

FSA2267 / FSA2267A 0.35Ω Low-Voltage Dual-SPDT Analog Switch

Features

- Typical 0.35Ω On Resistance (R_{ON}) for +2.7V supply
- FSA2267A features less than 10µA I_{CCT} current when S Input is lower than V_{CC}
- 0.25Ω maximum R_{ON} flatness for +2.7V supply
- 1.6mm x 2.1mm 10-Lead MicroPak[™] package
- Broad V_{CC} operating range
- Low THD (0.02% typical for 32Ω load)
- High current handling capability (350mA continuous current under 3.3V supply)

Applications

- Cell phone
- PDA
- Portable media player

Ordering Information

Description

The FSA2267 and FSA2267A are Dual Single Pole Double Throw (SPDT) analog switches. The FSA2267 operates from a single 1.65V to 3.6V supply, while the FSA2267A operates from a single 2.3V to 4.3V supply. Each features an ultra-low On Resistance of 0.35Ω at a +2.7V supply and 25°C. Both devices are fabricated with sub-micron CMOS technology to achieve fast switching speeds and designed for break-before-make operation.

FSA2267A features very low quiescent current, even when the control voltage is lower than the V_{CC} supply. This feature services the mobile handset applications very well, allowing for the direct interface with baseband processor general-purpose I/Os.

Order Number	Top Mark	Lead- Free	Package Description	Packing Method
FSA2267L10X	FC	Yes	10-Lead MicroPak, 1.6 x 2.1mm, JEDEC MO-255	5000 Units on Tape and Reel
FSA2267MUX	FSA 2267	Yes	10-Lead Molded Small Outline Package (MSOP), JEDEC MO-187, 3.0mm Wide	3000 Units on Tape and Reel
FSA2267AL10X	FD	Yes	10-Lead MicroPak, 1.6 x 2.1mm, JEDEC MO-255	5000 Units on Tape and Reel
FSA2267AMUX	FSA 2267A	Yes	10-Lead Molded Small Outline Package (MSOP), JEDEC MO-187, 3.0mm Wide	4000 Units on Tape and Reel

Lead-Free package per JEDEC J-STD-020B.

MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

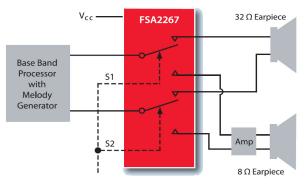
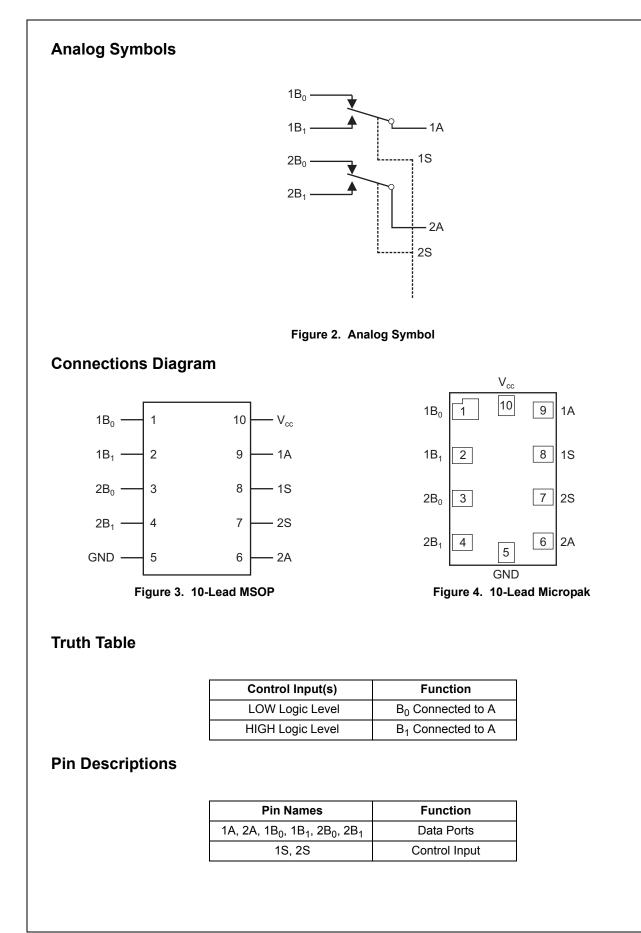



Figure 1. Application Diagram

© 2005 Fairchild Semiconductor Corporation FSA2267 / FSA2267A Rev. 1.0.3

.

March 2007

© 2005 Fairchild Semiconductor Corporation FSA2267 / FSA2267ARev. 1.0.3

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only..

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	-0.5	+5.5	V
Vs	Switch Voltage ⁽¹⁾	-0.5	V _{CC} + 0.5	V
V _{IN}	Input Voltage ⁽¹⁾	-0.5	V _{CC}	V
Ι _{ΙΚ}	Input Diode Current ⁽²⁾	-50		mA
I _{SW}	Switch Current		350	mA
I _{SWPEAK}	Peak Switch Current (Pulsed at 1ms duration, <10% Duty Cycle)		500	mA
T _{STG}	Storage Temperature Range	-65	+150	°C
TJ	Maximum Junction Temperature		+150	°C
TL	Lead Temperature (Soldering, 10 seconds)		+260	°C
	Human Body Model: FSA2267		7500	V
ESD	Human Body Model: FSA2267A		7000	V
	Charged Device Model: FSA2267/FSA2267A		1000	V

Notes:

- 1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
- 2. Minimums define the acceptable range of current. Negative current should not exceed minimun negative values.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Unit
	Supply Voltage			V
V _{CC}	FSA2267	1.65	3.6	V
	FSA2267A	2.3	4.3	
V _{IN}	Control Input Voltage ⁽³⁾	0	V _{CC}	V
V _{SW}	Switch Input Voltage	0	V _{CC}	V
T _A	Operating Temperature	-40	+85	°C

Note:

3. Unused inputs must be held HIGH or LOW. They may not float.

ESD Protection

ESD Performance of the FSA2267/FSA2267A

FSA2267

- HBM all pins 7.0kV
- CDM all pins 1.0kV

FSA267A

- HBM all pins 7.5kV
- CDM all pins 1.0kV

Human Body Model

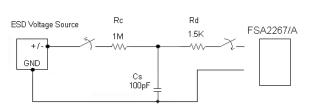
Figure 5 shows the schematic representation of the Human Body Model ESD event. Figure 6 is the ideal waveform representation of the Human Body Model. The device is tested to JEDEC: JESD22-A114 Human Body Model.

Charged Device Model

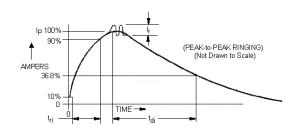
In manufacturing test and handling environments, a more useful model is the Charged Device Model and the FSA2267/FSA2267A has a very good ESD immunity to this model. The device is tested to JEDEC: JESD22-C101 Charged Device Model.

IEC 61000-4-2

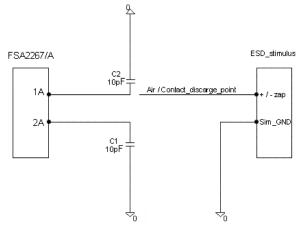
The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment and evaluates the equipment in its entirety for ESD immunity. Fairchild Semiconductor has evaluated this device using the IEC 6100-4-2 representative system model depicted in Figure 7.

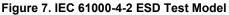

ESD values measured via the IEC 61000-4-2 evaluation method are influenced by the specific board layout, board size, and many other factors of the manufacturer's product application. Measured system ESD values cannot be guaranteed by Fairchild Semiconductor to exactly correlate to a manufacturer's in-house testing due to these application environment variables. Fairchild Semiconductor has been able to determine that, for ultra-portable applications, an enhanced ESD immunity, relative to the IEC 61000-4-2 specification, can be achieved with the inclusion of a 100 Ω -series resistor in the V_{CC} supply path to the analog switch (see Figure 8). Typical improvements of between 3-6kV of ESD immunity (I/O to GND) have been measured with the inclusion of the resistor with the IEC 61000-4-2 representative model. For more information on ESD testing methodologies, please refer to:

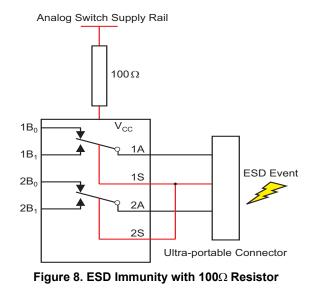
AN-6019 Fairchild Analog Switch Products ESD Test Methodology Overview


http://www.fairchildsemi.com/an/AN/AN-6019.pdf.

Additional ESD Test Conditions


For information regarding test methodologies and performance levels, please contact Fairchild Semiconductor.





© 2005 Fairchild Semiconductor Corporation FSA2267 / FSA2267A Rev. 1.0.3

FSA2267 DC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc}	Τ ₄	= +25	°C		-40 to 5°C	Units	
			(V)	Min.	Тур.	Max.	Min.	Max.		
			2.7 to 3.6				2.0			
VIH	Input Voltage High		2.3 to 2.7				1.7		V	
			1.65 to 1.95				0.65 V _{CC}			
			2.7 to 3.6					0.8		
V _{IL}	Input Voltage Low		2.3 to 2.7					0.7	V	
IL			1.65 to 1.95					0.35 V _{CC}		
I _{IN}	Control Input Leakage	V_{IN} = 0V to V_{CC}	1.65 to 3.6				-0.5	0.5	μA	
		nA = 0.3V, 3.3V, nB ₀ or nB ₁ = 0.3V, 3.3V or floating	3.6	-5.0		5.0	-50	50		
I _{NO(OFF)} , I _{NC(OFF)}	Off-Leakage Current of Port nB_0 and nB_1	$nA = 0.3V, 2.4V, nB_0 \text{ or } nB_1$ = 0.3V, 2.4V or floating	2.7	-5.0		5.0	-50	50	nA	
~ /		nA = 0.3V, 1.65V, nB ₀ or nB ₁ = 0.3V, 1.65V or floating	1.95	-5.0		5.0	-50	50		
		nA = 0.3V, 3.3V, nB ₀ or nB ₁ = 0.3V, 3.3V or floating	3.6	-5.0		5.0	-50	50		
I _{A(ON)}	On Leakage Current of Port 1A and 2A	$nA = 0.3V, 2.4V, nB_0 \text{ or } nB_1$ = 0.3V, 2.4V or floating	2.7	-5.0		5.0	-50	50	nA	
		nA = 0.3V, 1.65V, nB ₀ or nB ₁ = 0.3V, 1.65V or floating	1.95	-5.0		5.0	-50	50		
		I _{OUT} = 100mA, nB ₀ or nB ₁ = 0V, 0.7V, 2.0V, 2.7V	2.7		0.35			0.60		
R _{ON}	Switch On Resistance ⁽⁴⁾ See Figure 9	I _{OUT} = 100mA, nB ₀ or nB ₁ = 0V, 0.7V, 1.6V, 2.3V	2.3		0.45			0.75	Ω	
		I _{OUT} = 100mA, nB ₀ or nB ₁ = 0.8V	1.65		1.0			3.9		
			2.7		0.040			0.075		
ΔR_{ON}	On Resistance Matching Between Channels ⁽⁵⁾	I _{OUT} = 100mA, nB ₀ or nB ₁ = 0.7V	2.3		0.040			0.080	Ω	
			1.65		0.1					
			2.7					0.25		
$R_{FLAT(ON)}$	On Resistance Flatness ⁽⁶⁾	I _{OUT} = 100mA, nB ₀ or nB ₁ = 0V to V _{CC}	2.3					0.3	Ω	
			1.65		0.3					
I _{CC}	Quiescent Supply Current	V_{IN} = 0V or V_{CC} , I_{OUT} = 0A	3.6	-100		100	-500	500	nA	

FSA2267/FSA2267A 0.35Ω Low-Voltage Dual-SPDT Analog Switch

Notes:

- 4. On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
- 5. $\Delta R_{ON} = R_{ONmax} R_{ONmin}$ measured at identical V_{CC}, temperature, and voltage.
- Flatness is defined as the difference between the maximum and minimum value of R_{ON} over the specified range of conditions.

FSA2267A DC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Symbol	Parameter	Parameter Conditions		T _A = +25°C				T _A =		
-			(V)	Min.	Тур.	Max.	Min.	Max.		
			3.6 to 4.3				1.7			
V _{IH}	Input Voltage High		2.7 to 3.6				1.5		V	
			2.3 to 2.7				1.4			
			3.6 to 4.3					0.7		
V _{IL}	Input Voltage Low		2.7 to 3.6					0.5	V	
			2.3 to 2.7					0.4		
I _{IN}	Control Input Leakage	V_{IN} = 0V to V_{CC}	2.3 to 4.3				-0.5	0.5	μA	
		nA = 0.3V, 4.0V, nB ₀ or nB ₁ = 4.0V, 0.3V or floating	4.3	-10.0		10.0	-100	100		
I _{NO(OFF)} , I _{NC(OFF)}	Off-Leakage Current of Port nB_0 and nB_1	nA = 0.3V, 3.3V, nB ₀ or nB ₁ = 0.3V, 3.3V or floating	3.6	-5.0		5.0	-50	50	nA	
		nA = 0.3V, 2.4V, nB ₀ or nB ₁ = 0.3V, 2.4V or floating	2.7	-5.0		5.0	-50	50		
		$nA = 0.3V$, 4.0V, nB_0 or $nB_1 = 0.3V$, 4.0V or floating	4.3	-20.0		20.0	-200	200		
I _{A(ON)}	On Leakage Current of Port 1A and 2A	nA = 0.3V, 3.3V, nB ₀ or nB ₁ = 0.3V, 3.3V or floating	3.6	-5.0		5.0	-50	50	nA	
		nA = 0.3V, 3.3V, nB ₀ or nB ₁ = 0.3V, 3.3V or floating	2.7	-5.0		5.0	-50	50		
		I _{OUT} = 100mA, nB ₀ or nB ₁ = 0V, 0.7V, 3.6V, 4.3V	4.3		0.35			0.6		
R _{ON}	Switch On Resistance ⁽⁷⁾	I _{OUT} = 100mA, nB ₀ or nB ₁ = 0V, 0.7V, 2.3V, 3.0V	3.0		0.35			0.6	Ω	
-		I _{OUT} = 100mA, nB ₀ or nB ₁ = 0V, 0.7V, 2.0V, 2.7V	2.7		0.35			0.6		
		I_{OUT} = 100mA, nB ₀ or nB ₁ = 0.8V	1.65		1.0					
			4.3		0.04			0.075		
ΔR_{ON}	On Resistance Matching Between Channels ⁽⁸⁾	I _{OUT} = 100mA, nB ₀ or nB ₁ = 0.7V	3.0		0.04			0.075	Ω	
	See Figure 10		2.7		0.04			0.075	22	
			1.65		0.1					
			4.3		0.15			0.25		
R _{FLAT(ON)}	On Resistance	I_{OUT} = 100mA, nB ₀ or nB ₁ = 0V	3.0		0.15			0.25	Ω	
	Flatness ⁽⁹⁾	to V _{CC}	2.7		0.15			0.25	32	
			1.65		0.3					
I _{CC}	Quiescent Supply Current	V_{IN} = 0V or V_{CC} , I_{OUT} = 0A	4.3	-100	80	100	-500	500	nA	
	Increase in I _{CC} per Input	V _{IN} = 1.8V	4.3		7.0	10.0		15.0	110	
I _{CCT}	increase in iCC her llihur	V _{IN} = 2.6V	4.5		0.5	2.0		7.0	μA	

Notes:

- 7. On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
- 8. $\Delta R_{ON} = R_{ONmax} R_{ONmin}$ measured at identical V_{CC}, temperature, and voltage.
- 9. Flatness is defined as the difference between the maximum and minimum value of R_{ON} over the specified range of conditions.

© 2005 Fairchild Semiconductor Corporation FSA2267 / FSA2267A Rev. 1.0.3

FSA2267 AC Electrical Characteristics

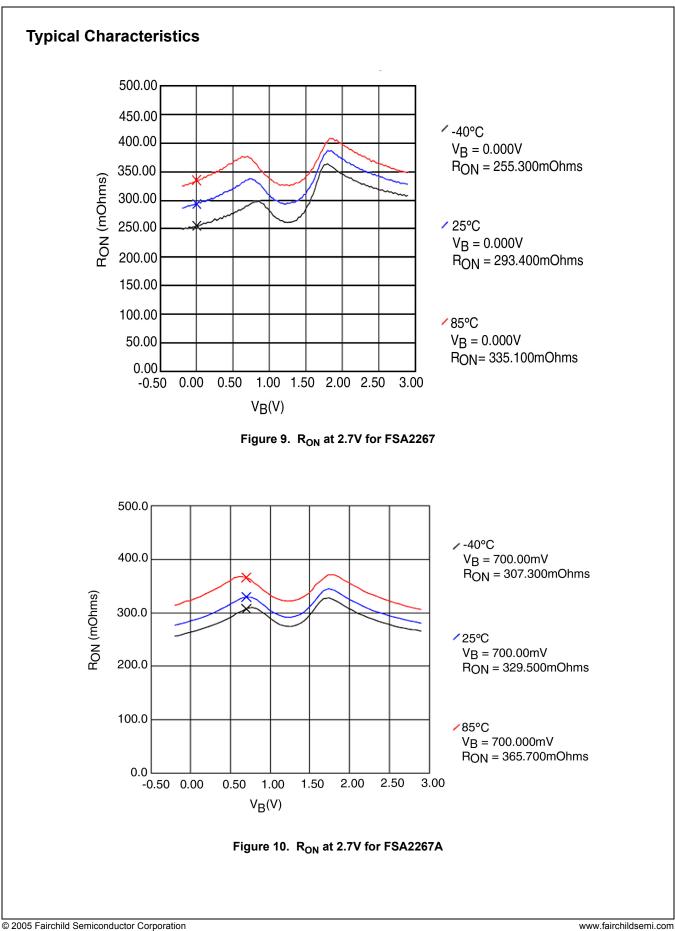
All typical values are at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc}	Тд	_ = +25	5°C		-40 to 5°C	Units	Figure Number
-			(V)	Min.	Тур.	Max.	Min.	Max.		
			2.7 to 3.6		30.0	38.0		42.0	0	
t _{ON}	Turn-On Time	nB ₀ or nB ₁ = 1.5V, R ₁ = 50Ω, C ₁ = 35 pF	2.3 to 2.7		29.0	37.0		40.0	ns	Figure 11
			1.65 to 1.95		27.0	35.0		38.0		
			2.7 to 3.6		13.0	16.0		18.0		
t _{OFF}	Turn-Off Time	nB ₀ or nB ₁ = 1.5V, R _L = 50Ω, C _L = 35 pF	2.3 to 2.7		14.0	18.0		20.0	ns	Figure 11
		ττ <u>μ</u> = 3032, θ <u>μ</u> = 35 μι	1.65 to 1.95		15.0	21.0		25.0		
			2.7 to 3.6		17.0		2.0			
t _{BBM}	Break-Before- Make Time	nB ₀ or nB ₁ = 1.5V, R ₁ = 50Ω, C ₁ = 35 pF	2.3 to 2.7		15.0		2.0		ns	Figure 12
			1.65 to 1.95		12.0		2.0			
		C_L = 100 pF, V _{GEN} = 0V, R _{GEN} = 0Ω	2.7 to 3.6		9.0					
Q	Charge Injection	C_L = 100 pF, V_{GEN} = 0V, R _{GEN} = 0 Ω	2.3 to 2.7		9.0				pC	Figure 14
		C_L = 100 pF, V_{GEN} = 0V, R _{GEN} = 0 Ω	1.65 to 1.95		9.0					
			2.7 to 3.6		-80.0					
OIRR	Off Isolation	f = 100kHz, $R_L = 50\Omega$, $C_L = 5pF$ (Stray)	2.3 to 2.7		-80.0			dl	dB	Figure 13
		(Oldy)	1.65 to 1.95		-80.0					
			2.7 to 3.6		-80.0					
Xtalk	Crosstalk	f = 100kHz, $R_L = 50\Omega$, $C_L = 5pF$ (Stray)	2.3 to 2.7		-80.0				dB	Figure 13
			1.65 to 1.95		-80.0					
BW	-3db Bandwidth	R _L = 50Ω	1.65 to 3.6		45.0				MHz	Figure 16
	THD Total Harmonic Distortion	$R_{L} = 32\Omega, V_{IN} = 2V_{pk-pk},$ f = 20Hz to 20kHz	2.7 to 3.6		0.024					
THD		$R_{L} = 32\Omega, V_{IN} = 1.5V_{pk-pk},$ f = 20Hz to 20kHz	2.3 to 2.7		0.015				%	Figure 17
		$R_{L} = 32\Omega, V_{IN} = 1.2V_{pk-pk},$ f = 20Hz to 20kHz	1.65 to 1.95		0.35					

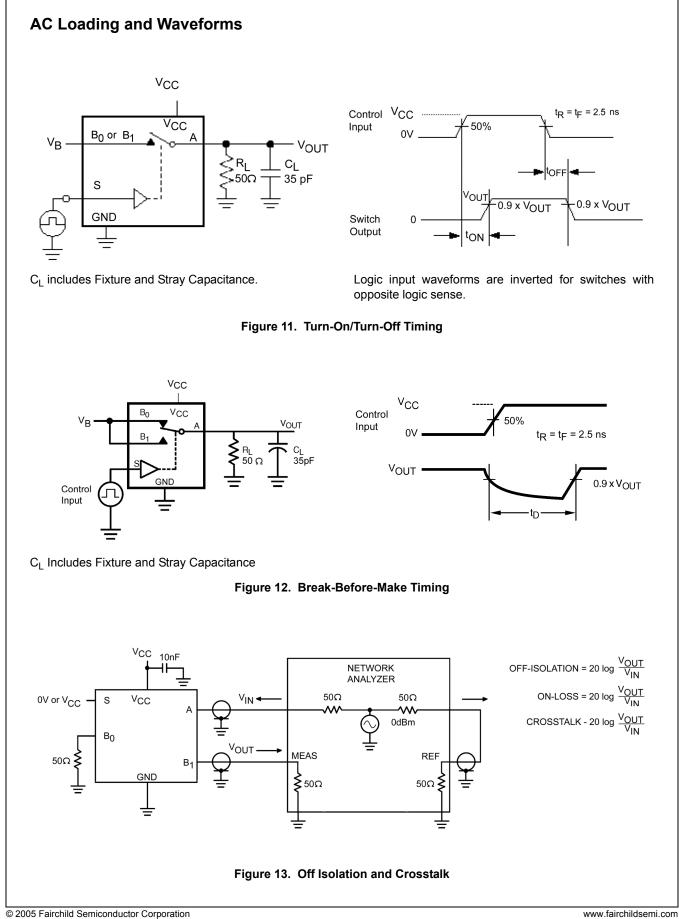
FSA2267A AC Electrical Characteristics

All typical value are at 25°C unless otherwise specified.

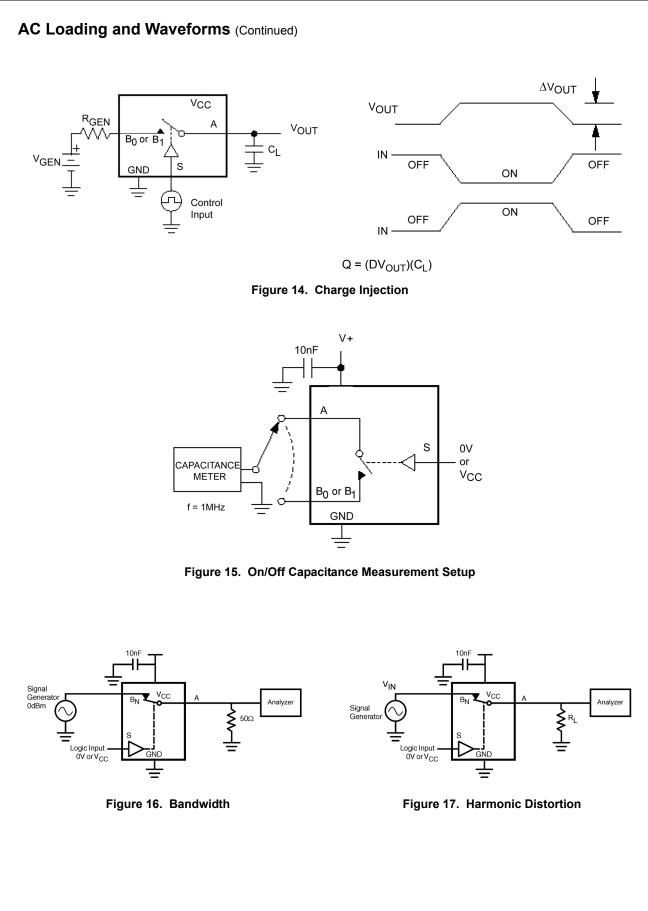
Symbol Parameter		Conditions	V _{CC} (V)	Тд	= +2 5	5°C		-40 to 5°C	Units	Figure Number
				Min.	Тур.	Max.	Min.	Max.		Number
			3.6 to 4.3		37.0	46.0		48.0		
	Turn On Time	nB ₀ or nB ₁ = 1.5V,	2.7 to 3.6		37.0	50.0		57.0	-	- : 44
t _{ON}	Turn-On Time	$R_{L} = 50\Omega, C_{L} = 35pF$	2.3 to 2.7		60				ns	Figure 11
			1.65		570					
			3.6 to 4.3		15.0	23.0		25.0		
+	Turn Off Time	nB ₀ or nB ₁ = 1.5V,	2.7 to 3.6		16.0	30.0		30.0		Figure 11
t _{OFF}		2.3 to 2.7		50.0				ns	Figure 11	
			1.65		500					
			3.6 to 4.3		8.0		2.0			
t _{BBM}	Break-Before- Make Time	$nB_0 \text{ or } nB_1 = 1.5V,$ $R_1 = 50\Omega, C_1 = 35pF$	2.7 to 3.6		8.0		2.0		ns	Figure 12
	Make Time		2.3 to 2.7		8.0		2.0			
		C_L = 100 pF, V_{GEN} = 0V, R _{GEN} = 0 Ω	3.6 to 4.3		24.0					
Q	Charge Injection	C_L = 100 pF, V_{GEN} = 0V, R _{GEN} = 0 Ω	2.7 to 3.6		24.0				pC	Figure 14
		C_L = 100 pF, V_{GEN} = 0V, R _{GEN} = 0 Ω	2.3 to 2.7		24.0					
			3.6 to 4.3		-75.0					
OIRR	Off Isolation	f = 100kHz, $R_L = 50\Omega$, $C_L = 5pF$ (Stray)	2.7 to 3.6		-75.0				dB	Figure 13
		(ondy)	2.3 to 2.7		-75.0					
			3.6 to 4.3		-70.0					
Xtalk	Crosstalk	$f = 100$ kHz, $R_L = 50\Omega$, $C_L = 5$ pF (Stray)	2.7 to 3.6		-70.0				dB	Figure 13
			2.3 to 2.7		-70.0					
BW	-3db Bandwidth	R _L = 50Ω	2.3 to 4.3		45.0				MHz	Figure 16
		$R_{L} = 32\Omega, V_{IN} = 2V_{pk-pk},$ f = 20Hz to 20kHz	3.6 to 4.3		0.02					
THD	Total Harmonic Distortion	$\begin{aligned} R_{L} &= 32\Omega, V_{IN} = 1.5 V_{pk-pk}, \\ f &= 20Hz \text{ to } 20kHz \end{aligned}$	2.7 to 3.6		0.02				%	Figure 17
		$R_{L} = 32\Omega, V_{IN} = 1.2V_{pk-pk},$ f = 20Hz to 20kHz	2.3 to 2.7		0.02					


FSA2267/FSA2267A 0.35 Ω Low-Voltage Dual-SPDT Analog Switch

Capacitance


Symbol	Parameter	Conditions	V _{CC} (V)	Тд	T _A = +25°C			-40 to 5°C	Units	Figure Number	
				Min.	Тур.	Max.	Min.	Max.			
C _{IN}	Control Pin Input Capacitance	f = 1Mhz	0.0		1.5				pF	Figure 15	
C _{OFF}	B Port Off Capacitance	f = 1Mhz	3.3		30.0				pF	Figure 15	
C _{ON}	A Port On Capacitance	f = 1Mhz	3.3		126				pF	Figure 15	

© 2005 Fairchild Semiconductor Corporation FSA2267 / FSA2267ARev. 1.0.3


8

FSA2267 / FSA2267ARev. 1.0.3

FSA2267 / FSA2267A Rev. 1.0.3

© 2005 Fairchild Semiconductor Corporation FSA2267 / FSA2267A Rev. 1.0.3

FSA2267/FSA2267A 0.35Ω Low-Voltage Dual-SPDT Analog Switch

Cover Tape Status Sealed Sealed Sealed

Cavity Status

Empty

FSA2267/FSA2267A 0.35Ω Low-Voltage Dual-SPDT Analog Switch

L10X Carrier 5000 Filled Trailer (Hub End) 75 (typical) Empty Sealed 01.50^{+0.10} 1.75±0.10 ¢ 3.50±0.05 8.00+0.30 ✐ - 🔁 -Θ-Pin 1 в-Ø0.50±0.05 SECTION B-B SCALE:10X DIRECTION OF FEED 0.254±0.020 |_Г-Ко 175° MAX ____ BEND RADIUS NOT TO SCALE SECTION SCALE:10X A-A NOTES: UNLESS OTHERWISE SPECIFIED 1. ACCUMULATED 50 SPROCKETS, SPROCKET HOLE PITCH IS 200.00 ±0.30MM 2. NO INDICATED CORNER RADIUS IS 0.127MM 300056 2.30 ± 0.05 1.78±0.05 0.68±0.05 3. CAMBER NOT TO EXCEED 1MM IN 100MM 1.78±0.05 0.68±0.05 300038 1.78 ± 0.05 300033 1.60 ± 0.05 1.15±0.05 0.70±0.05 4. SMALLEST ALLOWABLE BENDING RADIUS 5. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE Ø Q Q \mathcal{O} Æ₹ Æ Æ₹ SCALE: 6X **Reel Dimensions** TAPE SLOT DETAIL X DETAIL X SCALE: 3X Tape Size Α В С D Ν W1 W2 W3 7.0 0.512 0.795 0.059 2.165 0.331 + 0.059/-0.000 0.567 W1 + 0.078/-0.039

Cavity Number

125 (typical)

© 2005 Fairchild Semiconductor Corporation

(177.8)

(1.50)

(13.00)

(20.20)

Tape and Reel Specification Tape Format for MicroPak[™] 10

Package Designator

Dimensions are in millimeters (inches) unless otherwise noted.

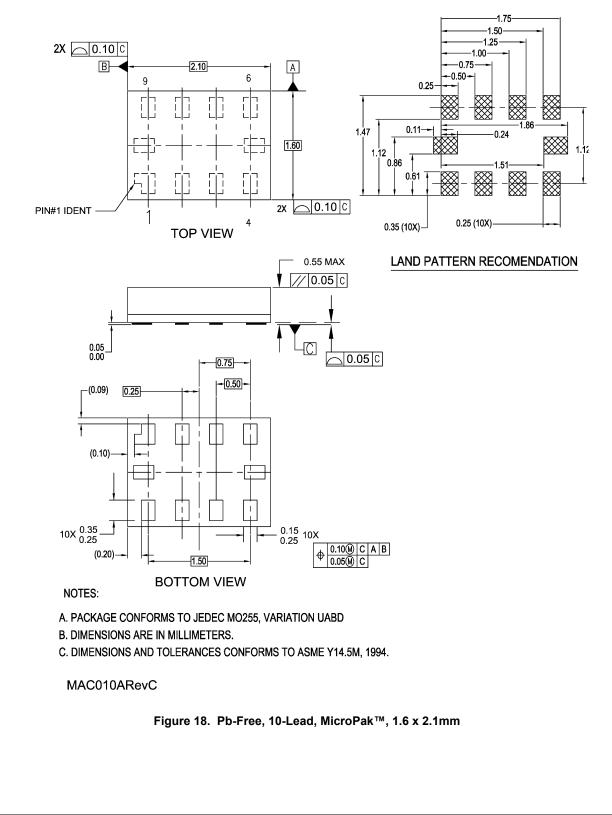
Tape Section

Leader (Start End)

FSA2267 / FSA2267A Rev. 1.0.3

(8mm)

(W1 + 2.00/-1.00)

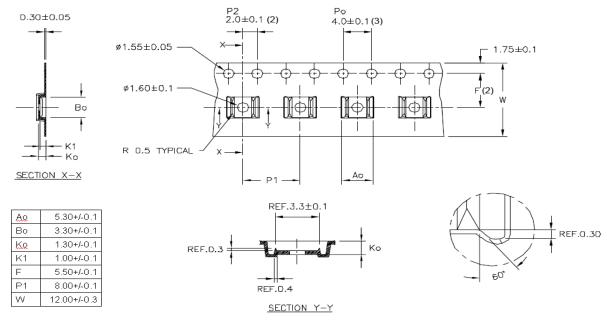

(8.40 + 1.50/-0.00)

(14.40)

(55.00)

Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

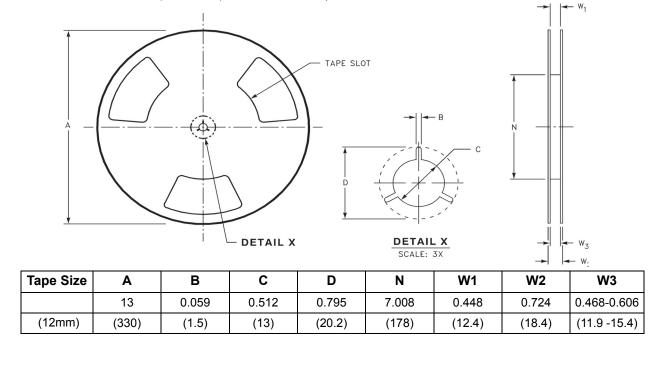

© 2005 Fairchild Semiconductor Corporation FSA2267 / FSA2267A Rev. 1.0.3

FSA2267/FSA2267A 0.35Ω Low-Voltage Dual-SPDT Analog Switch

Tape and Reel Specification

Tape Dimensions for MSOP 10

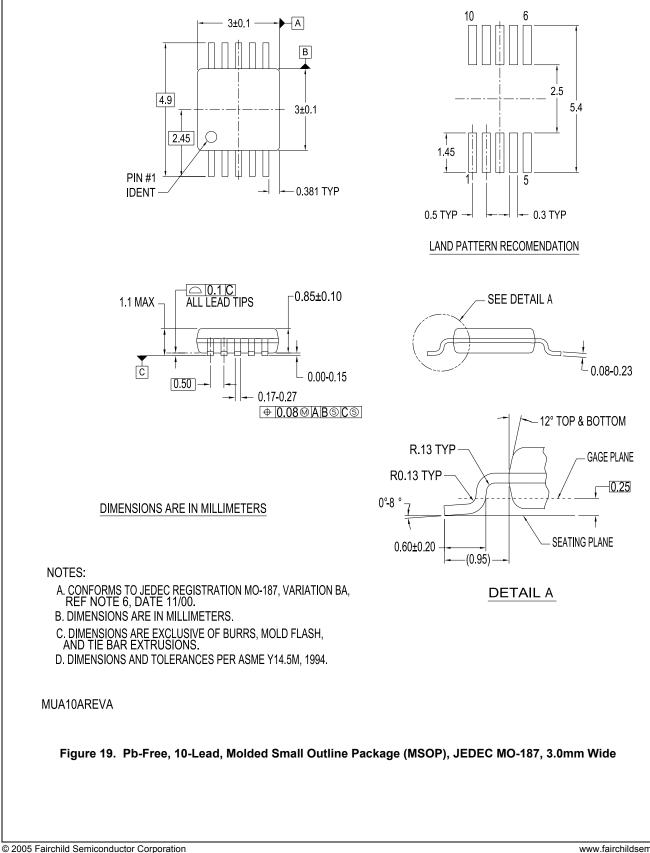
Dimensions are in millimeters unless otherwise specified.



Notes:

- 1. All dimensions are in millimeters.
- 2. Measured from centerline of sprocket hole to centerline of pocket.
- 3. Cumulative tolerance of ten sprocket holes is ±0.20mm.
- 4. Other material available.

Reel Dimensions for MSOP


Dimensions are in inches (millimeters) unless otherwise specified.

© 2005 Fairchild Semiconductor Corporation FSA2267 / FSA2267A Rev. 1.0.3

Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

FSA2267 / FSA2267A Rev. 1.0.3

Downloaded from Elcodis.com electronic components distributor

SEMICONDUCTOR

U

 $^{ ext{SA2267/FSA2267A}}$ 0.35 Ω Low-Voltage Dual-SPDT Analog Switch

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEX [®] Across the board. Around the world. [™] ActiveArray [™] Bottomless [™] Build it Now [™] CoolFET [™] COOLFET [™] CROSSVOLT [™] CTLT [™] Current Transfer Logic [™] DOME [™] E ² CMOS [™] E ² CMOS [™] E ² CMOS [™] EcoSPARK [®] EnSigna [™] FACT Quiet Series [™] FACT [®] FAST	
GIODAIOptoisolator'™ GTO™	

HiSeC™ i-Lo™ ImpliedDisconnect[™] IntelliMAX™ **ISOPLANAR™** MICROCOUPLER™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ ОСХ™ OCXPro™ OPTOLOGIC[®] OPTOPLANAR® PACMAN™ POP™ Power220® Power247® PowerEdge™ PowerSaver™ PowerTrench®

Programmable Active Droop™ QFET[®] QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ ScalarPump™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SvncFET™ TCM™. The Power Franchise® (bTM TinyBoost™ TinyBuck™

TinyLogic[®] TINYOPTO™ TinyPower™ TinyWire™ TruTranslation™ µSerDes™ UHC[®] UniFET™ VCX™ Wire™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. 124

FSA2267 / FSA2267A Rev. 1.0.3

www.fairchildsemi.com