ispLSI ${ }^{\circ} 3448$
In-System Programmable High Density PLD

Features

- HIGH-DENSITY PROGRAMMABLE LOGIC
- 224 I/O
- 20000 PLD Gates
- 672 Registers
- High Speed Global Interconnect
- Wide Input Gating for Fast Counters, State Machines, Address Decoders, etc.
- Small Logic Block Size for Random Logic
- HIGH-PERFORMANCE E²CMOS ${ }^{\circledR}$ TECHNOLOGY
- $f \max =90 \mathrm{MHz}$ Maximum Operating Frequency
- tpd = 12 ns Propagation Delay
- TTL Compatible Inputs and Outputs
- Electrically Erasable and Reprogrammable
- Non-Volatile
- 100\% Tested at Time of Manufacture
- Unused Product Term Shutdown Saves Power
- ispLSI FEATURES:
- 5V In-System Programmable (ISP ${ }^{\text {TM }}$) Using Lattice ISP or Boundary Scan Test (IEEE 1149.1) Protocol
- Increased Manufacturing Yields, Reduced Time-toMarket, and Improved Product Quality
— Reprogram Soldered Devices for Faster Debugging
- 100\% IEEE 1149.1 BOUNDARY SCAN COMPATIBLE
- OFFERS THE EASE OF USE AND FAST SYSTEM SPEED OF PLDs WITH THE DENSITY AND FLEXIBILITY OF FIELD PROGRAMMABLE GATE ARRAYS
- Complete Programmable Device Can Combine Glue Logic and Structured Designs
- Enhanced Pin Locking Capability
- Five Dedicated Clock Inputs
- Synchronous and Asynchronous Clocks
- Programmable Output Slew Rate Control to Minimize Switching Noise
- Flexible I/O Placement
- Optimized Global Routing Pool Provides Global Interconnectivity
- ispDesignEXPERT ${ }^{\text {TM }}$ - LOGIC COMPILER AND COMPLETE ISP DEVICE DESIGN SYSTEMS FROM HDL SYNTHESIS THROUGH IN-SYSTEM PROGRAMMING
- Superior Quality of Results
- Tightly Integrated with Leading CAE Vendor Tools
- Productivity Enhancing Timing Analyzer, Explore Tools, Timing Simulator and ispANALYZER ${ }^{\text {TM }}$
- PC and UNIX Platforms

Functional Block Diagram

Description

The ispLSI 3448 is a High-Density Programmable Logic Device containing 672 Registers, 224 Universal I/Os, five Dedicated Clock Inputs, 14 Output Routing Pools (ORP) and a Global Routing Pool (GRP) which allows complete inter-connectivity between all of these elements. The ispLSI 3448 features 5 V in-system programmability and in-system diagnostic capabilities. The ispLSI 3448 offers non-volatile reprogrammability of the logic, as well as the interconnect to provide truly reconfigurable systems.
The basic unit of logic on the ispLSI 3448 device is the Twin Generic Logic Block (Twin GLB) labelled A0, A1 ...N3. There are a total of 56 of these Twin GLBs in the ispLSI 3448 device. Each Twin GLB has 24 inputs, a programmable AND array and two OR/Exclusive-OR Arrays, and eight outputs which can be configured to be either combinatorial or registered. All Twin GLB inputs come from the GRP.

Functional Block Diagram

Figure 1. ispLSI 3448 Functional Block Diagram

Description (continued)

All local logic block outputs are brought back into the GRP so they can be connected to the inputs of any other logic block on the device. The device also has 224 I/O cells, each of which is directly connected to an I/O ball. Each I/O cell can be individually programmed to be a combinatorial input, a registered input, a latched input, an output or a bidirectional I/O with 3 -state control. The signal levels are TTL compatible voltages and the output drivers can source 4 mA or sink 8 mA . Each output can be programmed independently for fast or slow output slew rate to minimize overall output switching noise.

The 224 I/O cells are grouped into 14 sets of 16 bits. Each of these I/O groups is associated with a logic Megablock through the use of the ORP. Each Megablock is able to provide one Product Term Output Enable (PTOE) signal which is globally distributed to all I/O cells. That PTOE signal can be generated within any GLB in the Megablock. Each I/O cell can select one of 16 available OEs (two Global OEs and 14 PTOEs).

Four Twin GLBs, 16 I/O cells and one ORP are connected together to make a logic Megablock. The Megablock is defined by the resources that it shares. The outputs of the four Twin GLBs are connected to a set of 16 I/O cells by the ORP. The ispLSI 3448 device contains 14 of these Megablocks.

The GRP has as its inputs the outputs from all of the Twin GLBs and all of the inputs from the bidirectional I/O cells. All of these signals are made available to the inputs of the Twin GLBs. Delays through the GRP have been equalized to minimize timing skew and logic glitching.

Clocks in the ispLSI 3448 device are provided through five dedicated signals. Three clocks are provided for the Twin GLBs and the remaining two clocks are provided for the I / O cells.

The table below lists key attributes of the device along with the number of resources available.

An additional feature of the ispLSI 3448 is the Boundary Scan capability, which is composed of cells connected between the on-chip system logic and the device's inputs and outputs. All I/O have associated boundary scan registers, with 3 -state I/O using three boundary scan registers and inputs using one.

The ispLSI 3448 supports all IEEE 1149.1 mandatory instructions, which include BYPASS, EXTEST and SAMPLE.

Key Attributes of the ispLSI 3448

Attribute	Quantity
Twin GLBs	56
Registers	672
I/O	224
Global Clocks	5
Global OE	2
Test OE	1

Specifications ispLSI 3448

Absolute Maximum Ratings 1

Supply Voltage $\mathrm{V}_{\mathrm{Cc}} \ldots . ~-~ 0.5 ~ t o ~+7.0 V ~$
Input Voltage Applied....................... -2.5 to $\mathrm{V}_{\mathrm{CC}}+1.0 \mathrm{~V}$
Off-State Output Voltage Applied -2.5 to $\mathrm{V}_{\mathrm{CC}}+1.0 \mathrm{~V}$
Storage Temperature - 65 to $150^{\circ} \mathrm{C}$
Case Temp. with Power Applied \qquad -55 to $125^{\circ} \mathrm{C}$

Max. Junction Temp. (T_{J}) with Power Applied ... $140^{\circ} \mathrm{C}$

1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

DC Recommended Operating Condition

SYMBOL		PARAMETER	MIN.	MAX.
TA	Umbient Temperature	0	70	${ }^{\circ} \mathrm{C}$
VCC	Supply Voltage	4.75	5.25	V
VIL	Input Low Voltage	0	0.8	V
VIH	Input High Voltage	2.0	V $_{\text {CC }}+1$	V

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
\mathbf{C}_{1}	I/O Capacitance	10	pf	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {I }} \mathrm{O}=2.0 \mathrm{~V}$
\mathbf{C}_{2}	Clock Capacitance	11	pf	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}=2.0 \mathrm{~V}$

Data Retention Specifications

PARAMETER	MINIMUM	MAXIMUM	UNITS
Data Retention	20	-	Years
ispLSI Erase/Reprogram Cycles	10000	-	Cycles
Table 2-0008/3320			

Switching Test Conditions

Input Pulse Levels GND to 3.0V Input Rise and Fall Time $\leq 3 \mathrm{~ns} \mathrm{10} \mathrm{\%} \mathrm{to} 90 \%$ Input Timing Reference Levels 1.5 V Ouput Timing Reference Levels 1.5 V Output Load See Figure 2 3-state levels are measured 0.5 V from steady-state active level. Table 2-0003/3448

Output Load conditions (See Figure 2)

TEST CONDITION		R1	R2	CL	
A		470Ω	390Ω	35 pF	
B	Active High	∞	390Ω	35 pF	
	Active Low	470Ω	390Ω	35 pF	
C	Active High to Z at $V_{\text {OH }}-0.5 \mathrm{~V}$	∞	390Ω	5 pF	
	Active Low to Z at $V_{\mathrm{OL}}+0.5 \mathrm{~V}$	470Ω	390Ω	5 pF	
	Table 2-0004A				

Figure 2. Test Load

${ }^{*} C_{L}$ includes Test Fixture and Probe Capacitance.
0213A

DC Electrical Characteristics

Over Recommended Operating Conditions

SYMBOL	PARAMETER	CONDITION	MIN.	TYP. ${ }^{3}$	MAX.	UNITS
VOL	Output Low Voltage	$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$	-	-	0.4	V
VOH	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	2.4	-	-	V
IIL	Input or I/O Low Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}$ (Max.)	-	-	-10	$\mu \mathrm{A}$
IIH	Input or I/O High Leakage Current	$3.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$	-	-	10	$\mu \mathrm{A}$
IIL-isp	ispEN Input Low Leakage Current	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}$	-	-	-150	$\mu \mathrm{A}$
IIL-PU	I/O Active Pull-Up Current	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}$	-	-	-150	$\mu \mathrm{A}$
IOS ${ }^{1}$	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}$	-	-	-200	mA
ICC ${ }^{2,4}$	Operating Power Supply Current	$\mathrm{V}_{\mathrm{IL}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.0 \mathrm{~V}, \mathrm{f}_{\text {CLOCK }}=1 \mathrm{MHz}$	-	470	-	mA

1. One output at a time for a maximum duration of one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ was selected to avoid test problems Table 2-0007/3448 by tester ground degradation. Guaranteed but not 100% tested.
2. Measured using 2816 -bit counters.
3. Typical values are at $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
4. Maximum $I_{C C}$ varies widely with specific device configuration and operating frequency. Refer to the Power Consumption section of this data sheet and Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM to estimate maximum I_{CC}.

External Switching Characteristics ${ }^{1,2,3}$

Over Recommended Operating Conditions

PARAMETER	$\begin{aligned} & \hline \text { TEST }^{5} \\ & \text { COND. } \end{aligned}$	$\#^{2}$	DESCRIPTION ${ }^{1}$	-90		-70		UNITS
				MIN.	MAX.	MIN.	MAX.	
tpd1	A	1	Data Propagation Delay, 4PT Bypass, ORP Bypass	-	12.0	-	15.0	ns
tpd2	A	2	Data Propagation Delay	-	15.0	-	18.0	ns
fmax	A	3	Clock Frequency with Internal Feedback ${ }^{3}$	90.0	-	70.0	-	MHz
fmax (Ext.)	-	4	Clock Frequency with External Feedback ($\frac{1}{\text { tsu2 }+ \text { too1 }}$)	62.5	-	50.0	-	MHz
$\mathbf{f m a x}^{\text {(Tog.) }}$	-	5	Clock Frequency, Maximum Toggle ${ }^{4}$	100	-	83.0	-	MHz
tsu1	-	6	GLB Reg. Setup Time before Clock, 4 PT Bypass	7.0	-	9.0	-	ns
tcol	A	7	GLB Reg. Clock to Output Delay, ORP Bypass	-	7.5	-	9.0	ns
th1	-	8	GLB Reg. Hold Time after Clock, 4 PT Bypass	0.0	-	0.0	-	ns
tsu2	-	9	GLB Reg. Setup Time before Clock	8.5	-	11.0	-	ns
tco2	-	10	GLB Reg. Clock to Output Delay	-	8.0	-	10.0	ns
th2	-	11	GLB Reg. Hold Time after Clock	0.0	-	0.0	-	ns
tr1	A	12	Ext. Reset Pin to Output Delay	-	14.0	-	15.0	ns
trw1	-	13	Ext. Reset Pulse Duration	9.0	-	12.0	-	ns
tptoeen	B	14	Input to Output Enable	-	25.0	-	30.0	ns
tptoedis	C	15	Input to Output Disable	-	25.0	-	30.0	ns
tgoeen	B	16	Global OE Output Enable	-	10.0	-	12.0	ns
tgoedis	C	17	Global OE Output Disable	-	10.0	-	12.0	ns
ttoeen	B	18	Test OE Output Enable	-	13.0	-	15.0	ns
ttoedis	C	19	Test OE Output Disable	-	13.0	-	15.0	ns
twh	-	20	Ext. Synchronous Clock Pulse Duration, High	5.0	-	6.0	-	ns
twl	-	21	Ext. Synchronous Clock Pulse Duration, Low	5.0	-	6.0	-	ns
tsu3	-	22	I/O Reg Setup Time before Ext. Synchronous Clock (Y3, Y4)	4.5	-	5.0	-	ns
th3	-	23	I/O Reg Hold Time after Ext. Sync Clock (Y3, Y4)	0.0	-	0.0	-	ns
1. Unless noted otherwise, all parameters use 20 PTXOR path and ORP.								

1. Unless noted otherwise, all parameters use 20 PTXOR path and ORP.
2. Refer to Timing Model in this data sheet for further details.
3. Standard 16 -bit counter using GRP feedback.
4. fmax (Toggle) may be less than $1 /(\mathbf{t w h}+\mathbf{t w l})$. This is to allow for a clock duty cycle of other than 50%.
5. Reference Switching Test Conditions section.

Internal Timing Parameters ${ }^{1}$

Over Recommended Operating Conditions

PARAMETER	$\#^{2}$	DESCRIPTION	-90		-70		UNITS
			MIN.	MAX.	MIN.	MAX.	
Inputs							
tiobp	24	I/O Register Bypass	-	2.3	-	3.2	ns
tiolat	25	I/O Latch Delay	-	14.0	-	18.2	ns
tiosu	26	I/O Register Setup Time before Clock	7.5	-	9.0	-	ns
tioh	27	I/O Register Hold Time after Clock	-3.0	-	-4.0	-	ns
tioco	28	I/O Register Clock to Out Delay	-	8.3	-	10.2	ns
tior	29	I/O Register Reset to Out Delay	-	8.3	-	10.2	ns
GRP							
tgrp	30	GRP Delay	-	3.2	-	3.5	ns
tfeedback	31	Feedback Delay	-	1.0	-	1.6	ns
GLB							
t4ptbp	32	4 Product Term Bypass Path Delay (Comb.)	-	4.0	-	5.3	ns
t4ptbr	33	4 Product Term Bypass Path Delay (Reg.)	-	3.5	-	3.8	ns
t1ptxor	34	1 Product Term/XOR Path Delay	-	5.0	-	5.8	ns
t20ptxor	35	20 Product Term/XOR Path Delay	-	5.0	-	5.8	ns
txoradj	36	XOR Adjacent Path Delay ${ }^{3}$	-	6.2	-	7.3	ns
tgbp	37	GLB Register Bypass Delay	-	0.5	-	0.5	ns
tgsu	38	GLB Register Setup Time before Clock	1.5	-	2.5	-	ns
tgh	39	GLB Register Hold Time after Clock	5.4	-	6.3	-	ns
tgco	40	GLB Register Clock to Output Delay	-	0.5	-	1.0	ns
tgro	41	GLB Register Reset to Output Delay	-	1.0	-	1.0	ns
tptre	42	GLB Product Term Reset to Register Delay	-	8.9	-	10.5	ns
tptoe	43	GLB Product Term Output Enable to I/O Cell Delay	-	15.0	-	18.3	ns
tptck	44	GLB Product Term Clock Delay	3.7	3.7	4.5	4.5	ns
ORP							
torp	45	ORP Delay	-	1.5	-	2.0	ns
torpbp	46	ORP Bypass Delay	-	0.0	-	0.0	ns
1. Internal Timing Parameters are not tested and are for reference only. 2. Refer to Timing Model in this data sheet for further details. 3. The XOR adjacent path can only be used by hard macros.							

Internal Timing Parameters ${ }^{1}$

Over Recommended Operating Conditions

PARAMETER	$\#^{2}$	DESCRIPTION	-90		-70		UNITS
			MIN.	MAX.	MIN.	MAX.	
Outputs							
tob	47	Output Buffer Delay	-	2.5	-	3.0	ns
tobs	48	Output Buffer Delay, Slew Limited Adder	-	13.0	-	13.0	ns
toen	49	I/O Cell OE to Output Enabled	-	4.5	-	5.0	ns
todis	50	I/O Cell OE to Output Disabled	-	4.5	-	5.0	ns
Clocks							
tgy0/1/2	51	Clock Delay, Y0 or Y1 or Y2 to Global GLB Clock Line	3.5	3.5	4.0	4.0	ns
tioy3/4	52	Clock Delay, Y3 or Y4 to I/O Cell Global Clock Line	3.0	3.0	4.0	4.0	ns
Global Reset							
tgr	53	Global Reset to GLB and I/O Registers	-	9.0	-	9.0	ns
tgoe	54	Global OE Pad Buffer	-	5.5	-	7.0	ns
ttoe	55	Test OE Pad Buffer	-	8.5	-	10.0	ns

1. Internal Timing Parameters are not tested and are for reference only.
2. Refer to Timing Model in this data sheet for further details.

ispLSI 3448 Timing Model

Derivations of tsu, th and tco from the Product Term Clock ${ }^{1}$

```
tsu \(=\) Logic + Reg su - Clock (min)
    \(=(\) tiobp + tgrp \(+\mathbf{t} 20 \mathrm{ptxor})+(\) tgsu \()-(\) tiobp \(+\mathbf{t g r p}+\) tptck \((\) min \())\)
    \(=(\# 24+\# 30+\# 35)+(\# 38)-(\# 24+\# 30+\# 44)\)
    \(2.8 \mathrm{~ns}=(2.3+3.2+5.0)+(1.5)-(2.3+3.2+3.7)\)
th \(\quad=\) Clock \((\max )+\) Reg h - Logic
    \(=(\) tiobp \(+\mathbf{t g r p}+\mathbf{t p t c k}(\max ))+(\mathbf{t g h})-(\) tiobp \(+\mathbf{t g r p}+\mathbf{t} 20\) ptxor \()\)
    \(=(\# 24+\# 30+\# 44)+(\# 39)-(\# 24+\# 30+\# 35)\)
    \(4.1 \mathrm{~ns}=(2.3+3.2+3.7)+(5.4)-(2.3+3.2+5.0)\)
tco \(=\) Clock (max) + Reg co + Output
    \(=(\) tiobp \(+\mathbf{t g r p}+\mathbf{t p t c k}(\) max \())+(\mathbf{t g c o})+(\) torp + tob \()\)
    \(=(\# 24+\# 30+\# 44)+(\# 40)+(\# 45+\# 47)\)
    \(13.7 \mathrm{~ns}=(2.3+3.2+3.7)+(0.5)+(1.5+2.5)\)

Note: Calculations are based on timing specs for the ispLSI 3448-90L.

\section*{Power Consumption}

Power consumption in the ispLSI 3448 device depends on two primary factors: the speed at which the device is operating and the number of product terms used.

Figure 3 shows the relationship between power and operating speed.

Figure 3. Typical Device Power Consumption vs fmax


Notes: Configuration of 28 16-bit Counters
Typical Current at 5V, \(25^{\circ} \mathrm{C}\)
ICC can be estimated for the ispLSI 3448 using the following equation:
ICC \(=60+(\#\) of PTs * 0.46) \(+(\#\) of nets * Max. freq * 0.01) where:
\# of PTs \(=\) Number of Product Terms used in design
\# of nets = Number of Signals used in device
Max. freq = Highest Clock Frequency to the device
The ICC estimate is based on typical conditions ( \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\), room temperature) and an assumption of two GLB loads on average exists. These values are for estimates only. Since the value of ICC is sensitive to operating conditions and the program in the device, the actual ICC should be verified.

\section*{Signal Description}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Signal Name } & \multicolumn{1}{c|}{ Description } \\
\hline I/O & Input/Output - These are the general purpose I/O used by the logic array. \\
\hline GOEO, GOE1 & Global Output Enable inputs. \\
\hline TOE & Test Output Enable pin - This pin tristates all I/O pins when a logic low is driven. \\
\hline RESET & Active Low (0) Reset which resets all of the GLB and I/O registers in the device. \\
\hline Y0, Y1, Y2 & Dedicated Clock inputs connect to one of the clock inputs of all the GLBs on the device. \\
\hline Y3, Y4 & Dedicated Clock inputs connect to one of the clock inputs of all the I/O cells on the device. \\
\hline BSCAN/ispEN & \begin{tabular}{l} 
Input - Dedicated in-system programming enable input. When this is high, the BSCAN TAP \\
controller signals TMS, TDI, TDO and TCK are enabled. When this is brought low, the ISP State \\
Machine control signals MODE, SDI, SDO and SLCK are enabled. High-to-low transition will put the \\
device in the programming mode and put all I/O in the high-Z state.
\end{tabular} \\
\hline TDI/SDI & \begin{tabular}{l} 
Input - This signal performs two functions. It is the Test Data input signal when ispEN is logic high. \\
When ispEN is logic low, it functions as an input to load programming data into the device. SDI is also \\
used as one of the two control signals for the ISP State Machine.
\end{tabular} \\
\hline TCK/SCLK & \begin{tabular}{l} 
Input - This signal performs two functions. It is the Test Clock input signal when ispEN is logic high. \\
When ispEN is logic low, it functions as a clock signal for the Serial Shift Register.
\end{tabular} \\
\hline TMS/MODE & \begin{tabular}{l} 
Input - This signal performs two functions. It is the Test Mode Select input signal when ispEN is logic \\
high. When ispEN is logic low, it controls the operation of the ISP State Machine.
\end{tabular} \\
\hline\(\overline{\text { TRST }}\) & Input - Test Reset, active low to reset the Boundary Scan State Machine. \\
\hline TDO/SDO & \begin{tabular}{l} 
Output - This signal performs two functions. When ispEN is logic low, it reads the ISP data. When \\
ispEN is high, it functions as Test Data Out.
\end{tabular} \\
\hline GND & Ground (GND) \\
\hline VCC & Vcc \\
\hline NC \({ }^{1}\) & No Connect. \\
\hline
\end{tabular}

\section*{Signal Locations}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Signal } & \multicolumn{1}{c|}{ 432-Ball BGA } \\
\hline GOE0, GOE1 & R2, W1 \\
\hline TOE & H3 \\
\hline\(\overline{\text { RESET }}\) & AA31 \\
\hline Y0, Y1, Y2, Y3, Y4 & U30, N31, L1, AB3, AF1 \\
\hline BSCAN/解pEN & AD29 \\
\hline TDI/SDI & K29 \\
\hline TCK/SCLK & AG29 \\
\hline TMS/MODE & F31 \\
\hline TRST & E3 \\
\hline TDO/SDO & AH3 \\
\hline GND & \begin{tabular}{l} 
A1, A2, A16, A30, A31, B1, B5, B9, B13, B19, B23, B27, B31, E2, E30, J2, J30, N2, N30, T1, T31, W2, \\
W30, AC2, AC30, AG2, AG30, AK1, AK5, AK9, AK13, AK19, AK23, AK27, AK31, AL1, AL2, AL16, \\
AL30, AL31
\end{tabular} \\
\hline VCC & \begin{tabular}{l} 
A3, A10, A22, A29, B14, B18, C1, C31, K1, K31, P2, P30, V2, V30, AB1, AB31, AJ1, AJ31, AK14, \\
AK18, AL3, AL10, AL22, AL29
\end{tabular} \\
\hline NC1 & \begin{tabular}{l} 
B2, B3, B30, C3, C7, C11, C14, C18, C21, C25, C29, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, \\
D14, D15, D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26, D27, D28, E4, E28, F4, F28, \\
G3, G4, G28, G29, H4, H28, J4, J28, K4, K28, L3, L4, L28, L29, M4, M28, N4, N28, P3, P4, P28, P29, \\
R4, R28, T4, T28, U4, U28, V3, V4, V28, V29, W4, W28, Y4, Y28, AA3, AA4, AA28, AA29, AB4, AB28, \\
AC4, AC28, AD4, AD28, AE3, AE4, AE28, AE29, AF4, AF28, AG4, AG28, AH4, AH5, AH6, AH7, AH8, \\
AH9, AH10, AH11, AH12, AH13, AH14, AH15, AH16, AH17, AH18, AH19, AH20, AH21, AH22, AH23, \\
AH24, AH25, AH26, AH27, AH28, AJ3, AJ7, AJ11, AJ14, AJ18, AJ21, AJ25, AJ29, AK2, AK30
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
1. NCs are not to be connected to any active signals, VCC or GND.
}

I/O Locations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Signal & BGA & Signal & BGA \\
\hline I/O 0 & T30 & I/O 38 & AK24 & I/O 76 & AK7 & I/O 114 & R1 & I/O 152 & A9 & I/O 190 & C26 \\
\hline I/O 1 & U29 & I/O 39 & AL24 & I/O 77 & AL6 & I/O 115 & P1 & I/O 153 & C10 & I/O 191 & A27 \\
\hline I/O 2 & U31 & I/O 40 & AJ23 & I/O 78 & AK6 & I/O 116 & N1 & I/O 154 & B10 & I/O 192 & A28 \\
\hline I/O 3 & V31 & I/O 41 & AL23 & I/O 79 & AJ6 & I/O 117 & N3 & I/O 155 & B11 & I/O 193 & C27 \\
\hline I/O 4 & W31 & I/O 42 & AJ22 & I/O 80 & AL5 & I/O 118 & M1 & I/O 156 & A11 & I/O 194 & B28 \\
\hline I/O 5 & W29 & I/O 43 & AK22 & I/O 81 & AL4 & I/O 119 & M2 & I/O 157 & C12 & I/O 195 & B29 \\
\hline I/O 6 & Y31 & I/O 44 & AK21 & I/O 82 & AJ5 & I/O 120 & M3 & I/O 158 & B12 & I/O 196 & C28 \\
\hline I/O 7 & Y30 & I/O 45 & AL21 & I/O 83 & AK4 & I/O 121 & L2 & I/O 159 & A12 & I/O 197 & D29 \\
\hline I/O 8 & Y29 & I/O 46 & AJ20 & I/O 84 & AK3 & I/O 122 & K2 & I/O 160 & C13 & I/O 198 & C30 \\
\hline I/O 9 & AA30 & I/O 47 & AK20 & I/O 85 & AJ4 & I/O 123 & K3 & I/O 161 & A13 & I/O 199 & D30 \\
\hline I/O 10 & AB30 & I/O 48 & AL20 & I/O 86 & AJ2 & I/O 124 & J1 & I/O 162 & A14 & I/O 200 & E29 \\
\hline I/O 11 & AB29 & I/O 49 & AJ19 & I/O 87 & AH2 & I/O 125 & J3 & I/O 163 & C15 & I/O 201 & D31 \\
\hline I/O 12 & AC31 & I/O 50 & AL19 & I/O 88 & AG3 & I/O 126 & H1 & I/O 164 & B15 & I/O 202 & E31 \\
\hline I/O 13 & AC29 & I/O 51 & AL18 & I/O 89 & AH1 & I/O 127 & H2 & I/O 165 & A15 & I/O 203 & F29 \\
\hline I/O 14 & AD31 & I/O 52 & AJ17 & I/O 90 & AG1 & I/O 128 & G1 & I/O 166 & C16 & I/O 204 & F30 \\
\hline I/O 15 & AD30 & I/O 53 & AK17 & I/O 91 & AF3 & I/O 129 & G2 & I/O 167 & B16 & I/O 205 & G30 \\
\hline I/O 16 & AE31 & I/O 54 & AL17 & I/O 92 & AF2 & I/O 130 & F1 & I/O 168 & C17 & I/O 206 & G31 \\
\hline I/O 17 & AE30 & I/O 55 & AJ16 & I/O 93 & AE2 & I/O 131 & F2 & I/O 169 & B17 & I/O 207 & H29 \\
\hline I/O 18 & AF31 & I/O 56 & AK16 & I/O 94 & AE1 & I/O 132 & F3 & I/O 170 & A17 & I/O 208 & H30 \\
\hline I/O 19 & AF30 & I/O 57 & AJ15 & I/O 95 & AD3 & I/O 133 & E1 & I/O 171 & A18 & I/O 209 & H31 \\
\hline I/O 20 & AF29 & I/O 58 & AK15 & I/O 96 & AD2 & I/O 134 & D1 & I/O 172 & A19 & I/O 210 & J29 \\
\hline I/O 21 & AG31 & I/O 59 & AL15 & I/O 97 & AD1 & I/O 135 & D2 & I/O 173 & C19 & I/O 211 & J31 \\
\hline I/O 22 & AH31 & I/O 60 & AL14 & I/O 98 & AC3 & I/O 136 & C2 & I/O 174 & A20 & I/O 212 & K30 \\
\hline I/O 23 & AH30 & I/O 61 & AL13 & I/O 99 & AC1 & I/O 137 & D3 & I/O 175 & B20 & I/O 213 & L30 \\
\hline I/O 24 & AJ30 & I/O 62 & AJ13 & I/O 100 & AB2 & I/O 138 & C4 & I/O 176 & C20 & I/O 214 & L31 \\
\hline I/O 25 & AH29 & I/O 63 & AL12 & I/O 101 & AA2 & I/O 139 & B4 & I/O 177 & A21 & I/O 215 & M29 \\
\hline I/O 26 & AJ28 & I/O 64 & AK12 & I/O 102 & AA1 & I/O 140 & C5 & I/O 178 & B21 & I/O 216 & M30 \\
\hline I/O 27 & AK29 & I/O 65 & AJ12 & I/O 103 & Y3 & I/O 141 & A4 & I/O 179 & B22 & I/O 217 & M31 \\
\hline I/O 28 & AK28 & I/O 66 & AL11 & I/O 104 & Y2 & I/O 142 & A5 & I/O 180 & C22 & I/O 218 & N29 \\
\hline I/O 29 & AJ27 & I/O 67 & AK11 & I/O 105 & Y1 & I/O 143 & C6 & I/O 181 & A23 & I/O 219 & P31 \\
\hline I/O 30 & AL28 & I/O 68 & AK10 & I/O 106 & W3 & I/O 144 & B6 & I/O 182 & C23 & I/O 220 & R29 \\
\hline I/O 31 & AL27 & I/O 69 & AJ10 & I/O 107 & V1 & I/O 145 & A6 & I/O 183 & A24 & I/O 221 & R30 \\
\hline I/O 32 & AJ26 & I/O 70 & AL9 & I/O 108 & U3 & I/O 146 & B7 & I/O 184 & B24 & I/O 222 & R31 \\
\hline I/O 33 & AK26 & I/O 71 & AJ9 & I/O 109 & U2 & I/O 147 & A7 & I/O 185 & C24 & I/O 223 & T29 \\
\hline I/O 34 & AL26 & I/O 72 & AL8 & I/O 110 & U1 & I/O 148 & C8 & I/O 186 & A25 & & \\
\hline I/O 35 & AK25 & I/O 73 & AK8 & I/O 111 & T3 & I/O 149 & B8 & I/O 187 & B25 & & \\
\hline I/O 36 & AL25 & I/O 74 & AJ8 & I/O 112 & T2 & I/O 150 & A8 & I/O 188 & A26 & & \\
\hline I/O 37 & AJ24 & I/O 75 & AL7 & I/O 113 & R3 & I/O 151 & C9 & I/O 189 & B26 & & \\
\hline
\end{tabular}

\section*{Signal Configuration}

\section*{ispLSI 3448 432-Ball BGA Signal Diagram}

1. NCs are not to be connected to any active signals, VCC or GND.

Note: Ball A1 indicator dot on top side of package.

Specifications ispLSI 3448

\section*{Part Number Description}


L = Low

\section*{Ordering Information}

\section*{COMMERCIAL}
\begin{tabular}{|c|c|c|c|c|}
\hline FAMILY & \(\operatorname{fmax}(\mathrm{MHz})\) & tpd \((\mathrm{ns})\) & ORDERING NUMBER & PACKAGE \\
\hline \multirow{2}{*}{ ispLSI } & 90 & 12 & ispLSI 3448-90LB432 & \(432-B a l l ~ B G A ~\) \\
\cline { 2 - 5 } & 70 & 15 & ispLSI 3448-70LB432 & \(432-B a l l ~ B G A\) \\
\hline
\end{tabular}

Table 2-0041/3448```

