INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

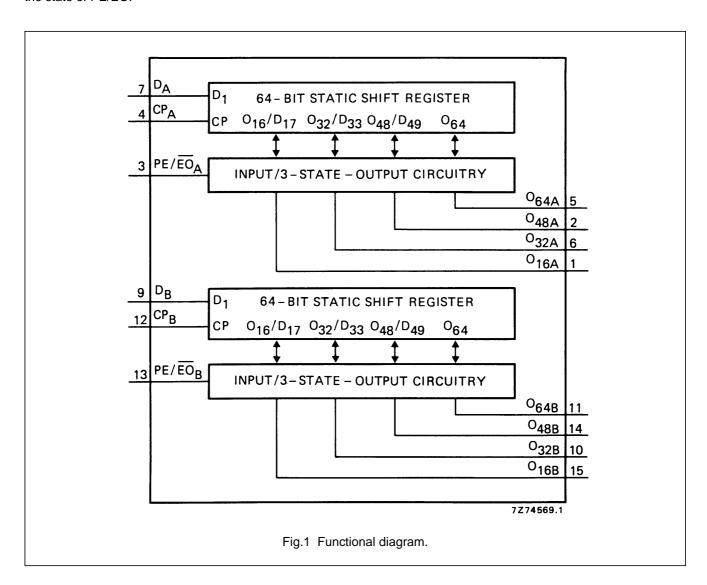
HEF4517B LSI

Dual 64-bit static shift register

Product specification
File under Integrated Circuits, IC04

January 1995

Dual 64-bit static shift register

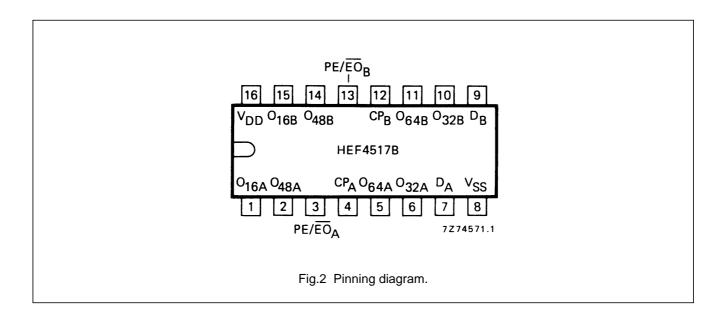

HEF4517B LSI

DESCRIPTION

The HEF4517B consists of two identical, independent 64-bit static shift registers. Each register has separate clock (CP), data input (D), parallel input-enable/output-enable (PE/ \overline{EO}) and four 3-state outputs of the 16th, 32nd, 48th and 64th bit positions (O₁₆ to O₆₄). Data at the D input is entered into the first bit on the LOW to HIGH transition of the clock, regardless of the state of PE/ \overline{EO} .

When PE/EO is LOW the outputs are enabled and the device is in the 64-bit serial mode.

When PE/ $\overline{\text{EO}}$ is HIGH the outputs are disabled (high impedance OFF-state), the 64-bit shift register is divided into four 16-bit shift registers with D, O₁₆, O₃₂ and O₄₈ as data inputs of the 1st, 17th, 33rd, and 49th bit respectively. Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.


FAMILY DATA, IDD LIMITS category LSI

See Family Specifications

Philips Semiconductors Product specification

Dual 64-bit static shift register

HEF4517B LSI

HEF4517BP(N): 16-lead DIL; plastic (SOT38-1)

HEF4517BD(F): 16-lead DIL; ceramic (cerdip) (SOT74) HEF4517BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

PINNING

CP_A, CP_B clock inputs

 PE/\overline{EO}_A , PE/\overline{EO}_B parallel input-enable/output-enable inputs

D_A, D_B data inputs

 $\begin{array}{lll} O_{16A},\,O_{32A},\,O_{48A} & & 3\text{-state outputs/inputs} \\ O_{16B},\,O_{32B},\,O_{48B} & & 3\text{-state outputs/inputs} \\ O_{64A},\,O_{64B} & & 3\text{-state outputs} \end{array}$

Philips Semiconductors

<u>IS</u>

Product specification

Fig.3 Logic diagram (one shift register).

January 1995

Dual 64-bit static shift register

HEF4517B

<u>IS</u>

Januar
<
_
995

	INPUTS			MODE			
СР	D	PE/EO	O ₁₆	O ₃₂	O ₄₈	O ₆₄	MODE
	data entered into 1st bit	L	content of 16th bit displayed	content of 32nd bit displayed	content of 48th bit displayed	content of 64th bit displayed	One 64-bit shift register. The content of the shift register is shifted over one stage
	data entered into 1st bit	Н	data at O ₁₆ entered into 17th bit	data at O ₃₂ entered into 33rd bit	data at O ₄₈ entered into 49th bit	remains in 'Z' state	Four 16-bit shift register. The content of the shift registers is shifted over one stage.
~	X	L	no change	no change	no change	no change	no change
\	Х	Н	Z	Z	Z	Z	no change

Notes

Ŋ

1. H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

Z = high impedance state

Philips Semiconductors Product specification

Dual 64-bit static shift register

HEF4517B LSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	7 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	28 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	70 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_oC_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

AC CHARACTERISTICS

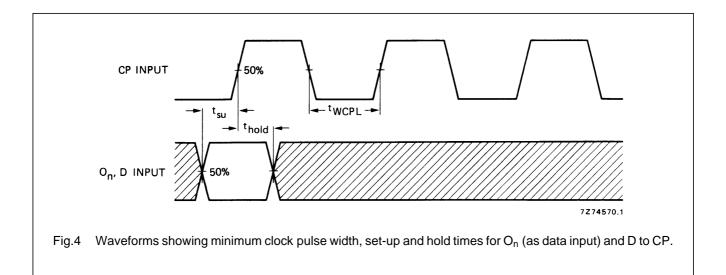
 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$CP \to O_n$	5			220	440	ns	193 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		85	170	ns	74 ns + (0,23 ns/pF) C _L
	15			60	120	ns	52 ns + (0,16 ns/pF) C _L
	5			190	380	ns	163 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		75	150	ns	64 ns + (0,23 ns/pF) C _L
	15			50	100	ns	42 ns + (0,16 ns/pF) C _L
Output transition							
times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L

Philips Semiconductors Product specification

Dual 64-bit static shift register

HEF4517B LSI


AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		
Minimum clock	5			95	190	ns	
pulse width; LOW	10	t _{WCPL}		40	80	ns	
	15			30	60	ns	
Set-up times	5		30	10		ns	
O_n , $D \rightarrow CP$	10	t _{su}	25	5		ns	see also waveforms Fig.4.
	15		20	5		ns	1 ig.4.
Hold time	5		45	15		ns	
O_n , $D \rightarrow CP$	10	t _{hold}	30	10		ns	
	15		25	10		ns	
3-state propagation							
delays							
Output disable times							
$PE/\overline{EO} \rightarrow O_n$	5			40	80	ns	
HIGH	10	t _{PHZ}		30	60	ns	
	15			25	50	ns	
	5			50	100	ns	
LOW	10	t _{PLZ}		30	60	ns	
	15			25	50	ns	
Output enable times							
$PE/\overline{EO} \to O_n$	5			45	90	ns	
HIGH	10	t _{PZH}		25	50	ns	
	15			20	40	ns	
	5			60	120	ns	
LOW	10	t _{PZL}		30	60	ns	
	15			25	50	ns	
Maximum clock	5		2	5		MHz	
pulse frequency	10	f _{max}	6	12		MHz	
	15		8	16		MHz	

Dual 64-bit static shift register

HEF4517B LSI

