memory bank that can be accessed.

- 2. In *2, MB = 0 independently of how MBE and MBS are set.
- 3. In *4 and *5, MB = 15 independently of how MBE and MBS are set.
- 4. *6 to *11 indicate the areas that can be addressed.

(4) Explanation of number of machine cycles column

S denotes the number of machine cycles required by skip operation when a skip instruction is executed. The value of S varies as follows.

- When no skip is made: S = 0
- When the skipped instruction is a 1- or 2-byte instruction: S = 1
- When the skipped instruction is a 3-byte instruction ^{Note}: S = 2

Note 3-byte instruction: BR laddr, BRA laddr1, CALL laddr or CALLA laddr1 instruction

Caution The GETI instruction is skipped in one machine cycle.

One machine cycle is equal to one cycle of CPU clock (= tcy); time can be selected from among four types by setting PCC.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Transfer	MOV	A, #n4	1	1	$A \leftarrow n4$		String effect A
		reg1, #n4	2	2	reg1 ← n4		
		XA, #n8	2	2	$XA \leftarrow n8$		String effect A
		HL, #n8	2	2	HL ← n8		String effect B
		rp2, #n8	2	2	rp2 ← n8		
		A, @HL	1	1	$A \leftarrow (HL)$	*1	
		A, @HL+	1	2+S	$A \leftarrow (HL)$, then $L \leftarrow L+1$	*1	L = 0
		A, @HL–	1	2+S	$A \leftarrow (HL)$, then $L \leftarrow L-1$	*1	L = FH
		A, @rpa	1	1	$A \leftarrow (rpa)$	*2	
		XA, @HL	2	2	$XA \leftarrow (HL)$	*1	
		@HL, A	1	1	$(HL) \leftarrow A$	*1	
		@HL, XA	2	2	$(HL) \leftarrow XA$	*1	
		A, mem	2	2	$A \leftarrow (mem)$	*3	
		XA, mem	2	2	$XA \leftarrow (mem)$	*3	
		mem, A	2	2	(mem) ← A	*3	
		mem, XA	2	2	(mem) ← XA	*3	
		A, reg1	2	2	A ← reg1		
		XA, rp'	2	2	$XA \leftarrow rp'$		
		reg1, A	2	2	reg1 ← A		
		rp'1, XA	2	2	rp'1 ← XA		
	ХСН	A, @HL	1	1	$A \leftrightarrow (HL)$	*1	
		A, @HL+	1	2+S	$A \leftrightarrow (HL)$, then $L \leftarrow L+1$	*1	L = 0
		A, @HL-	1	2+S	A \leftrightarrow (HL), then L \leftarrow L–1	*1	L = FH
		A, @rpa	1	1	$A \leftrightarrow (rpa)$	*2	
		XA, @HL	2	2	$XA \leftrightarrow (HL)$	*1	
		A, mem	2	2	$A \leftrightarrow (mem)$	*3	
		XA, mem	2	2	$XA \leftrightarrow (mem)$	*3	
		A, reg1	1	1	$A \leftrightarrow reg1$		
		XA, rp'	2	2	$XA \leftrightarrow rp'$		
Table reference	MOVT	XA, @PCDE	1	3	● µPD754302 ХА ← (PC10-8+DE)вом		
reference					• µPD754304 ХА ← (PC11-8+DE)вом		
		XA, @PCXA	1	3		1	
					 µPD754304 XA ← (PC₁₁₋₈₊XA)_{ROM} 		
		XA, @BCDE	1	3	$XA \leftarrow (PCH=8+XA)HOM$ $XA \leftarrow (BCDE)_{ROM}$ Note	*6	
		XA, @BODE XA, @BCXA	1	3	XA ← (BCXA) _{ROM} Note	*6	

Note To use the μ PD754302, clear the most significant bit of the register C and register B to "0". To use the μ PD754304, clear the register B to "0".

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Bit transfer	MOV1	CY, fmem.bit	2	2	$CY \leftarrow (fmem.bit)$	*4	
		CY, pmem.@L	2	2	$CY \gets (pmem_{7-2} + L_{3-2}.bit(L_{1-0}))$	*5	
		CY, @H+mem.bit	2	2	$CY \gets (H\text{+}mem_{30}.bit)$	*1	
		fmem.bit, CY	2	2	$(fmem.bit) \leftarrow CY$	*4	
		pmem.@L, CY	2	2	$(pmem_{72}+L_{32}.bit(L_{10})) \leftarrow CY$	*5	
		@H+mem.bit, CY	2	2	$(H\text{+}mem_{30}.bit) \leftarrow CY$	*1	
Operation	ADDS	A, #n4	1	1+S	$A \leftarrow A + n4$		carry
		XA, #n8	2	2+S	$XA \leftarrow XA{+}n8$		carry
		A, @HL	1	1+S	$A \leftarrow A\text{+}(HL)$	*1	carry
		XA, rp'	2	2+S	XA ← XA+rp'		carry
		rp'1, XA	2	2+S	rp'1 ← rp'1+XA		carry
	ADDC	A, @HL	1	1	$A,CY \gets A\text{+}(HL)\text{+}CY$	*1	
		XA, rp'	2	2	$XA, CY \gets XA \texttt{+} rp' \texttt{+} CY$		
		rp'1, XA	2	2	$rp'1, CY \leftarrow rp'1+XA+CY$		
	SUBS	A, @HL	1	1+S	$A \leftarrow A\text{-}(HL)$	*1	borrow
		XA, rp'	2	2+S	XA ← XA−rp'		borrow
		rp'1, XA	2	2+S	rp'1 ← rp'1–XA		borrow
	SUBC	A, @HL	1	1	A, CY ← A–(HL)–CY	*1	
		XA, rp'	2	2	$XA, CY \leftarrow XA-rp'-CY$		
		rp'1, XA	2	2	$rp'1, CY \leftarrow rp'1–XA–CY$		
	AND	A, #n4	2	2	$A \leftarrow A \wedge n4$		
		A, @HL	1	1	$A \leftarrow A \land (HL)$	*1	
		XA, rp'	2	2	$XA \leftarrow XA \wedge rp'$		
		rp'1, XA	2	2	$rp'1 \leftarrow rp'1 \land XA$		
	OR	A, #n4	2	2	$A \leftarrow A \lor n4$		
		A, @HL	1	1	$A \leftarrow A \lor (HL)$	*1	
		XA, rp'	2	2	$XA \leftarrow XA \lor rp'$		
		rp'1, XA	2	2	$rp'1 \leftarrow rp'1 \lor XA$		
	XOR	A, #n4	2	2	$A \leftarrow A \forall n4$		
		A, @HL	1	1	$A \leftarrow A \forall (HL)$	*1	
		XA, rp'	2	2	$XA \gets XA \forall rp'$		
		rp'1, XA	2	2	rp'1 ← rp'1 ∀ XA		
Accumulator	RORC	A	1	1	$CY \leftarrow A_0, A_3 \leftarrow CY, A_{n-1} \leftarrow A_n$		
manipulation	NOT	А	2	2	$\overline{A} \gets \overline{A}$		
Increment	INCS	reg	1	1+S	$reg \leftarrow reg+1$		reg=0
and decrement		rp1	1	1+S	rp1 ← rp1+1		rp1=00H
ueciement		@HL	2	2+S	$(HL) \leftarrow (HL)+1$	*1	(HL)=0
		mem	2	2+S	(mem) ← (mem)+1	*3	(mem)=0
	DECS	reg	1	1+S	$reg \leftarrow reg-1$		reg=FH
		rp'	2	2+S	rp' ← rp'–1		rp'=FFH

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Comparison	SKE	reg, #n4	2	2+S	Skip if reg = n4		reg=n4
		@HL, #n4	2	2+S	Skip if (HL) = n4	*1	(HL) = n4
		A, @HL	1	1+S	Skip if A = (HL)	*1	A = (HL)
		XA, @HL	2	2+S	Skip if XA = (HL)	*1	XA = (HL)
		A, reg	2	2+S	Skip if A = reg		A=reg
		XA, rp'	2	2+S	Skip if XA = rp'		XA=rp'
Carry flag	SET1	CY	1	1	CY ← 1		
manipulation	CLR1	CY	1	1	$CY \leftarrow 0$		
	SKT	СҮ	1	1+S	Skip if CY = 1		CY=1
	NOT1	СҮ	1	1	$CY \leftarrow \overline{CY}$		
Memory bit	SET1	mem.bit	2	2	(mem.bit) ← 1	*3	
manipulation		fmem.bit	2	2	(fmem.bit) ← 1	*4	
		pmem.@L	2	2	$(pmem_{7-2}+L_{3-2}.bit(L_{1-0})) \leftarrow 1$	*5	
		@H+mem.bit	2	2	(H+mem₃₋₀.bit) ← 1	*1	
	CLR1	mem.bit	2	2	(mem.bit) \leftarrow 0	*3	
		fmem.bit	2	2	(fmem.bit) $\leftarrow 0$	*4	
		pmem.@L	2	2	$(pmem_{7-2}+L_{3-2}.bit(L_{1-0})) \leftarrow 0$	*5	
		@H+mem.bit	2	2	(H+mem₃₀.bit) ← 0	*1	
	SKT	mem.bit	2	2+S	Skip if (mem.bit)=1	*3	(mem.bit)=1
		fmem.bit	2	2+S	Skip if (fmem.bit)=1	*4	(fmem.bit)=1
		pmem.@L	2	2+S	Skip if (pmem _{7-2+L3-2} .bit(L ₁₋₀))=1	*5	(pmem.@L)=1
		@H+mem.bit	2	2+S	Skip if (H+mem₃₋₀.bit)=1	*1	(@H+mem.bit)=1
	SKF	mem.bit	2	2+S	Skip if (mem.bit)=0	*3	(mem.bit)=0
		fmem.bit	2	2+S	Skip if (fmem.bit)=0	*4	(fmem.bit)=0
		pmem.@L	2	2+S	Skip if (pmem _{7-2+L3-2} .bit(L ₁₋₀))=0	*5	(pmem.@L)=0
		@H+mem.bit	2	2+S	Skip if (H+mem₃₋₀.bit)=0	*1	(@H+mem.bit)=0
	SKTCLR	fmem.bit	2	2+S	Skip if (fmem.bit)=1 and clear	*4	(fmem.bit)=1
		pmem.@L	2	2+S	Skip if (pmem7-2+L3-2.bit(L1-0))=1 and clear	*5	(pmem.@L)=1
		@H+mem.bit	2	2+S	Skip if (H+mem3-0.bit)=1 and clear	*1	(@H+mem.bit)=1
	AND1	CY, fmem.bit	2	2	$CY \leftarrow CY \land (fmem.bit)$	*4	
		CY, pmem.@L	2	2	$CY \leftarrow CY \land (pmem_{7-2}+L_{3-2}.bit(L_{1-0}))$	*5	
		CY, @H+mem.bit	2	2	CY ← CY ∧ (H+mem ₃₋₀ .bit)	*1	
	OR1	CY, fmem.bit	2	2	$CY \leftarrow CY \lor (fmem.bit)$	*4	
		CY, pmem.@L	2	2	$CY \leftarrow CY \lor (pmem_{7-2}+L_{3-2}.bit(L_{1-0}))$	*5	
		CY, @H+mem.bit	2	2	CY ← CY ∨ (H+mem ₃₋₀ .bit)	*1	
	XOR1	CY, fmem.bit	2	2	CY ← CY ∀ (fmem.bit)	*4	
		CY, pmem.@L	2	2	CY ← CY ∀ (pmem ₇₋₂ +L ₃₋₂ .bit(L ₁₋₀))	*5	
		CY, @H+mem.bit	2	2	CY ← CY ∨ (H+mem₃₋₀.bit)	*1	

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Branch BR ^{Note}	BR Note	addr	_	_	 μPD754302 PC₁₀₋₀ ← addr Select appropriate instruction from among BR !addr, BRCB !caddr and BR \$addr according to the assembler being used. μPD754304 PC₁₁₋₀ ← addr Select appropriate instruction from among BR !addr, BRCB !caddr and BR \$addr according to the assembler being used. 	*6	
		addr1	_	_	• μ PD754302 PC100 \leftarrow addr (Select appropriate instruction from among BR !addr, BRA !addr1, BRCB !caddr and BR \$addr1 according to the assembler being used. • μ PD754304 PC11-0 \leftarrow addr1 (Select appropriate instruction from among BR !addr, BRA !addr1, BRCB !caddr and BR \$addr1 according to the assembler being used.	*11	
		!addr	3	3	 μPD754302 PC10-0 ← addr μPD754304 PC11-0 ← addr 	*6	
		\$addr	1	2	 μPD754302 PC10-0 ← addr μPD754304 PC11-0 ← addr 	*7	
		\$addr1	1	2	 μPD754302 PC10-0 ← addr1 μPD754304 PC11-0 ← addr1 		
		PCDE	2	3	 μPD754302 PC10-0 ← PC10-8+DE μPD754304 PC11-0 ← PC11-8+DE 	_	
		PCXA	2	3	 μPD754302 PC10-0 ← PC10-8+XA μPD754304 PC11-0 ← PC11-8+XA 	-	

Note The above operations in the double boxes can be performed only in the Mk II mode.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Branch	BR	BCDE	2	3	• μ PD754302 PC ₁₀₋₀ \leftarrow BCDE Note1 • μ PD754304 PC ₁₁₋₀ \leftarrow BCDE Note2	*6	
		BCXA	2	3	 μPD754302 PC10-0 ← BCXA Note1 μPD754304 PC11-0 ← BCXA Note2 	*6	
	BRA Note3	laddr1	3	3	• μ PD754302 PC ₁₀₋₀ \leftarrow addr1 • μ PD754304 PC ₁₁₋₀ \leftarrow addr1	*11	
	BRCB	lcaddr	2	2	• μ PD754302 PC10-0 \leftarrow caddr10-0 • μ PD754304 PC11-0 \leftarrow caddr11-0	*8	
Subroutine stack control	CALLA ^{Note3}	laddr1	3	3	• μ PD754302 (SP-2) $\leftarrow x, x, MBE, RBE$ (SP-6) (SP-3) (SP-4) $\leftarrow PC_{10-0}$ (SP-5) $\leftarrow 0, 0, 0, 0$ PC10-0 \leftarrow addr1, SP \leftarrow SP-6 • μ PD754304 (SP-2) $\leftarrow x, x, MBE, RBE$ (SP-6) (SP-3) (SP-4) $\leftarrow PC_{11-0}$ (SP-5) $\leftarrow 0, 0, 0, 0$ PC11-0 \leftarrow addr1, SP \leftarrow SP-6	*11	
	CALL Note3	laddr	3	3	• μ PD754302 (SP-3) \leftarrow MBE, RBE, 0, 0 (SP-4) (SP-1) (SP-2) \leftarrow PC ₁₀₋₀ PC ₁₀₋₀ \leftarrow addr, SP \leftarrow SP-4 • μ PD754304 (SP-3) \leftarrow MBE, RBE, 0, 0 (SP-4) (SP-1) (SP-2) \leftarrow PC ₁₁₋₀ PC ₁₁₋₀ \leftarrow addr, SP \leftarrow SP-4 • μ PD754302 (SP-2) \leftarrow x, x, MBE, RBE (SP-6) (SP-3) (SP-4) \leftarrow PC ₁₀₋₀	*6	
					$\begin{array}{l} (SP{-5}) \leftarrow 0, 0, 0, 0 \\ PC_{10{-}0} \leftarrow addr, SP \leftarrow SP{-}6 \\ \bullet \mu PD754304 \\ (SP{-}2) \leftarrow \times, \times, MBE, RBE \\ (SP{-}6) (SP{-}3) (SP{-}4) \leftarrow PC_{11{-}0} \\ (SP{-}5) \leftarrow 0, 0, 0, 0 \\ PC_{11{-}0} \leftarrow addr, SP \leftarrow SP{-}6 \end{array}$		

Notes 1. "0" must be set to the most significant bit of the register C and register B.

- 2. "0" must be set to register B.
- **3.** The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

44

μPD754302, 754304, 754302(A), 754304(A)

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Subroutine stack control	CALLF Note	!faddr	2	2	• μ PD754302 (SP-3) \leftarrow MBE, RBE, 0, 0 (SP-4) (SP-1) (SP-2) \leftarrow PC ₁₀₋₀ PC ₁₀₋₀ \leftarrow faddr, SP \leftarrow SP-4	*9	
					• μ PD754304 (SP-3) \leftarrow MBE, RBE, 0, 0 (SP-4) (SP-1) (SP-2) \leftarrow PC ₁₁₋₀ PC ₁₁₋₀ \leftarrow 0+faddr, SP \leftarrow SP-4	-	
				3	• μ PD754302 (SP-2) $\leftarrow \times, \times, MBE, RBE$ (SP-6) (SP-3) (SP-4) \leftarrow PC ₁₀₋₀ (SP-5) \leftarrow 0, 0, 0, 0 PC ₁₀₋₀ \leftarrow faddr, SP \leftarrow SP-6		
					• μ PD754304 (SP-2) $\leftarrow \times, \times, MBE, RBE$ (SP-6) (SP-3) (SP-4) \leftarrow PC ₁₁₋₀ (SP-5) \leftarrow 0, 0, 0, 0 PC ₁₁₋₀ \leftarrow 0+faddr, SP \leftarrow SP-6		
	RET Note	1	3	 μPD754302 PC₁₀₋₀ ← (SP) (SP+3) (SP+2) MBE, RBE, 0, 0 ← (SP+1), SP ← SP+4 			
					 μPD754304 PC₁₁₋₀ ← (SP) (SP+3) (SP+2) MBE, RBE, 0, 0 ← (SP+1), SP ← SP+4 	-	
					• μ PD754302 ×, ×, MBE, RBE \leftarrow (SP+4) 0, 0, 0, 0, \leftarrow (SP+1) PC ₁₀₋₀ \leftarrow (SP) (SP+3) (SP+2), SP \leftarrow SP+6		
RET					• μ PD754304 ×, ×, MBE, RBE \leftarrow (SP+4) 0, 0, 0, 0 \leftarrow (SP+1) PC ₁₀₋₀ \leftarrow (SP) (SP+3) (SP+2), SP \leftarrow SP+6		
	RETS Note		1	3+S	• μ PD754302 MBE, RBE, 0, 0 \leftarrow (SP+1) PC ₁₀₋₀ \leftarrow (SP) (SP+3) (SP+2) SP \leftarrow SP+4 then skip unconditionally		Unconditional
					• μ PD754304 MBE, RBE, 0, 0 \leftarrow (SP+1) PC ₁₁₋₀ \leftarrow (SP) (SP+3) (SP+2) SP \leftarrow SP+4 then skip unconditionally		

Note The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Subroutine stack control	RETS Note1		1	3+S	• μ PD754302 0, 0, 0, 0 \leftarrow (SP+1) PC ₁₀₋₀ \leftarrow (SP) (SP+3) (SP+2) ×, ×, MBE, RBE \leftarrow (SP+4) SP \leftarrow SP+6 then skip unconditionally • μ PD754304 0, 0, 0, 0 \leftarrow (SP+1) PC ₁₁₋₀ \leftarrow (SP) (SP+3) (SP+2) ×, ×, MBE, RBE \leftarrow (SP+4) SP \leftarrow SP+6 then skip unconditionally		Unconditional
	RETI Note1		1	3	• μ PD754302 MBE, RBE, 0, 0 \leftarrow (SP+1) PC ₁₀₋₀ \leftarrow (SP) (SP+3) (SP+2) PSW \leftarrow (SP+4) (SP+5), SP \leftarrow SP+6 • μ PD754304 MBE, RBE, 0, 0 \leftarrow (SP+1) PC ₁₁₋₀ \leftarrow (SP) (SP+3) (SP+2) PSW \leftarrow (SP+4) (SP+5), SP \leftarrow SP+6 • μ PD754302 0, 0, 0, 0 \leftarrow (SP+1) PC ₁₀₋₀ \leftarrow (SP) (SP+3) (SP+2) PSW \leftarrow (SP+4) (SP+5), SP \leftarrow SP+6 • μ PD754304 0, 0, 0, 0 \leftarrow (SP+1) PC ₁₁₋₀ \leftarrow (SP) (SP+3) (SP+2) PSW \leftarrow (SP+4) (SP+5), SP \leftarrow SP+6	-	
	PUSH	rp	1	1	$(SP-1)(SP-2) \leftarrow rp, SP \leftarrow SP-2$		
		BS	2	2	$(SP-1) \leftarrow MBS, (SP-2) \leftarrow RBS, SP \leftarrow SP-2$		
	POP	rp	1	1	$rp \leftarrow (SP+1) (SP), SP \leftarrow SP+2$		
		BS	2	2	$MBS \gets (SP+1), RBS \gets (SP), SP \gets SP+2$		
Interrupt	EI		2	2	IME (IPS.3) ← 1		
control		IExxx	2	2	IExxx ← 1		
	DI		2	2	IME (IPS.3) ← 0		
		IExxx	2	2	$ E \times \times \leftarrow 0$		
Input/output	IN Note2	A, PORTn	2	2	A ← PORTn (n = 0-3, 5-8)		
		XA, PORTn	2	2	$XA \leftarrow PORTn+1, PORTn$ (n = 6)		
	OUT Note2	PORTn, A	2	2	$PORTn \leftarrow A$ (n = 2, 3, 5-8)		
		PORTn, XA	2	2	PORTn+1, PORTn \leftarrow XA (n = 6)		

Notes 1. The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

2. While the IN instruction and OUT instruction are being executed, the MBE must be set to 0 or 1 and MBS must be set to 15.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
CPU control	HALT		2	2	Set HALT Mode (PCC.2 \leftarrow 1)		
	STOP		2	2	Set STOP Mode (PCC.3 \leftarrow 1)		
	NOP		1	1	No Operation		
Special	SEL	RBn	2	2	$RBS \leftarrow n$ (n = 0-3)		
		MBn	2	2	$MBS \gets n \qquad \qquad (n = 0, 15)$		
GETI Notes 1, 2	GETI Notes 1, 2	taddr	1	3	• μ PD754302 • When TBR instruction PC ₁₀₋₀ \leftarrow (taddr) ₂₋₀ + (taddr+1) • When TCALL instruction (SP-4) (SP-1) (SP-2) \leftarrow PC ₁₀₋₀ (SP-3) \leftarrow MBE, RBE, 0, 0 PC ₁₀₋₀ \leftarrow (taddr) ₂₋₀ + (taddr+1) SP \leftarrow SP-4	*10	
					 When instruction other than TBR and TCALL instructions (taddr) (taddr+1) instruction is executed. 	_	Depending on the reference instruction
					 μPD754304 When TBR instruction PC₁₁₋₀ ← (taddr) ₃₋₀ + (taddr+1) 		
					• When TCALL instruction (SP-4) (SP-1) (SP-2) \leftarrow PC ₁₁₋₀ (SP-3) \leftarrow MBE, RBE, 0, 0 PC ₁₁₋₀ \leftarrow (taddr) ₃₋₀ + (taddr+1) SP \leftarrow SP-4	-	
					 When instruction other than TBR and TCALL instructions (taddr) (taddr+1) instruction is executed. 		Depending on the reference instruction
				3	 μPD754302 When TBR instruction PC₁₀₋₀ ← (taddr) 2-0 + (taddr+1) 	*10	
				4	• When TCALL instruction $(SP-6) (SP-3) (SP-4) \leftarrow PC_{10-0}$ $(SP-5) \leftarrow 0, 0, 0, 0$ $(SP-2) \leftarrow \times, \times, MBE, RBE$ $PC_{10-0} \leftarrow (taddr)_{2-0} + (taddr+1)$ $SP \leftarrow SP-6$		
				3	When instruction other than TBR and TCALL instructions (taddr) (taddr+1) instruction is executed.		Depending on the reference instruction

Notes 1. The TBR and TCALL instructions are the table definition assembler directives of the GETI instruction.

2. The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Special	GETI Notes 1, 2	taddr	1	4	• μ PD754304 • When TBR instruction PC ₁₁₋₀ \leftarrow (taddr) ₃₋₀ + (taddr+1) • When TCALL instruction (SP-6) (SP-3) (SP-4) \leftarrow PC ₁₁₋₀ (SP-5) \leftarrow 0, 0, 0, 0 (SP-2) \leftarrow ×, ×, MBE, RBE PC ₁₁₋₀ \leftarrow (taddr) ₃₋₀ + (taddr+1) SP \leftarrow SP-6	*10	
				3	When instruction other than TBR and TCALL instructions (taddr) (taddr+1) instruction is executed.		Depending on the reference instruction

Notes 1. The TBR and TCALL instructions are the table definition assembler directives of the GETI instruction.

2. The above operations in the double boxes can be performed only in the Mk II mode.

12. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25 °C)

Parameter	Symbol		Test Conditions	Ratings	Unit
Supply voltage	VDD			-0.3 to +7.0	V
Input voltage	VII	Except port 5	5	-0.3 to VDD + 0.3	V
	VI2	Port 5 Pull-up resistor incorporated		-0.3 to VDD + 0.3	V
			N-ch open-drain	-0.3 to +14	V
Output voltage	Vo			-0.3 to VDD + 0.3	V
Output current, high	Іон	Per pin		-10	mA
		For all pins		-30	mA
Output current, low	I _{OL} Note	Per pin		30	mA
		For all pins		220	mA
Operating ambient temperature	TA			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the products. Be sure to use the products within the ratings.

Capacitance (TA = 25 $^{\circ}$ C, V_{DD} = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Сіл	f = 1 MHz			15	pF
Output capacitance	Соит	Unmeasured pins returned to 0 V			15	pF
I/O capacitance	Сю				15	рF

Resonator	Recommended Constant	Parameter	Testing Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	X1 X2	Oscillation frequency (fx) ^{Note1}		1.0		6.0 ^{Note2}	MHz
		Oscillation stabilization time ^{Note 3}	After VDD reaches MIN. value of oscillation voltage range			4	ms
Crystal resonator		Oscillation frequency(fx) Note1		1.0		6.0 ^{Note2}	MHz
		Oscillation stabilization time Note3	V_{DD} = 4.5 to 5.5 V			10	ms
						30	ms
External clock		X1 input frequency (fx) ^{Note1}		1.0		6.0 ^{Note2}	MHz
		X1 input high- and low-level widths (txH, txL)		83.3		500	ns

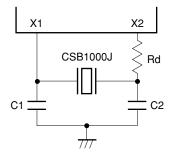
System Clock Oscillator Characteristics (TA = -40 to +85 $^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

- Notes 1. Only the oscillator characteristics are shown. For the instruction execution time, refer to AC Characteristics.
 - 2. If the oscillation frequency is 4.19 MHz < fx \le 6.0 MHz at 1.8 V \le V_{DD} < 2.7 V, set the processor control register (PCC) to a value other than 0011. If the PCC is set to 0011, the rated cycle time of 0.95 μ s is not satisfied.
 - **3.** Oscillation stabilization time is a time required for oscillation to stabilize after application of VDD, or after the STOP mode has been released.

Caution When using the oscillation circuit of the main system clock, wire the portion enclosed in dotted lines in the figures as follows to avoid adverse influences on the wiring capacitance:

- Keep the wire length as short as possible.
- Do not cross other signal lines.
- Do not route the wiring in the vicinity of lines though which a high fluctuating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit as the same potential as Vss.
- Do not connect the power source pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

NEC


Recommended Oscillation Circuit Constants

Ceramic Resonator (TA = -40 to +85 $^\circ\text{C}$)

Manufacturer	Product	Frequency	Recommended Ci	rcuit Constants (pF)	Oscillation Volta	age Range (VDD)	Remarks
		(MHz)	C1	C2	MIN.	MAX.	
Murata	CSB1000J Note	1.0	100	100	2.7	5.5	$Rd = 5.6 k\Omega$
Mfg. Co., Ltd	CSA2.00MG	2.0	30	30	1.8	5.5	
	CST2.00MG		-	-			Capacitor incorporated
	CSA3.58MG	3.58	30	30	1.8	5.5	
	CST3.58MGW		_	-			Capacitor incorporated
	CSA3.58MGU		30	30			
	CST3.58MGWU		_	-			Capacitor incorporated
	CSA4.00MG	4.0	30	30	2.0	5.5	
	CST4.00MGW		_	-			Capacitor incorporated
	CSA4.00MGU		30	30	1.8		
	CST4.00MGWU		_	-			Capacitor incorporated
	CSA6.00MG	6.0	30	30	2.9	5.5	
	CST6.00MGW		_	-			Capacitor incorporated
	CSA6.00MGU		30	30	1.8		
	CST6.00MGWU		-	-			Capacitor incorporated
Kyocera Corp.	KBR-1000F/Y	1.0	100	100	1.8	5.5	$T_A = -20$ to +80 °C
	KBR-2.0MS	2.0	47	47	2.0	5.5	
	KBR-4.0MSA	4.0	33	33	1.8	5.5	
	KBR-4.0MKS		-	-			Capacitor incorporated, TA = -20 to +80 °C
	PBRC 4.00A		33	33			$T_A = -20$ to +80 °C
	PBRC 4.00B		-	-			Capacitor incorporated, TA = -20 to +80 $^\circ$
	KBR-6.0MSA	6.0	33	33	1.8	5.5	$T_A = -20$ to +80 °C
	PBRC 6.00A						
	PBRC 6.00B		_	-			Capacitor incorporated, TA = -20 to +80 $^\circ$
TDK	CCR1000K2	1.0	100	100	1.8	5.5	
	CCR2.0MC33	2.0	_	-			Capacitor incorporated
	CCR4.19MC3	4.19					
	FCR4.19MC5						
	CCR6.0MC3	6.0	1				

 \star

Note If using Murata's CSB1000J (1.0 MHz) as the ceramic resonator, a limited resistor (Rd = $5.6 \text{ k}\Omega$) is required (see figure below). If using any other recommended resonator, no limited resistor is needed.

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation, but do not guarantee oscillation frequency accuracy. If oscillation frequency accuracy is required for actual circuits, it is necessary to adjust the oscillation frequency of the resonator in the circuit. Please inquire directly to the maker of the resonator for data as needed.

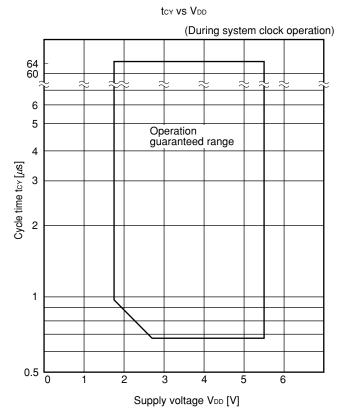
DC Characteristics (TA = -40 to + 85 °C, VDD = 1.8 to 5.5 V)

Parameter	Symbol		Test Condition	S	MIN.	TYP.	MAX.	Unit
Output current, low	lol	Per pin					15	mA
		For all pins					150	mA
Input voltage, high	VIH1	Ports 2, 3, 8		2.7 V≤V _{DD} ≤5.5 V	0.7 Vdd		Vdd	V
				1.8 V≤V _{DD} <2.7 V	0.9 Vdd		Vdd	V
	V _{IH2}	Ports 0, 1, 6	, 7, RESET	2.7 V≤V _{DD} ≤5.5 V	0.8 VDD		Vdd	V
				1.8 V≤V _{DD} <2.7 V	0.9 Vdd		Vdd	V
	Vінз	Port 5	Pull-up resistor	2.7 V≤V _{DD} ≤5.5 V	0.7 Vdd		Vdd	V
			incorporated	1.8 V≤V _{DD} <2.7 V	0.9 Vdd		Vdd	V
			N-ch open drain	2.7 V≤V _{DD} ≤5.5 V	0.7 Vdd		13	V
				1.8 V≤V _{DD} <2.7 V	0.9 Vdd		13	V
	VIH4	X1	X1		VDD-0.1		Vdd	V
Input voltage, low	VIL1	Ports 2, 3, 5	, 8	2.7 V≤V _{DD} ≤5.5 V	0		0.3 VDD	V
				1.8 V≤V _{DD} <2.7 V	0		0.1 Vdd	V
	VIL2	Ports 0, 1, 6	, 7, RESET	2.7 V≤V _{DD} ≤5.5 V	0		0.2 VDD	V
				1.8 V≤V _{DD} <2.7 V	0		0.1 VDD	V
	VIL3	X1		L	0		0.1	V
Output voltage, high	Vон	<u>SCK</u> , SO, ports 2, 3, 6, 7, 8 Іон = –1 mA		VDD-0.5			V	
Output voltage, low	V _{OL1}	SCK, SO, po	orts 2, 3, 5, 6, 7, 8	loL = 15 mA		0.2	2.0	V
				$V_{DD} = 5 V \pm 10\%$				
				loL = 1.6 mA			0.4	V
	Vol2	SB0	N-ch open-drain p			0.2 VDD	V	
Input leak current, high	Ілні	VI = VDD Pins other than X1				3	μA	
	ILIH2		X1				20	μA
	Ілнз	Vı = 13 V	Port 5 (N-ch oper	n drain)			20	μA
Input leak current, low		V1 = 0 V	Pins other than X	1 and port 5			-3	μA
	ILIL2		X1				-20	μA
	ILIL3		Port 5 (N-ch oper	n drain)			-3	μA
			Other than input	instruction				
			execution time					
			Port 5 (N-ch				-30	μA
			open drain)	VDD = 5.0 V		-10	-27	μA
			Input instruction execution time	VDD = 3.0 V		-3	-8	μA
Output leak current, high	ILOH1	Vo = Vdd	SCK, SO/SB0, po	orts 2, 3, 6, 7, 8,			3	μA
			port 5 (with on-ch	nip pull-up resistor)				
	ILOH2	Vo = 13 V	Port 5 (N-ch oper	n drain)			20	μA
Output leak current, low	Ilol	Vo = 0 V					-3	μA
On-chip pull-up resistor	RL1	$V_{I} = 0 V$	Ports 0 to 3 and 6	to 8 (except P00 pin)	50	100	200	kΩ
	RL2		Port 5		15	30	60	kΩ

DC Characteristics (TA = -40 to +85 $^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol		Test Conditions			MIN.	TYP.	MAX.	Unit
Supply current Note1	IDD1	6.00 MHz	V_{DD} = 5.0 V ±	V_{DD} = 5.0 V \pm 10% $^{\text{Note2}}$			1.50	5.00	mA
		Crystal resonator	V_{DD} = 3.0 V \pm	10% •	Note3		0.33	1.00	mA
	Idd2	C1 = C2 = 22 pF	HALT mode	Vdd =	= 5.0 V ± 10%		0.61	1.85	mA
				Vdd =	= 3.0 V ± 10%		0.24	0.75	mA
	IDD1	4.19 MHz	$V_{DD} = 5.0 \text{ V} \pm 10\% \text{ Note2}$			1.20	3.50	mA	
		Crystal resonator	V_{DD} = 3.0 V \pm	10% •	Note3		0.17	0.55	mA
	Idd2	C1 = C2 = 22 pF	HALT mode	Vdd =	= 5.0 V ± 10%		0.40	1.50	mA
				VDD =	= 3.0 V ± 10%		0.13	0.50	mA
	Idd5	STOP mode	V_{DD} = 5.0 V \pm	10%			0.05	10.0	μA
			VDD = 3.0 V ± 10%			0.02	5.00	μA	
					Ta = 25 °C		0.02	3.00	μA

Notes 1. Does not include current fed to on-chip pull-up resistor.


- 2. When processor clock control register (PCC) is set to 0011, during high-speed mode.
- **3.** When PCC is set to 0000, during low-speed mode.

54

Parameter	Symbol	Test Co	nditions	MIN.	TYP.	MAX.	Unit
CPU clock cycle time Note1	tcy	When system	VDD = 2.7 to 5.5 V	0.67		64	μs
(Minimum instruction execution time = 1 machine cycle)		clock is used		0.95		64	μs
TI0, TI1 input frequency	fтı	V _{DD} = 2.7 to 5.5 V		0		1	MHz
				0		275	kHz
TI0, TI1 input high- and	t⊤iн, t⊤i∟	V _{DD} = 2.7 to 5.5 V		0.48			μs
low-level width				1.8			μs
Interrupt input high- and	tinth, tintl	INT0	IM02 = 0	Note 2			μs
low-level width			IM02 = 1	10			μs
		INT1, 2, 4		10			μs
		KR0-7		10			μs
RESET low-level width	trsl			10			μs

AC Characteristics (TA = -40 to +85 $^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

- Notes 1. The CPU clock (Φ) cycle time (minimum instruction execution time) is determined by the ocillation frequency of the connected resonator and the processor clock control register (PCC). The figure on the right shows the cycle time tor characteristics against the supply voltage VDD when the system clock is used.
 - **2.** 2tcv or 128/fx depending on the setting of the interrupt mode register (IM0).

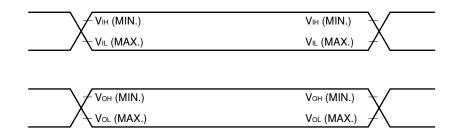
Serial Transfer Operation

2-wire and 3-wire Serial I/O Mode (SCK...Internal clock output) (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Test Condit	ions	MIN.	TYP.	MAX.	Unit
SCK cycle time	tксү1	V _{DD} = 2.7 to 5.5 V	1300			ns	
				3800			ns
SCK high- and	tĸ∟ı,	VDD = 2.7 to 5.5 V	tксү1/2-50			ns	
low-level width	t кн1		tксү1/2-150			ns	
SI ^{Note1} setup time	tsik1	V _{DD} = 2.7 to 5.5 V		150			ns
(to SCK↑)				500			ns
SINote1 hold time	tksi1	V _{DD} = 2.7 to 5.5 V		400			ns
(from \overline{SCK})				600			ns
$\overline{\text{SCK}} {\downarrow} {\rightarrow} \text{SO}^{\text{Note1}}$	tkso1	$R = 1 \ k\Omega, \ C = 100 \ pF \ ^{Note2}$	V _{DD} = 2.7 to 5.5 V	0		250	ns
output delay time				0		1000	ns

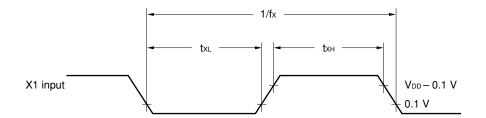
Notes 1. SB0 in the 2-wire serial I/O mode.

2. R and C are the load resistance and load capacitance of the SO output line.

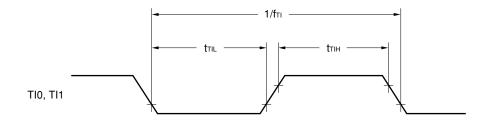

2-wire and 3-wire Serial I/O Mode (SCK...External clock input) (TA = -40 to +85 °C, VDD = 1.8 to 5.5 V)

Parameter	Symbol	Test Condit	ions	MIN.	TYP.	MAX.	Unit
SCK cycle time	t ксү2	$V_{DD} = 2.7$ to 5.5 V					ns
				3200			ns
SCK high- and	tĸ∟₂,	V _{DD} = 2.7 to 5.5 V	400			ns	
low-level width	tкн2		1600			ns	
SI ^{Note1} setup time	tsik2	V _{DD} = 2.7 to 5.5 V		100			ns
(to SCK↑)				150			ns
SI ^{Note1} hold time	tksi2	V _{DD} = 2.7 to 5.5 V		400			ns
(from SCK↑)				600			ns
SCK↓→SO ^{Note1}	tkso2	$R = 1 \text{ k}\Omega, C = 100 \text{ pF} \text{ Note2}$	VDD = 2.7 to 5.5 V	0		300	ns
output delay time				0		1000	ns

Notes 1. SB0 in the 2-wire serial I/O mode.

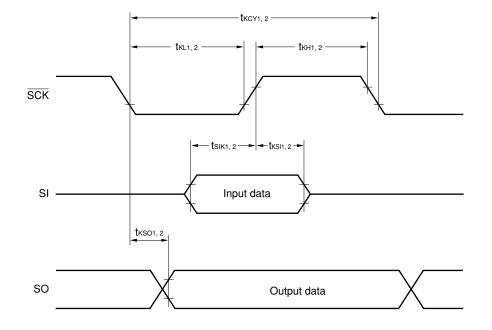

2. R and C are the load resistance and load capacitance of the SO output line.

AC Timing Test Points (Excluding X1 Input)

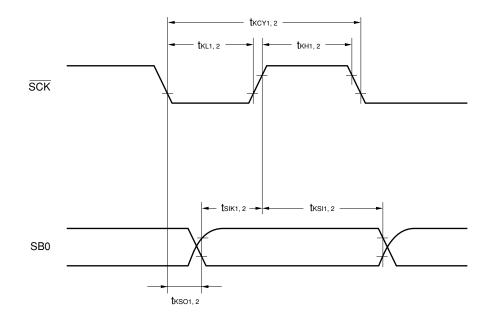


Note For the values, refer to the DC Characteristics.

Clock Timing

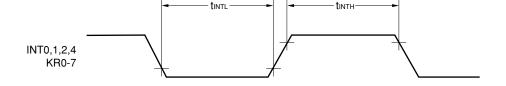


TI0, TI1 Timing

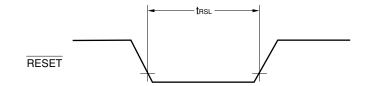


Serial Transfer Timing

3-wire Serial I/O Mode



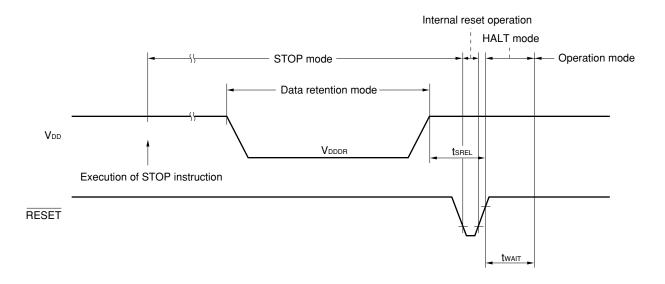
2-wire Serial I/O Mode



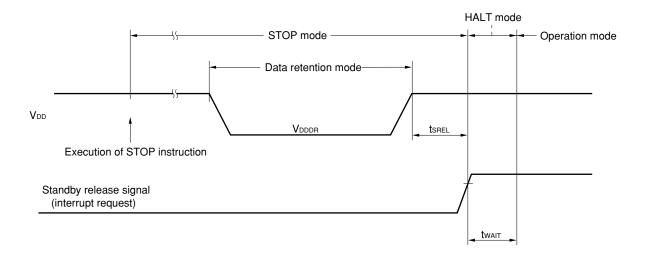
★

Interrupt Input Timing

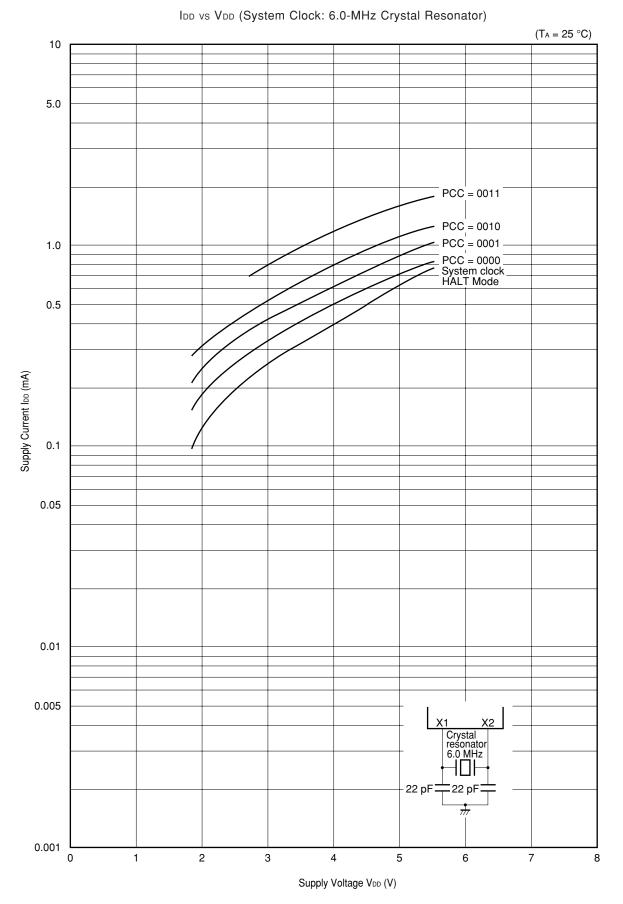
RESET Input Timing

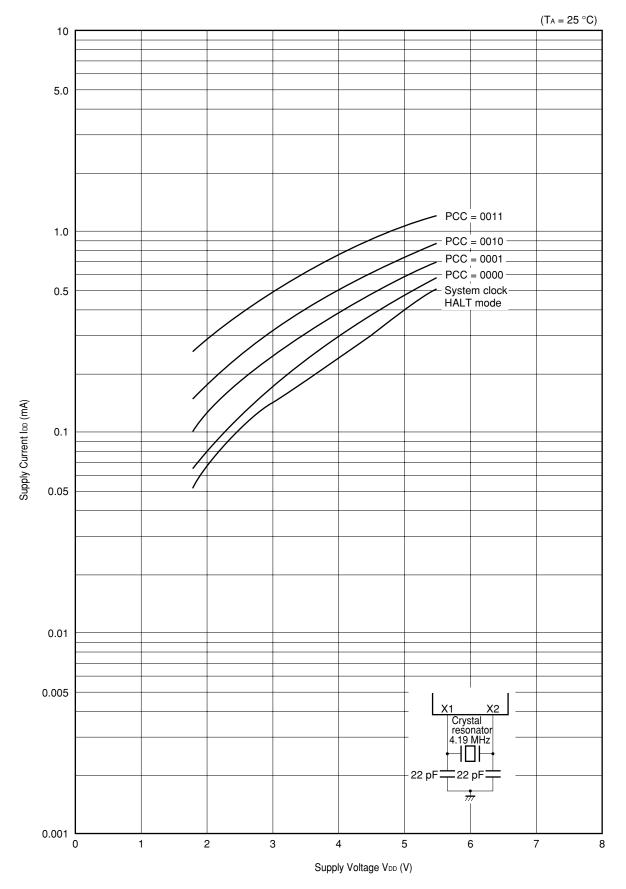

Data Memory STOP Mode Low-Supply Voltage Data Retention Characteristics (TA = -40 to +85 °C)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Release signal set time	t SREL		0			μs
Oscillation stabilization	twait	Release by RESET		Note2		ms
wait time Note1		Release by interrupt request		Note3		ms


- **Notes 1.** The oscillation stabilization wait time is the time during which the CPU operation is stopped to avoid unstable operation at oscillation start.
 - **2.** $2^{17}/fx$ and $2^{15}/fx$ can be selected with mask option.
 - 3. Depends on setting of basic interval timer mode register (BTM) (see table below).

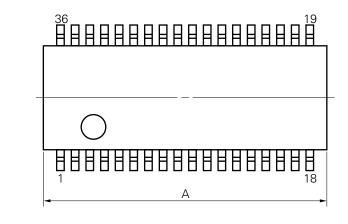
BTM3	BTM2	BTM1	BTM0	Wait Time	
				When fx = 4.19 MHz	When fx = 6.0 MHz
-	0	0	0	2 ²⁰ /fx (Approx. 250 ms)	2 ²⁰ /fx (Approx. 175 ms)
-	0	1	1	2 ¹⁷ /fx (Approx. 31.3 ms)	2 ¹⁷ /fx (Approx. 21.8 ms)
-	1	0	1	2 ¹⁵ /fx (Approx. 7.81 ms)	2 ¹⁵ /fx (Approx. 5.46 ms)
-	1	1	1	2 ¹³ /fx (Approx. 1.95 ms)	2 ¹³ /fx (Approx. 1.37 ms)


* Data Retention Timing (on releasing STOP mode by RESET)


★ Data Retention Timing (Standby release signal: on releasing STOP mode by interrupt signal)

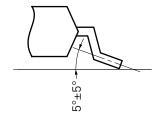
13. CHARACTERISTICS CURVES (REFERENCE VALUES)

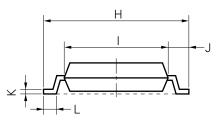
Data Sheet U10797EJ2V1DS



IDD VS VDD (System Clock: 4.19-MHz Crystal Resonator)

62


14. PACKAGE DRAWING


36 PIN PLASTIC SHRINK SOP (300 mil)

// N

detail of lead end

NOTE

വ

ш

ட

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

 $\mathsf{D} \oplus \mathsf{M} \mathbb{M}$

С

		P36GM-80-300B-3
ITEM	MILLIMETERS	INCHES
А	15.54 MAX.	0.612 MAX.
В	0.97 MAX.	0.039 MAX.
С	0.8 (T.P.)	0.031 (T.P.)
D	$0.35_{-0.05}^{+0.10}$	0.014 ^{+0.004} _{-0.003}
E	0.125±0.075	0.005±0.003
F	1.8 MAX.	0.071 MAX.
G	1.55	0.061
Н	7.7±0.3	0.303±0.012
I	5.6	0.220
J	1.1	0.043
К	$0.20^{+0.10}_{-0.05}$	0.008+0.004
L	0.6±0.2	0.024 ^{+0.008} 0.009
М	0.10	0.004
Ν	0.10	0.004

В

15. RECOMMENDED SOLDERING CONDITIONS

The μ PD754302 and μ PD754304 should be soldered and mounted under the following recommended conditions.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Table 15-1. Surface Mounting Type Soldering Conditions

 (1) μPD754302GS-xxx: 36-pin plastic shrink SOP (300 mil, 0.8 mm pitch) μPD754304GS-xxx: 36-pin plastic shrink SOP (300 mil, 0.8 mm pitch) μPD754302GS(A)-xxx: 36-pin plastic shrink SOP (300 mil, 0.8 mm pitch) μPD754304GS(A)-xxx: 36-pin plastic shrink SOP (300 mil, 0.8 mm pitch)

Soldering Method	Soldering Conditions	Recommended
		Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher),	IR35-00-2
	Count: Twice or less	
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher),	VP15-00-2
	Count: Twice or less	
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once	WS60-00-1
	Preheating temperature: 120°C max. (package surface temperature)	
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	_

Caution Do not use different soldering methods together (except for partial heating).

Remark For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

* (2) μPD754302GS-xxx-A: 36-pin plastic shrink SOP (300 mil, 0.8 mm pitch) μPD754304GS-xxx-A: 36-pin plastic shrink SOP (300 mil, 0.8 mm pitch)

Soldering Method	Soldering Conditions	Recommended
		Condition Symbol
Infrared reflow	Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or higher),	IR60-207-3
	Count: Three times or less,	
	Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	
Wave soldering	For details, contact an NEC Electronics sales representative.	-
Partial heating	Pin temperature: 350°C max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Remarks 1. Products with "-A" at the end of the part number are lead-free products.

2. For soldering methods and conditions other than those recommended above, contact an NEC Electronics sales representative.

APPENDIX A. COMPARISON OF FUNCTIONS AMONG μ PD750004, 754304, AND 75P4308

	Item	μPD750004	μPD754304	μPD75P4308		
Program memory		Mask ROM 0000H-0FFFH (4096 × 8 bits)	Mask ROM 0000H-0FFFH (4096 × 8 bits)	One-time PROM 0000H-1FFFH (8192 × 8 bits)		
Data memo	ry	000H-1FFH (512 × 4 bits)	000H-0FFH (256 × 4 bits)			
CPU		75XL CPU				
Instruction execution	w/main system clock		67, 1.33, 2.67, or 10.7 μs (at 6.0 MHz) 95, 1.91, 3.81, or 15.3 μs (at 4.19 MHz)			
time	w/subsystem clock	• 122 μs (at 32.768 kHz)	No subsystem clock			
I/O port	CMOS input	8 (of which 7 can be conne	ected with on-chip pull-up res	istor via software)		
	CMOS I/O	18 (on-chip pull-up resistor	can be connected via softwa	are)		
	N-ch open-drain I/O (withstand 13 V)	8 (pull-up resistor can be connected by mask option)	4 (pull-up resistor can be connected by mask option)	4 (no mask option)		
	Total	34	30 (no port 4 pins)			
Timer		 4 channels Basic interval timer/ watchdog timer 8-bit timer/event counter 8-bit timer Watch timer 	 3 channels Basic interval timer/watchdog timer 8-bit timer/event counter 0 (fx/2² added) 8-bit timer/event counter 1 (TI1, fx/2² added) (can be used as 16-bit timer/event counter) 			
Clock outpu	it (PCL)	 Φ, 524, 262, or 65.5 kHz (main system clock: 4.19 MHz) Φ, 750, 375, or 93.8 kHz (main system clock: 6.0 MHz) 				
BUZ output		Provided	None			
Serial interface		3 modes are supported • 3-wire serial I/O mode ··· MSB/LSB first selectable • 2-wire serial I/O mode • SBI mode	2 modes are supported • 3-wire serial I/O mode ··· MSB/LSB first select • 2-wire serial I/O mode			
Watch mode	e register (WM)	Provided	None			
System clock control register (SCC)						
Suboscillation circuit control register (SOS)						
MBS registe	er	MB0, 1	MB0 only			
Stack area (SBS1, 0)						

Item	μPD750004	μPD754304	μPD75P4308
TM0, 1 registers	Bits 0, 1, and 7 are fixed to 0	_	
Vectored interrupt	External: 3, internal: 4		
Test input	External: 1, internal: 1	External: 1	
Test enable flag (IEW)	Provided	None	
Test request flag (IRQW)			
Supply voltage	V _{DD} = 2.2 to 5.5 V	V _{DD} = 1.8 to 5.5 V	
Operating ambient temperature	T _A = -40 to +85 °C		
Package	 42-pin plastic shrink DIP (600 mil) 44-pin plastic QFP (10 × 10 mm) 	• 36-pin plastic shrink SOP (300 mil, 0.8-mm pitch)	,

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are available for development of application systems using the μ PD754304. In the 75XL Series, a common relocatable assembler is used in combination with a device file dedicated to each model.

Language processor

RA75X relocatable assembler	Host machine			Order code
		OS	Supply media	(part number)
	PC-9800 series	MS-DOS TM	3.5" 2HD	μS5A13RA75X
		Ver. 3.30 to Ver. 6.2 Note	5" 2HD	μS5A10RA75X
	IBM PC/AT TM or	Refer to	3.5" 2HC	μS7B13RA75X
	compatible machine	"OS for IBM PC"	5" 2HC	μS7B10RA75X

Device file	Host machine	OS	Supply media	Order code (part number)
	PC-9800 series	MS-DOS	3.5" 2HD	μS5A13DF754304
		(Ver. 3.30 to Ver. 6.2 Note	5" 2HD	μS5A10DF754304
	IBM PC/AT or	Refer to	3.5" 2HC	μS7B13DF754304
	compatible machine	"OS for IBM PC"	5" 2HC	μS7B10DF754304

PROM writing tools

Hardware	PG-1500	The PG-1500 is a PROM programmer that can program PROM-contained single-chip microcontrollers in the standalone mode or under control of a host machine, when connected with an accessory board and an optional programmer adapter. It can also program representative PROMs including 256K-bit to 4M-bit models. This is a PROM programmer adapter dedicated to the μ PD75P4308GS and connected to the PG-1500.			
	PA-75P4308GS				
Software	PG-1500 controller	This connects the PG-1500 and a host machine with a serial or parallel interf control the PG-1500 from the host machine.			rallel interface to
		Host machine	OS	Supply media	Order code (part number)
		PC-9800 series	MS-DOS	3.5" 2HD	μS5A13PG1500
			Ver. 3.30 to Ver. 6.2 Note	5" 2HD	μS5A10PG1500
		IBM PC/AT or	Refer to	3.5" 2HD	μS7B13PG1500
		compatible machine	"OS for IBM PC"	5" 2HC	μS7B10PG1500

Note Although Ver.5.00 and later have a task swap function, this function cannot be used with this software.

Remark The operation of the assembler, device file and PG-1500 controller is guaranteed only on the above host machine and OS.

Debugging tools

The in-circuit emulators (IE-75000-R and IE-75001-R) are available as the program debugging tool for the μ PD754304.

The system configurations are described as follows.

		1			1
Hardware	IE-75000-R ^{Note 1}	In-circuit emulator for debugging the hardware and software when developing the application systems that use the 75X series and 75XL series. When developing a μ PD754304 subseries, the emulation board IE-75300-R-EM and emulation probe that are sold separately must be used with the IE-75000-R. By connecting with the host machine and the PROM programmer, efficient debugging can be made. It contains the emulation board IE-75000-R-EM which is connected.			
	IE-75001-R	 In-circuit emulator for debugging the hardware and software when developing the application systems that use the 75X series and 75XL series. When developing a μPD754304 subseries, the emulation board IE-75300-R-EM and emulation probe which are sold separately must be used with the IE-75001-R. It can debug the system efficiently by connecting the host machine and PROM programmer. 			
	IE-75300-R-EM	Emulation board for evaluating the application systems that use a μ PD75430 subseries. It must be used with the IE-75000-R or IE-75001-R.			
	EP-754304GS-R EV-9500GS-36	 Emulation probe for the μPD754304GS. It must be connected to IE-75000-R (or IE-75001-R) and IE-75300-R-EM. It is supplied with the flexible board EV-9500GS-36 which facilitates connection to a target system. 			
Software	IE control program		00-R or IE-75001-R to a E-75000-R or IE-75001	a host machine via RS- -R on a host machine.	232-C and Centronix
	Host machine OS		OS	Supply media	Order code (Part number)
		PC-9800 series	MS-DOS	3.5" 2HD	μS5A13IE75X
			(Ver. 3.30 to Ver. 6.2 Note 2	5" 2HD	μ\$5A10IE75X
		IBM PC/AT or	Refer to	3.5" 2HC	μS7B13IE75X
		compatible machine	"OS for IBM PC"	5" 2HC	μS7B10IE75X

Notes 1. Maintenance parts

2. Although Ver.5.00 and later have a task swap function, this function cannot be used with this software.

Remark Operation of the IE control program is guaranteed only on the above host machines and OSs.

OS for IBM PC

The following IBM PC OS's are supported.

OS	Version
PC DOS™	Ver. 5.02 to Ver. 6.3 J6.1/V $^{\text{Note}}$ to J6.3/V $^{\text{Note}}$
MS-DOS	Ver. 5.0 to Ver. 6.22 5.0/V ^{Note} to 6.2/V ^{Note}
IBM DOS™	J5.02/V Note

Note Only English version is supported.

Caution Ver. 5.0 and later have the task swap function, but this function cannot be used for this software.

APPENDIX C. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Device related documents

Document Name	Document Number	
	Japanese	English
μPD754302, 754304 Data Sheet	U10797J	This document
μPD75P4308 Data Sheet	U10909J	U10909E
μPD754304 User's Manual	U10123J	U10123E
µPD754304 Instruction Table	IEM-5605	_
75XL Series Selection Guide	U10453J	U10453E

Development tool related documents

	Document Name			nt Number
				English
Hardware	IE-75000-R/IE-75001-R User's Manual		EEU-846	EEU-1416
	IE-75300-R-EM User's Manual		U11354J	EEU-1493
	EP-754304GS-R User's Manual		U10677J	U10677E
	PG-1500 User's Manual		EEU-651	EEU-1335
Software	RA75X Assembler Package User's Manual	Operation	EEU-731	EEU-1346
		Language	EEU-730	EEU-1363
	PG-1500 Controller User's Manual	PC-9800 series (MS-DOS) base	EEU-704	EEU-1291
		PC-9800 series (PC DOS) base	EEU-5008	U10540E

Other related documents

Document Name	Document Number	
	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	IEI-1209
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Static Electricity Discharge (ESD) Test	MEM-539	-
Guide to Quality Assurance for Semiconductor Devices	MEI-603	MEI-1202
Microcomputer Related Product Guide - Other Manufacturers	MEI-604	_

Caution These documents are subject to change without notice. Be sure to read the latest documents.

70

NOTES FOR CMOS DEVICES -

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

② HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

6 INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC Electronics product in your application, please contact the NEC Electronics office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

[GLOBAL SUPPORT] http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH NEC Electronics Hong Kong Ltd. Santa Clara, California Tel: 408-588-6000 800-366-9782

- Duesseldorf, Germany Tel: 0211-65030
 - Sucursal en España Madrid, Spain Tel: 091-504 27 87
 - Succursale Française Vélizy-Villacoublay, France Tel: 01-30-675800
 - · Filiale Italiana Milano, Italy Tel: 02-66 75 41
 - Branch The Netherlands Eindhoven. The Netherlands Tel: 040-2654010
 - Tyskland Filial Taeby, Sweden Tel: 08-63 87 200
 - United Kingdom Branch Milton Keynes, UK Tel: 01908-691-133

Hong Kong Tel: 2886-9318

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-558-3737

NEC Electronics Shanghai Ltd. Shanghai, P.R. China Tel: 021-5888-5400

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd. Novena Square, Singapore Tel: 6253-8311

72

MS-DOS is a trademark of Microsoft Corporation. IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.

These commodities, technology or software, must be exported in accordance with the export administration regulations of the exporting country. Diversion contrary to the law of that country is prohibited.

- The information in this document is current as of August, 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).