Multimedia ICs

Vocal fader IC with input selector BH3810FS

The BH3810FS is a vocal fader IC that is serial control compatible. It has mode switching that also includes a voice multiplexing mode, a five-input selector, a gain selector and other such features, which can all be controlled serially. Eight open-collector terminals and two tri-state terminals are provided on the chip to facilitate control by other ICs.

- Applications

Component stereo systems, CD radio cassette players, TVs and car stereos.

- Features

1) Built-in low-pass filter can perform vocal fader function (erasing of vocals from commercially available music software) using just one chip.
2) Serial control can be used to switch between vocal fader, through, multiplex, and mute modes.
3) Built-in gain selector allows selection of gain from 6 dB to 20 dB in 2 dB steps.
4) Five-channel input selector.
5) Mic. mixing amplifier with mute function. Key controller input also provided.
6) SSOP-A32 pin package.

- Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits	Unit
Applied voltages	V_{DD}	+5.5	V
	$\mathrm{~V}_{\mathrm{EE}}$	-4.5	
Power dissipation	Pd	850^{*}	mW
Operating temperature	Topr	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$
Maximum open collector voltage	Vop	14	V

* Reduced by 8.5 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$, when mounted on a $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ board.
- Recommended operating conditions ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Limits	Unit
Power supply voltage	V_{DD}	$4.0 \sim 5.3$	V
	$\mathrm{~V}_{\text {EE }}$	$-4.3 \sim-3.0$	V

- Block diagram

- Electrical characteristics (unless otherwise notes, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V} D=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4 \mathrm{~V}, \mathrm{G}=14 \mathrm{~dB}, \mathrm{f}=1 \mathrm{kHz}$, $\mathrm{Rg}=600 \Omega, \mathrm{~V}_{\mathrm{IN}}=150 \mathrm{mV}$, and $\mathrm{RL}=100 \mathrm{k} \Omega$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Quiescent current	la1 +	-	4.5	10.0	mA	Through mode VDD current
	la1-	-	4.1	10.0	mA	Through mode VEE current
	loa +	-	10.0	20.0	mA	Through mode D9 to D16 data1
	lo2-	-	7.6	20.0	mA	Through mode D9 to D16 data1
Maximum output voltage	Vom	1.5	2.2	-	$V_{\text {rms }}$	THD $=1 \%$, through mode
L, R gain	Gvt	11	14	17	dB	Through mode
Low-frequency gain	Gvf	8	11	14	dB	Vocal fader mode, $\mathrm{f}=100 \mathrm{~Hz}$
Microphone gain	Gvm	5	8	11	dB	-
Crosstalk	CT	54	64	-	dB	$\mathrm{f}=1 \mathrm{kHz}$, through mode
Mute attenuation	MU	60	80	-	dB	$f=1 \mathrm{kHz}$, mute mode or input mute
Vocal suppression ratio	SV	15	20	-	dB	Vocal fader mode, $\mathrm{f}=1 \mathrm{kHz}$
Total harmonic distortion	THD	-	0.004	0.05	\%	Vo $=1 \mathrm{~V}_{\text {rms }}$, through mode, BW 400 Hz to 30 kHz
Noise level	V_{N}	-	15	22	$\mu \mathrm{V}_{\text {ms }}$	$\mathrm{R}_{\mathrm{g}}=0$, DIN AUDIO ${ }^{\text {a }}$
Mode switch output DC differential	$\Delta \mathrm{DCB}$	-	0	18	mV	Between each mode with key controller on
Input impedance	Rin	35	50	65	$\mathrm{k} \Omega$	Pins 1 to 5, pins 26, pins 28 to 32
Input selector crosstalk	CTIn	80	-	-	dB	$f=1 \mathrm{kHz}$
Port output current	IPmax.	5.0	12	-	mA	Pins 17 to 24, 0.5 V between PORT terminal and GND voltage $=0.5 \mathrm{~V}$
"L" output voltage	Vol	-	0.15	0.5	V	Pins 17 to 27, lol $=5 \mathrm{~mA}$
" H " output leakage current	Іон	-	0	2.0	$\mu \mathrm{A}$	Pins 17 to $24,13 \mathrm{~V}$ applied to collector
Tri-state "H" output voltage	Vsoh	4.5	4.85	-	V	Pins 15 to $16, \mathrm{lo}=1 \mathrm{~mA}$
Tri-state "L" output voltage	Vsol	-	0.05	0.5	V	Pins 15 to $16,10=1 \mathrm{~mA}$
SI pin source current (pin 13)	Is	-	0.4	10	$\mu \mathrm{A}$	When SI pin is at DGND potential
SCK pin source current (pin 14)	Isck	-	0.2	10	$\mu \mathrm{A}$	When SCK pin is at DGND potential

* Measured using a Matsushita VP-9690A (average value detector, effective value display) DIN AUDIO filter. Operating specifications: same phase for the input and output signals.
O Not designed for radiation resistance.
- Measurement circuit

Fig. 1

- Circuit operation

(1) About the data format

Data format

Fig. 2

•Address is "00"	
D22	D23
0	0

At power on

Gain selector	6dB
Mode selector	Through mode
Mic	Mute OFF
Key controller	OFF
Input selector	LA, RA

Output port: open collector

Data	D16	D15	D14	D13	D12	D11	D10	D9
Pin name	$\begin{aligned} & \text { PORT } \\ & 1 \\ & \text { (24pin) } \end{aligned}$	$\begin{aligned} & \text { PORT } \\ & 2 \\ & \text { (23pin) } \end{aligned}$	$\begin{gathered} \text { PORT } \\ 33 \\ (22 \mathrm{pin}) \end{gathered}$	$\begin{gathered} \text { PORT } \\ 4 \\ \text { (21 pin) } \end{gathered}$	$\begin{aligned} & \text { PORT } \\ & 5 \\ & \text { (20pin) } \end{aligned}$	$\begin{gathered} \text { PORT } \\ 6 \\ \text { (19pin) } \end{gathered}$	$\begin{aligned} & \text { PORT } \\ & 7 \\ & (18 \mathrm{pin}) \end{aligned}$	$\begin{aligned} & \text { PORT } \\ & \text { (17pin) } \end{aligned}$
0	Current sink OFF							
1	Current sink ON							

Tri-state
PORT9 (16pin)

D19	D20	Mode
0	0	LOW
0	1	OPEN
1	0	OPEN
1	1	HI

D19, D20

PORT10 (15pin)		
D17	D18	Mode
0	0	LOW
0	1	OPEN
1	0	OPEN
1	1	HI
D17, D18		

Mic. mute

D21	Mode
0	Mic. ON
1	Mic. MUTE

Input selector 〈3 bits〉 D0 to D2

D0	D1	D2	Mode
0	0	0	MUTE
0	0	1	MUTE
0	1	0	MUTE
0	1	1	INPUT－LA，INPUT－RA
1	0	0	INPUT－LB，INPUT－RB
1	0	1	INPUT－LC，INPUT－RC
1	1	0	INPUT－LD，INPUT－RD
1	1	1	INPUT－LE，INPUT－RE

Gain selector 〈3 bits〉 D3 to D5

D3	D4	D5	Gain select
0	0	0	6 dB
0	0	1	8 dB
0	1	0	10 dB
0	1	1	12 dB
1	0	0	14 dB
1	0	1	16 dB
1	1	0	18 dB
1	1	1	20 dB

Mode selector 〈3 bits〉 D6 to D8

D6	D7	D8	LOUT	ROUT	TK	Mode
0	0	0	MUTE	MUTE	MUTE	Mute
0	0	1	VOCALFADE	VOCALFADE	VOCALFADE	Vocal fader
0	1	0	L	L	L	L channel
0	1	1	L	R	L	Through
1	0	0	FK	FK	L＋R	Key controller，L＋R
1	0	1	FK	FK	R	Key controller，R channel
1	1	0	FK	FK	L	Key controller，L channel
1	1	1	FK	FK	VOCALFADE	Key controller，vocal fader

(2) Timing chart

Serial data timing (timing for the IC terminals)

* When LATCH is "H", the DATA signal is forced "L" internally.
* The read decision for the DATA signal (SI) is made by the signal when the CLOCK signal rises.
* The read decision for the LATCH signal (SI) is made by the signal when the LATCH signal itself rises.
* A "L" must follow at the end of each signal to wait for the next signal.

Fig. 3

- Timing chart constants $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{dD}=5 \mathrm{~V}\right.$ and $\left.\mathrm{V}_{\mathrm{EE}}=-4 \mathrm{~V}\right)$

Parameter	Symbol	Min.	Typ.	Max.	Unit
H input voltage	$\mathrm{V}_{\text {IH }}$	4.0	5.0	6.0	V
M input voltage	$\mathrm{VIM}_{\mathrm{IM}}$	2.0	2.5	3.0	V
L input voltage	V_{IL}	-0.3	0	1.0	V
Minimum clock width	tw	2.0	-	-	$\mu \mathrm{s}$
Minimum data width	tw (DATA)	4.0	-	-	$\mu \mathrm{s}$
Minimum latch width	tw (LATCH)	2.0	-	-	$\mu \mathrm{s}$
Setup time (DATA to CLK)	tsu	1.0	-	-	$\mu \mathrm{s}$
Hold time (CLK to DATA)	th	1.0	-	-	$\mu \mathrm{s}$
Setup time (DATA, CLK to LATCH)	ts	1.0	-	-	$\mu \mathrm{s}$

* If the voltage between VDD and DGND changes, the values above will change.
- Application circuit

Fig. 4

- Operation notes
(1) We guarantee the application circuit design, but recommend that you thoroughly check its characteristics in actual use.
If you change any of the external component values, check both the static and transient characteristics of the circuit, and allow sufficient margin in your selections to take into account variations in the components and ICs.
Note that Rohm has not fully investigated patent rights regarding this product.
(2) The vocal fader function

The effect of the vocal fader is realized by negating the same-phase components. In the bass region, the first-stage low-pass filter leaves the source sound as is, even for the same-phase components. Therefore, depending on the music, the effect may be small.
(3) The low-pass filter that leaves the vocal fader bass

The low-pass filter is formed by connecting a capacitor to pin 6. A $20 \mathrm{k} \Omega$ resistor (design value) and this capacitor set the cutoff frequency.

$$
\mathrm{fc}=\frac{1}{2 \pi \mathrm{CR}}(\mathrm{~Hz})
$$

The optional attenuation of the first-stage low-pass filter frequency is:

$$
\mathrm{A}(\mathrm{f})=20 \log \left(\sqrt{\frac{1}{1+(2 \pi \mathrm{fCR})^{2}}}\right) \text { (dB) } \quad\left[\begin{array}{l}
\text { f: frequency } \\
\text { C: external capacitor } \\
\mathrm{R}: 20 \mathrm{k} \Omega \text { (design value) }
\end{array}\right)
$$

(4) AGND (pin 10) and DGND (pin 12)

AGND is the ground for the IC's internal analog circuits, and DGND is the ground for the internal ports 1 to 10 . Connect the two grounds externally.
(5) Switching noise

If you are troubled by switching noise that occurs when the input selector, gain selector, or mode selector are switched, use muting, or some other appropriate countermeasure.
(6) Serial control

The LATCH and DATA serial signals are received on the same terminal, and the signals are differentiated by voltage level. A diode and resistor are connected to perform a conversion to logic voltage (0 to 5 V). The threshold values will change depending on the external components, so select them carefully.
If the signals are not being received very well, connect a capacitor of about 100 pF between the SI terminal (pin 13), and the DGND terminal (pin 12).

- External dimensions (Units: mm)
(13)

