Features

- Compliant to Intel ${ }^{\circledR}$ CK410
- Supports Intel Prescott and Tejas CPU
- Selectable CPU frequencies
- Differential CPU clock pairs
- 100-MHz differential SRC clocks (two selectable between Fixed and Overclocking)
- 96-MHz differential dot clock
- 48-MHz USB clocks
- 33-MHz PCI clock
- Dial-A-Frequency ${ }^{\circledR}$
- Watchdog
- Two independent overclocking PLLs
- Low-voltage frequency select input
- $I^{2} \mathrm{C}$ support with readback capabilities
- Ideal Lexmark Spread Spectrum profile for maximum electromagnetic interference (EMI) reduction
- 3.3V power supply
- 56-pin SSOP and TSSOP packages

CPU	SRC	PCI	REF	DOT96	USB	$24-48 \mathrm{M}$
x 2	x 6	x 9	x 2	x 1	x 1	x 1

Block Diagram

Pin Configuration

* Indicates internal pull-up
** Indicates internal pull-down

Pin Description

Pin No.	Name	Type			
6,56	VDD_PCI	PWR	3.3V power supply for outputs.		
1,5	VSS_PCI	GND	Ground for outputs.		
3	FS_E/PCI4	I,O, PU, SE	3.3V-tolerant input for CPU frequency selection/33-MHz clock. Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.		
$2,4,53,54$,	PCI	O, SE	33-MHz clocks.		
55		PCIF0	O,SE		33-MHz free running clock
:---					
7					
8					

Frequency Select Pins (FS_[A:E])

Host clock frequency selection is achieved by applying the appropriate logic levels to FS_A, FS_B, FS_C, FS_D, and FS_E inputs prior to VTT_PWRGD\# assertion (as seen by the clock synthesizer). Upon VTT_PWRGD\# being sampled LOW by the clock chip (indicating processor VTT voltage is stable), the clock chip samples the FS_A, FS_B, FS_C, FS_D, and FS_E input values. For all logic levels of FS_A, FS_B, FS_C, FS_D, and FS_E, VTT_PWRGD\# employs a one-shot functionality in that once a valid LOW on VTT_PWRGD\# has been sampled, all further VTT_PWRGD\#, FS_A \bar{A}, FS_B, FS_C, FS_D, and FS_E transitions will be ignored, except in test mode. FS_C is a three level input, when sampled at a voltage greater than 2.1 V by VTTPWRGD\#, the device will enter test mode as selected by the voltage level on the FS_B input.

Serial Data Interface

To enhance the flexibility and function of the clock synthesizer, a two-signal serial interface is provided. Through the Serial Data Interface, various device functions, such as individual clock output buffers, can be individually enabled or disabled.

The registers associated with the Serial Data Interface initialize to their default setting upon power-up, and therefore use of this interface is optional. Clock device register changes are normally made upon system initialization, if any are required. The interface cannot be used during system operation for power management functions.

Data Protocol

The clock driver serial protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, the bytes must be accessed in sequential order from lowest to highest byte (most significant bit first) with the ability to stop after any complete byte has been transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. The offset of the indexed byte is encoded in the command code, as described in Table 1.

The block write and block read protocol is outlined in Table 2 while Table 3 outlines the corresponding byte write and byte read protocol. The slave receiver address is 11010010 (D2h).

Input Conditions				Output Frequency		CPUP■ Gear Constants (G)	CPUM divider	CPUN CPUN DFAULT allowable range for DAF		SRCPL Gear Constants	SRCM divider (not changeable byuser)	$\begin{array}{\|c\|} \hline \text { SRCN } \\ \text { DEALT } \end{array}$	SRCN allowable range for DAF
FS D	FS_C	FS_B	FS_A	$\overline{\mathrm{CPU}}$	SRC								
FSE 3	FSE 2	FSE_1	FSE_0	(MH z)	($\mathrm{M}-\mathrm{z}$)								
0	1	0	1	100	100	30	60	200	200-250	30	60	200	200-266
0	0	0	1	133.3333333	100	40	60	200	200-250	30	60	200	200-266
0	0	1	1	166.6666667	100	60	63	175	175-262	30	60	200	200-266
0	0	1	0	200	100	60	60	200	200-250	30	60	200	200-266
0	0	0	0	266.6666667	100	80	60	200	200-250	30	60	200	200-266
0	1	0	0	333.3333333	100	120	63	175	175-262	30	60	200	200-266
0	1	1	0	400	100	120	60	200	200-250	30	60	200	200-266
1	1	0	1	100.952381	100	30	63	212	212-262	30	60	200	200-266
1	0	0	1	133.968254	100	40	63	211	211-262	30	60	200	200-266
1	0	1	1	167	100	60	60	167	167-250	30	60	200	200-266
1	0	1	0	200.952381	100	60	63	211	211-262	30	60	200	200-266
1	0	0	0	266.6666667	100	80	60	200	200-250	30	60	200	200-266
1	1	0	0	334	100	120	60	167	167-250	30	60	200	167-266
1	1	1	0	400.6451613	100	120	62	207	207-258	30	60	200	167-266

X	HGH	LOW	X	Tristate	Tristate	Tristate	Tristate	Tristate	Tristate
X	HGH	HGH	X	REF/N	REIN	REF/N	REF/N	REFN	R F / N

Figure 1. CPU and SRC Frequency Select Tables

Table 1. Command Code Definition

Bit	Description
7	0 = Block read or block write operation, 1 = Byte read or byte write operation
$(6: 0)$	Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be ' 0000000 '

Table 2. Block Read and Block Write Protocol

Block Write Protocol		Block Read Protocol	
Bit	Description	Bit	Description
1	Start	1	Start
8:2	Slave address - 7 bits	8:2	Slave address - 7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
18:11	Command Code - 8 bits	18:11	Command Code - 8 bits
19	Acknowledge from slave	19	Acknowledge from slave
27:20	Byte Count - 8 bits (Skip this step if I ${ }^{2}$ C_EN bit set)	20	Repeat start
28	Acknowledge from slave	27:21	Slave address - 7 bits
36:29	Data byte 1-8 bits	28	Read = 1
37	Acknowledge from slave	29	Acknowledge from slave
45:38	Data byte 2-8 bits	37:30	Byte Count from slave - 8 bits
46	Acknowledge from slave	38	Acknowledge
....	Data Byte /Slave Acknowledges	46:39	Data byte 1 from slave - 8 bits
....	Data Byte N-8 bits	47	Acknowledge
....	Acknowledge from slave	55:48	Data byte 2 from slave - 8 bits
....	Stop	56	Acknowledge
		Data bytes from slave / Acknowledge
		Data Byte N from slave - 8 bits
		NOT Acknowledge
		\ldots	Stop

Table 3. Byte Read and Byte Write Protocol

Byte Write Protocol		Byte Read Protocol	
Bit	Description	Bit	Description
1	Start	1	Start
$8: 2$	Slave address -7 bits	$8: 2$	Slave address -7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
$18: 11$	Command Code -8 bits	$19: 11$	Command Code -8 bits
19	Acknowledge from slave	20	Repeated start
$27: 20$	Data byte -8 bits	$27: 21$	Slave address -7 bits
28	Acknowledge from slave	28	Read
29	Stop	29	Acknowledge from slave
		$37: 30$	Data from slave -8 bits
		38	NOT Acknowledge
		39	Stop

Control Registers

Byte 0: Control Register 0

Bit	@Pup	Name	Description
7	1	RESERVED	RESERVED
6	1	SRC[T/C]4	SRC[T/C]4 Output Enable $0=$ Disable (Tri-state), $1=$ Enable
5	1	SRC[T/C]3	SRC[T/C]3 Output Enable $0=$ Disable (Tri-state), $1=$ Enable
4	1	SATA[T/C]	SATA[T/C] Output Enable $0=$ Disable (Tri-state), $1=$ Enable
3	1	SRC[T/C]2	SRC[T/C]2 Output Enable $0=$ Disable (Tri-state), $1=$ Enable
2	1	SRC[T/C]1	SRC[T/C]1 Output Enable $0=$ Disable (Tri-state), $1=$ Enable
1	1	RESERVED	RESERVED
0	1	SRC[T/C]0	SRC[T/C]0 Output Enable $0=$ Disable (Tri-state), $1=$ Enable

Byte 1: Control Register 1

Bit	@Pup	Name	Description
7	1	PCIFO	PCIFO Output Enable $0=$ Disabled, $1=$ Enabled
6	1	DOT_96[T/C]	DOT_96 MHz Output Enable $0=$ Disable (Tri-state), $1=$ Enabled
5	1	$24 _48 \mathrm{M}$	24448 MHz Output Enable $0=$ Disabled, $1=$ Enabled
4	1	REF0	REF0 Output Enable $0=$ Disabled, $1=$ Enabled
3	0	RESERVED	RESERVED
2	1	CPU[T/C]1	CPU[T/C]1 Output Enable $0=$ Disable (Tri-state), $1=$ Enabled
1	1	CPU[T/C]0	CPU[T/C]0 Output Enable $0=$ Disable (Tri-state), 1 = Enabled
0	1	CPU	PLL1 (CPU PLL) Spread Spectrum Enable $0=$ Spread off, $1=$ Spread on

Byte 2: Control Register 2

Bit	@Pup	Name	Description
7	1	PCI5	PCI5 Output Enable $0=$ Disabled, 1 = Enabled
6	1	PCI4	PCI4 Output Enable 0 = Disabled, 1 = Enabled
5	1	PCI3	PCI3 Output Enable 0 = Disabled, 1 = Enabled
4	1	PCI2	PCI2 Output Enable 0 = Disabled, 1 = Enabled
3	1	PCI1	PCI1 Output Enable 0 = Disabled, 1 = Enabled
2	1	PCIO	PCIO Output Enable 0 = Disabled, 1 = Enabled
1	1	PCIF2	PCIF2 Output Enable 0 = Disabled, 1 = Enabled

Byte 2: Control Register 2 (continued)

Bit	@Pup	Name	Description
0	1	PCIF1	PCIF1 Output Enable $0=$ Disabled, 1 = Enabled

Byte 3: Control Register 3

Bit	@Pup	Name	Description
7	0	RESERVED	RESERVED, Set = 0
6	0	SRC4	Allow control of SRC[T/C]4 with assertion of SW PCI_STP\# $0=$ Free running, $1=$ Stopped with PCI_STP\#
5	0	SRC3	Allow control of SRC[T/C]3 with assertion of SW PCI_STP\# $0=$ Free running, $1=$ Stopped with PCI_STP\#
4	0	SATA[T/C]	Allow control of SATA[T/C] with assertion of SW PCI_STP\# $0=$ Free running, $1=$ Stopped with PCI_STP\#
3	0	SRC2	Allow control of SRC[T/C]2 with assertion of SW PCI_STP\# $0=$ Free running, $1=$ Stopped with PCI_STP\#
2	0	SRC1	Allow control of SRC[T/C]1 with assertion of SW PCI_STP\# $0=$ Free running, $1=$ Stopped with PCI_STP\#
1	0	RESERVED	RESERVED 0
0	SRC0	Allow control of SRC[T/C]0 with assertion of SW PCI_STP\# $0=$ Free running, $1=$ Stopped with PCI_STP\#	

Byte 4: Control Register 4

Bit	@Pup	Name	Description
7	HW	FS_E	FS_E Reflects the value of the FS_E pin sampled on power-up. 0 = FS_E was low during VTT_PWRGD\# assertion.
6	0	DOT96[T/C]	DOT_PWRDWN Drive Mode $0=$ Driven in PWRDWN, $1=$ Tri-state
5	0	PCIF2	Allow control of SRC[T/C]2 with assertion of SW PCI_STP\# $0=$ Free running, $1=$ Stopped with PCI_STP\#
4	0	PCIF1	Allow control of PCIF1 with assertion of SW PCI_STP\# $0=$ Free running, $1=$ Stopped with PCI_STP\#
3	0	PCIF0	Allow control of PCIF0 with assertion of SW PCI_STP\# $0=$ Free running, $1=$ Stopped with PCI_STP\#
2	1	RESERVED	RESERVED, Set $=1$
1	1	RESERVED	RESERVED, Set $=1$
0	1	RESERVED	RESERVED, Set $=1$

Byte 5: Control Register 5

Bit	@Pup	Name	Description
7	0	SRC[T/C]	SRC[T/C] Stop Drive Mode $0=$ Driven when PCI_STP\# asserted, $1=$ Tri-state when PCI_STP\# asserted
6	0	RESERVED	RESERVED, Set $=0$
5	0	RESERVED	RESERVED, Set $=0$
4	0	RESERVED	RESERVED, Set $=0$
3	0	SRC[T/C][4:0]	SRC[T/C] PWRDWN Drive Mode $0=$ Driven when PD asserted, $1=$ Tri-state when PD asserted
2	0	RESERVED	RESERVED, Set $=0$ 1$\quad 0$
CPU[T/C]1	CPU[T/C]1 PWRDWN Drive Mode $0=$ Driven when PD asserted,1 $=$ Tri-state when PD asserted		
0	0	CPU[T/C]0	CPU[T/C]0 PWRDWN Drive Mode $0=$ Driven when PD asserted, $1=$ Tri-state when PD asserted

Byte 6: Control Register 6

Bit	@Pup	Name	Description
7	0	TEST_SEL	REF/N or Tri-state Select $0=$ Tri-state, $1=$ REF/N Clock
6	0	TEST_MODE	Test Clock Mode Entry Control $0=$ Normal operation, $1=$ REF/N or Tri-state mode
5	HW	FS_D	FS_D reflects the value of the FS_D pin sampled on power-up. $0=$ FS_D was low during VTT_PWRGD\# assertion
4	1	REF	REF Output Drive Strength $0=$ High, $1=$ Low
3	1	PCI, PCIF and SRC clock outputs except those set to free running	SW PCI_STP\# Function $0=$ SW PCI_STP\# assert, 1 = SW PCI_STP\# deassert When this bit is set to 0, all STOPPABLE PCI, PCIF and SRC outputs will be stopped in a synchronous manner with no short pulses. When this bit is set to 1, all STOPPED PCI, PCIF and SRC outputs will resume in a synchronous manner with no short pulses.
2	HW	FS_C	FS_C Reflects the value of the FS_C pin sampled on power-up $0=$ FS_C was low during VTT_PWRGD\# assertion
1	HW	FS_B	FS_B Reflects the value of the FS_B pin sampled on power-up $0=$ FS_B was low during VTT_PWRGD\# assertion
0	HW	FS_A	FS_A Reflects the value of the FS_A pin sampled on power-up $0=F S _A ~ w a s ~ l o w ~ d u r i n g ~ V T T _P W R G D \# ~ a s s e r t i o n ~$

Byte 7: Vendor ID

Bit	@Pup	Name	Description
7	0	Revision Code Bit 3	Revision Code Bit 3
6	0	Revision Code Bit 2	Revision Code Bit 2
5	0	Revision Code Bit 1	Revision Code Bit 1
4	0	Revision Code Bit 0	Revision Code Bit 0
3	1	Vendor ID Bit 3	Vendor ID Bit 3
2	0	Vendor ID Bit 2	Vendor ID Bit 2
1	0	Vendor ID Bit 1	Vendor ID Bit 1
0	0	Vendor ID Bit 0	Vendor ID Bit 0

Byte 8: Control Register 8

Bit	@Pup	Name	Description
7	0	CPU_SS	Spread Selection for CPU PLL $0:-0.5 \%$ (peak to peak) $1:-1.0 \%$ (peak to peak)
6	0	CPU_DWN_SS	Spread Selection for CPU PLL $0:$ Down spread. $1:$ Center spread
5	0	SRC_SS_OFF	SRC Spread Spectrum Enable $0=$ Spread off, 1 = Spread on
4	0	SRC_SS	Spread Selection for SRC PLL $0:-0.5 \%$ (peak to peak) $1:-1.0 \%$ (peak to peak)
3	0	RESERVED	RESERVED, Set = 0
2	1	USB	USB 48-MHz Output Drive Strength $0=2 x, 1=1 x$
1	1	PCI	$33-M H z ~ O u t p u t ~ D r i v e ~ S t r e n g t h ~$ $0=2 x, 1 ~=~ 1 x ~$
0	0	RESERVED	RESERVED

Byte 9: Control Register 9

Bit	@Pup	Name	
7	0	RESERVED	RESERVED
6	0		
5	0		
4	0		
3	0		
2	0	FSEL_D	SW Frequency selection bits. See Table 1.
1	0	FSEL_C	
0	0	FSEL_B	

Byte 10: Control Register 10

Bit	@Pup	Name	Description
7	0	Recovery_Frequency	This bit allows selection of the frequency setting that the clock will be restored to once the system is rebooted 0 : Use HW settings 1: Recovery N[8:0]
6	0	Timer_SEL	Timer_SEL selects the WD reset function at SRESET pin when WD time out. 0 = Reset and Reload Recovery_Frequency 1 = Only Reset
5	1	Time_Scale	Time_Scale allows selection of WD time scale $0=2 \overline{9} 4 \mathrm{~ms} \quad 1=2.34 \mathrm{~s}$
4	0	WD_Alarm	WD_Alarm is set to " 1 " when the Watchdog times out. It is reset to " 0 " when the system clears the WD_TIMER time stamp.
3	0	WD_TIMER2	Watchdog timer time stamp selection
2	0	WD_TIMER1	000: Reserved (test mode)
1	0	WD_TIMER0	010: 2 * Time_Scale 011: 3 * Time_Scale 100: 4 * Time_Scale 101: 5 * Time_Scale 110: 6 * Time_Scale 111: 7 * Time_Scale
0	0	WD_EN	Watchdog timer enable, when the bit is asserted, Watchdog timer is triggered and time stamp of WD_Timer is loaded 0 = Disable, 1 = Enable

Byte 11: Control Register 11

Bit	@Pup	Name	Description
7	0	CPU_DAF_N7	If Prog_CPU_EN is set, the values programmed in CPU_DAF_N[8:0] and CPU_DAF_M[6:0] will be used to determine the CPU output frequency. The setting of FS_Override bit determines the frequency ratio for CPU and other output clocks. When it is cleared, the same frequency ratio stated in the Latched $\mathrm{FS}[\mathrm{E}: \mathrm{A}]$ register will be used. When it is set, the frequency ratio stated in the FSEL[3:0] register will be used.
6	0	CPU_DAF_N6	
5	0	CPU_DAF_N5	
4	0	CPU_DAF_N4	
3	0	CPU_DAF_N3	
2	0	CPU_DAF_N2	
1	0	CPU_DAF_N1	
0	0	CPU_DAF_N0	

Byte 12: Control Register 12

Bit	@Pup	Name	Description
7	0	CPU_DAF_N8	If Prog_CPU_EN is set, the values programmed is in CPU_FSEL_N[8:0]
6	0	CPU_DAF_M6	and CPU_FSEL_M[6:0] will be used to determine the CPU output
frequency.			

Byte 13: Control Register 13

Bit	@Pup	Name	Description
7	0	SRC_N7	SRC Dial-A-Frequency Bit N7
6	0	SRC_N6	SRC Dial-A-Frequency Bit N6
5	0	SRC_N5	SRC Dial-A-Frequency Bit N5
4	0	SRC_N4	SRC Dial-A-Frequency Bit N4
3	0	SRC_N3	SRC Dial-A-Frequency Bit N3
2	0	SRC_N2	SRC Dial-A-Frequency Bit N2
1	0	SRC_N1	SRC Dial-A-Frequency Bit N1
0	0	SRC_N0	SRC Dial-A-Frequency Bit N0

Byte 14: Control Register 14

Bit	@Pup	Name	Description
7	0	SRC_N8	SRC Dial-A-Frequency Bit N8
6	0	SW_RESET	Software Reset. When set the device will assert a reset signal on SRESET\# upon completion of the block/word/byte write that set it. After asserting and deasserting the SRESET\# this bit will self clear (set to 0). The SRESET\# pin must be enabled by latching SRESET\#_EN on VTT_PRWGD\# to utilize this feature.
5	0	FS_[E:A]	FS_Override $0=$ Select operating frequency by FS(E:A) input pins $1=$ Select operating frequency by FSEL_(4:0) settings
4	0	SMSW_SEL	Smooth switch select $0:$ Select CPU_PLL $1:$ Select SRC_PLL.
3	0	RESERVED	RESERVED, Set $=0$ 2
1	1	RESERVED	RESERVED, Set = 0
0	0	Recovery_N8	Free running 33-MHz Output Drive Strength $0=2 x, 1=1 x$

Byte 15: Control Register 15

Bit	@Pup	Name	Description
7	0	Recovery N7	Watchdog Recovery Bit
6	0	Recovery N6	Watchdog Recovery Bit
5	0	Recovery N5	Watchdog Recovery Bit
4	0	Recovery N4	Watchdog Recovery Bit
3	0	Recovery N3	Watchdog Recovery Bit

Byte 15: Control Register 15 (continued)

Bit	@Pup	Name	
2	0	Recovery N2	Watchdog Recovery Bit
1	0	Recovery N1	Watchdog Recovery Bit
0	0	Recovery N0	Watchdog Recovery Bit

Byte 16: Control Register 16

Bit	@Pup	Name	Description
7	1	REF1	REF1 Output Enable $0=$ Disable, 1 = Enable
6	1	USB48	USB48 Output Enable $0=$ Disable, 1 = Enable
5	0	SRC_FREQ_SEL	SRC Frequency selection $0:$ SRC frequency is selected via the FS_E pin $1:$ SRC frequency is initially set to 167 MHz.
4	0	RESERVED	RESERVED
3	0	SRC_SATA	SATA PLL Spread Spectrum Enable $0=$ Spread off, 1 = Spread on
2	0	Prog_SRC_EN	Programmable SRC frequency enable $0=$ disabled, 1 = enabled.
1	0	Prog_CPU_EN	Programmable CPU frequency enable $0=$ disabled, 1 = enabled.
0	0	Watchdog Autorecovery	Watchdog Autorecovery Mode $0=$ Disable (Manual), 1= Enable (Auto)

The CY28439 requires a Parallel Resonance Crystal. Substituting a series resonance crystal will cause the CY28439 to operate at the wrong frequency and violate the ppm specification. For most applications there is a $300-\mathrm{ppm}$ frequency shift between series and parallel crystals due to incorrect loading.

Crystal Loading

Crystal loading plays a critical role in achieving low ppm performance. To realize low ppm performance, the total capacitance the crystal will see must be considered to calculate the appropriate capacitive loading (CL).
Figure 2 shows a typical crystal configuration using the two trim capacitors. An important clarification for the following discussion is that the trim capacitors are in series with the
crystal not parallel. It's a common misconception that load capacitors are in parallel with the crystal and should be approximately equal to the load capacitance of the crystal. This is not true.

Figure 2. Crystal Capacitive Clarification

Table 4. Crystal Recommendations

Frequency (Fund)	Cut	Loading	Load Cap	Drive (max.)	Shunt Cap (max.)	Motional (max.)	Tolerance (max.)	Stability (max.)	Aging (max.)
14.31818 MHz	AT	Parallel	20 pF	0.1 mW	5 pF	0.016 pF	35 ppm	30 ppm	5 ppm

Calculating Load Capacitors

In addition to the standard external trim capacitors, trace capacitance and pin capacitance must also be considered to correctly calculate crystal loading. As mentioned previously, the capacitance on each side of the crystal is in series with the crystal. This means the total capacitance on each side of the crystal must be twice the specified crystal load capacitance (CL). While the capacitance on each side of the crystal is in series with the crystal, trim capacitors $(\mathrm{Ce} 1, \mathrm{Ce} 2)$ should be calculated to provide equal capacitive loading on both sides.

Figure 3. Crystal Loading Example
Use the following formulas to calculate the trim capacitor values for Ce 1 and Ce 2 .

Load Capacitance (each side)

$$
C e=2 * C L-(C s+C i)
$$

Total Capacitance (as seen by the crystal)

$$
C L e=\frac{1}{\left(\frac{1}{C e 1+C s 1+C i 1}+\frac{1}{C e 2+C s 2+C i 2}\right)}
$$

CL
Crystal load capacitance
CLe \qquad Actual loading seen by crystal using standard value trim capacitors

	al trim capaciors
	Stray capacitance (terraced)
	Internal capacitance
	Crystal load capacitance
	Actual loading seen by crystal citors
External trim capacitors
	Stray capacitance (terraced)
 Internal capacitance

Dial-A-Frequency (CPU and SRC)

This feature allows the user to overclock their system by slowly stepping up the CPU or SRC frequency. When the programmable output frequency feature is enabled, the CPU and SRC frequencies are determined by the following equation
Fcpu $=G$ * N/M or Fcpu=G2 * N, where G2 = G / M
" N " and " M " are the values programmed in Programmable Frequency Select N-Value Register and M-Value Register, respectively. "G" stands for the PLL Gear Constant, which is determined by the programmed value of $\mathrm{FS}[\mathrm{E}: \mathrm{A}]$. See Figure 1 for the Gear Constant for each Frequency selection. The PCI Express only allows user control of the N register, the M value is fixed and documented in Figure 1
In this mode, the user writes the desired N and M value into the DAF I2C registers. The user cannot change only the M value and must change both the M and the N values at the same time, if they require a change to the M value. The user may change only the N value if required.

Associated Register Bits

CPU_DAF Enable-This bit enables CPU DAF mode. By default, it is not set. When set, the operating frequency is determined by the values entered into the CPU_DAF_N register. Note: the CPU_DAF_N and M register must contain valid values before CPU_DAF is set. Default $=0$, (No DAF)
CPU_DAF_N—There will be nine bits (for 512 values) to linearly change the CPU frequency (limited by VCO range). Default $=0,(0000)$ The allowable values for N are detailed in the frequency select table in Figure 1
CPU DAF M-There will be 7 bits (for 128 values) to linearly change the CPU frequency (limited by VCO range). Default = 0 , the allowable values for M are detailed in the frequency select table in Figure 1.
SRC_DAF Enable-This bit enables SRC DAF mode. By default, it is not set. When set, the operating frequency is determined by the values entered into the SRC_DAF_N register. Note: the SRC_DAF_N register must contain valid values before SRC_DAF is set. Default $=0$, (No DAF)
SRC_DAF_N—There are nine bits (for 512 values) to linearly change the CPU frequency (limited by VCO range). Default = 0 , (0000) The allowable values for N are detailed in the frequency select table in Figure 1.
Recovery-The recovery mechanism during CPU DAF when the system locks up and the Watchdog timer is enabled is determined by the "Watchdog Recovery Mode" and "Watchdog Autorecovery Enable" bits. The possible recovery methods are: (A) Auto, (B) Manual (by Recovery N), (C) HW, and (D) No recovery, just send reset signal.
There is no recovery mode for SRC Dial-a-Frequency.

Software Frequency Select

This mode allows the user to select the CPU output frequencies using the Software Frequency select bits in the SMBUS register.
FSEL-There will be four bits (for 16 combinations) to select predetermined CPU frequencies from a table. The table selections are detailed in section Figure 1.

FS_Override-This bit allows the CPU frequency to be selected from HW or FSEL settings. By default, this bit is not set and the CPU frequency is selected by HW. When this bit is set, the CPU frequency is selected by the FSEL bits. Default $=0$.
Recovery-The recovery mechanism during FSEL when the system locks up is determined by the "Watchdog Recovery Mode" and "Watchdog Autorecovery Enable" bits. The only possible recovery method is to (?) Hardware Settings. Auto recovery or manual recovery can cause a wrong output frequency because the output divider may have changed with the selected CPU frequency and these recovery methods will not recover the original output divider setting.

Smooth Switching

The device contains one smooth switch circuit which is shared by the CPU PLL and SRC PLL. The smooth switch circuit ensures that when the output frequency changes by overclocking, the transition from the old frequency to the new frequency is a slow, smooth transition containing no glitches. The rate of change of output frequency when using the smooth switch circuit is less than $1 \mathrm{MHz} / 0.667 \mu \mathrm{~s}$. The frequency overshoot and undershoot will be less than 2%.
The Smooth Switch circuit can be assigned to either PLL via register byte 14 bit 4. By default the smooth switch circuit is assigned to the CPU PLL. Either PLL can still be overclocked when it does not have control of the smooth switch circuit but it is not guaranteed to transition to the new frequency without large frequency glitches.
It is not recommended to enable overclocking and change the N values of both PLLs in the same SMBUS block write.

Watchdog Timer

The Watchdog timer is used in the system in conjunction with overclocking. It is used to provide a reset to a system that has hung up due to overclocking the CPU and the Front side bus. The Watchdog is enabled by the user and if the system completes its checkpoints, the system will clear the timer. However, when the timer runs out, there will be a reset pulse generated on the SRESET\# pin for 20 ms that is used to reset the system.
When the Watchdog is enabled (WD_EN = 1) the Watchdog timer will start counting down from a value of Watchdog_timer * time scale. If the Watchdog timer reaches 0 before the WD_EN bit is cleared then it will assert the SRESET\# signal and set the Watchdog Alarm bit to 1 .
To use the Watchdog the SRESET\# pin must be enabled by SRESET_EN pin being sampled low by VTTPWRGD\# assertion during system boot-up.
At any point if during the Watchdog timer countdown, if the time stamp or Watchdog timer bits are changed the timer will reset and start counting down from the new value.
After the Reset pulse, the Watchdog will stay inactive until either:

1. A new time stamp or Watchdog timer value is loaded.
2. The WD_EN bit is cleared and then set again.

Watchdog Register Bits

The following register bits are associated with the Watchdog timer:

Watchdog Enable-This bit (by default) is not set, which disables the Watchdog. When set, the Watchdog is enabled. Also, when there is a transition from LOW to HIGH, the timer reloads. Default $=0$, disable
Watchdog Timer-There will be three bits (for seven combinations) to select the timer value. Default $=000$-the Value ' 000 ' is a reserved test mode.
Watchdog Alarm-This bit is a flag and when it is set, it indicates that the timer has expired. This bit is not set by default. When the bit is set, the user is allowed to clear. Default $=0$.
Watchdog Time Scale—This bit selects the multiplier. When this bit is not set, the multiplier will be 250 ms . When set (by default), the multiplier will be 3s. Default $=1$.
Watchdog Reset Mode—This selects the Watchdog reset mode. When this bit is not set (by default), the Watchdog will send a reset pulse and reload the recovery frequency, which depends on Watchdog Recovery Mode setting. When set, it just sends a reset pulse. Default $=0$, Reset \& Recover Frequency.
Watchdog Recovery Mode-This bit selects the location to recover from. One option is to recover from the HW settings (already stored in SMBUS registers for readback capability) and the second is to recover from a register called "Recovery N". Default = 0 (Recover from the HW setting)
Watchdog Autorecovery Enable-This bit by default is set and the recovered values are automatically written into the "Watchdog Recovery Register" and reloaded by the Watchdog function. When this bit is not set, the user is allowed to write to the "Watchdog Recovery Register". The value stored in the "Watchdog Recovery Register" will be used for recovery. Default $=1$, Autorecovery.
Watchdog Recovery Register-This is a nine-bit register to store the Watchdog N recovery value. This value can be written by the Autorecovery or User depending on the state of the "Watchdog Autorecovery Enable bit".

Watchdog Recovery Modes

There are two operating modes that requires Watchdog recovery. The modes are Dial-A-Frequency (DAF) or Frequency Select. There are four different recovery modes: The following diagram lists the operating mode and the recovery mode associated with it.

Recover to Hardware M,N, O

When this recovery mode is selected, in the event of a Watchdog timeout, the original M, N, and O values that were latched by the HW FSEL pins at Chip boot-up should be reloaded.

Autorecovery

When this recovery mode is selected, in the event of a Watchdog timeout, the M and N values stored in the Recovery M and N registers should be reloaded. The current values of M and N will be latched into the internal recovery M and N registers by the WD_EN bit being set.

Manual Recovery

When this recovery mode is selected, in the event of a Watchdog timeout, the N value as programmed by the user in the N recovery register, and the M value that is stored in the Recovery M register (not accessible by the user) should be restored. The current M value should be latched into the M recovery register by the WD_EN bit being set.

No Recovery

If no recovery mode is selected, in the event of a Watchdog time out, the device should just assert the SRESET\# and keep the current values of M and N .

Software Reset

Software reset is a reset function which is used to send out a pulse from SRESET\# pin. It is controlled by the SW_RESET enable register bit. Upon completion of the byte/word/block write in which the SW_RESET bit was set, the device will send a RESET pulse on the SRESET\# pin. The duration of the SRESET\# pulse should be the same as the duration of the SRESET\# pulse after a Watchdog timer time out.
After the SRESET\# pulse is asserted the SW_RESET bit should be automatically cleared by the device.

PD (Power-down) Clarification

The VTT_PWRGD\# /PD pin is a dual-function pin. During initial power-up, the pin functions as VTT_PWRGD\#. Once VTT_PWRGD\# has been sampled LOW by the clock chip, the pin assumes PD functionality. The PD pin is an asynchronous active HIGH input used to shut off all clocks cleanly prior to shutting off power to the device. This signal is synchronized internal to the device prior to powering down the clock synthesizer. PD is also an asynchronous input for powering up the system. When PD is asserted HIGH, all clocks need to be driven to a LOW value and held prior to turning off the VCOs and the crystal oscillator.

PD (Power-down)—Assertion

When PD is sampled HIGH by two consecutive rising edges of CPUC, all single-ended outputs will be held LOW on their next HIGH-to-LOW transition and differential clocks must held high or tri-stated (depending on the state of the control register drive mode bit) on the next diff clock\# HIGH-to-LOW transition within 4 clock periods. When the SMBus PD drive mode bit corresponding to the differential (CPU, SRC, and DOT) clock output of interest is programmed to ' 0 ', the clock output is held with "Diff clock" pin driven HIGH at $2 \times$ Iref, and "Diff clock\#" tri-state. If the control register PD drive mode bit corresponding to the output of interest is programmed to " 1 ", then both the "Diff clock" and the "Diff clock\#" are tri-state. Note the example below shows CPUT $=133 \mathrm{MHz}$ and PD drive mode = ' 1 ' for all differential outputs. This diagram and description is applicable to valid CPU frequencies 100, 133, 166, 200, 266, 333 , and 400 MHz . In the event that PD mode is desired as the initial power-on state, PD must be asserted HIGH in less than $10 \mu \mathrm{~s}$ after asserting Vtt_PwrGd\#.

PD Deassertion

The power-up latency is less than 1.8 ms . This is the time from the deassertion of the PD pin or the ramping of the power supply until the time that stable clocks are output from the clock chip. All differential outputs stopped in a three-state condition resulting from power down will be driven high in less than $300 \mu \mathrm{~s}$ of PD deassertion to a voltage greater than 200 mV . After the clock chip's internal PLL is powered up and locked, all outputs will be enabled within a few clock cycles of each other. Figure 5 is an example showing the relationship of clocks coming up.

Figure 4. Power-down Assertion Timing Waveform

Figure 5. Power-down Deassertion Timing Waveform

Figure 6. VTT_PWRGD\# Timing Diagram

Figure 7. Clock Generator Power-up/Run State Diagram

Absolute Maximum Conditions

Parameter	Description	Condition	Min.	Max.	Unit
V_{DD}	Core Supply Voltage		-0.5	4.6	V
$\mathrm{~V}_{\mathrm{DD} _\mathrm{A}}$	Analog Supply Voltage		-0.5	4.6	V
$\mathrm{~V}_{\text {IN }}$	Input Voltage	Relative to V_{SS}	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	VDC
T_{S}	Temperature, Storage	Non-functional	-65	150	${ }^{\circ} \mathrm{C}$
T_{A}	Temperature, Operating Ambient	Functional	0	70	${ }^{\circ} \mathrm{C}$
T_{J}	Temperature, Junction	Functional	-	150	${ }^{\circ} \mathrm{C}$
$\varnothing_{\text {JC }}$	Dissipation, Junction to Case	Mil-STD-883E Method 1012.1	-	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\varnothing_{\text {JA }}$	Dissipation, Junction to Ambient	JEDEC (JESD 51)	-	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{ESD}_{\text {HBM }}$	ESD Protection (Human Body Model)	MIL-STD-883, Method 3015	2000	-	V
UL-94	Flammability Rating	At 1/8 in.		$\mathrm{V}-0$	
MSL	Moisture Sensitivity Level		1		
Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.					

DC Electrical Specifications

Parameter	Description	Condition	Min.	Max.	Unit
All $\mathrm{V}_{\mathrm{DD}} \mathrm{S}$	3.3V Operating Voltage	$3.3 \pm 5 \%$	3.135	3.465	V
$\mathrm{V}_{\text {ILI2C }}$	Input Low Voltage	SDATA, SCLK	-	1.0	V
$\mathrm{V}_{\text {IHI2C }}$	Input High Voltage	SDATA, SCLK	2.2	-	V
$\mathrm{V}_{\text {IL_FS }}$	FS_[A:B,D:E] Input Low Voltage		$\mathrm{V}_{\text {SS }}-0.3$	0.35	V
$\mathrm{V}_{\text {IH_FS }}$	FS_[A:B,D:E] Input High Voltage		0.7	$\mathrm{V}_{\mathrm{DD}}+0.5$	V
VILFS_C	FS_C Low Range		0	0.35	V
$\mathrm{V}_{\text {IMFS_C }}$	FS_C Mid Range		0.7	1.7	V
$\mathrm{V}_{\text {IH FS_C }}$	FS_C High Range		2.1	V_{DD}	V
V $\mathrm{V}_{\text {IL }}$	3.3V Input Low Voltage		$\mathrm{V}_{\text {SS }}-0.3$	0.8	V
V_{IH}	3.3V Input High Voltage		2.0	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{I}_{\text {IL }}$	Input Low Leakage Current	Except internal pull-up resistors, $0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {DD }}$	-5	-	$\mu \mathrm{A}$
I_{IH}	Input High Leakage Current	Except internal pull-down resistors, $0<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{DD}}$	-	5	$\mu \mathrm{A}$
V_{OL}	3.3V Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$	-	0.4	V
V_{OH}	3.3V Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4	-	V
l_{Oz}	High-impedance Output Current		-10	10	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance		3	5	pF
$\mathrm{C}_{\text {OUT }}$	Output Pin Capacitance		3	5	pF
$\mathrm{L}_{\text {IN }}$	Pin Inductance		-	7	nH
$\mathrm{V}_{\text {XIH }}$	Xin High Voltage		$0.7 \mathrm{~V}_{\mathrm{DD}}$	$V_{\text {DD }}$	V
$\mathrm{V}_{\text {XIL }}$	Xin Low Voltage		0	$0.3 \mathrm{~V}_{\text {DD }}$	V
IDD3.3V	Dynamic Supply Current	At max. load and freq. per Figure 10	-	500	mA
IPD3.3V	Power-down Supply Current	PD asserted, Outputs Driven	-	70	mA
PT3.3V	Power-down Supply Current	PD asserted, Outputs Tri-state	-	2	mA

AC Electrical Specifications

Parameter	Description	Condition	Min.	Max.	Unit
Crystal					
T_{DC}	XIN Duty Cycle	The device will operate reliably with input duty cycles up to 30/70 but the REF clock duty cycle will not be within specification	47.5	52.5	\%
TPERIOD	XIN Period	When XIN is driven from an external clock source	69.841	71.0	ns
$\mathrm{T}_{\mathrm{R}} / \mathrm{T}_{\mathrm{F}}$	XIN Rise and Fall Times	Measured between $0.3 \mathrm{~V}_{\mathrm{DD}}$ and $0.7 \mathrm{~V}_{\mathrm{DD}}$	-	10.0	ns
$\mathrm{T}_{\text {CCJ }}$	XIN Cycle to Cycle Jitter	As an average over 1- $\mu \mathrm{s}$ duration	-	500	ps
$\mathrm{L}_{\text {ACC }}$	Long-term Accuracy	Over 150 ms	-	300	ppm
CPU at 0.7V (SSC refers to -0.5\% spread spectrum)					
T_{DC}	CPUT and CPUC Duty Cycle	Measured at crossing point V_{OX}	45	55	\%
T PERIOD	$100-\mathrm{MHz}$ CPUT and CPUC Period	Measured at crossing point V_{OX}	9.997001	10.00300	ns
TPERIOD	133-MHz CPUT and CPUC Period	Measured at crossing point $\mathrm{V}_{\text {OX }}$	7.497751	7.502251	ns
T PERIOD	166-MHz CPUT and CPUC Period	Measured at crossing point V_{OX}	5.998201	6.001801	ns
TPERIOD	$200-\mathrm{MHz}$ CPUT and CPUC Period	Measured at crossing point $\mathrm{V}_{\text {OX }}$	4.998500	5.001500	ns
T PERIOD	$266-\mathrm{MHz}$ CPUT and CPUC Period	Measured at crossing point $\mathrm{V}_{\text {OX }}$	3.748875	3.751125	ns
T PERIOD	$333-\mathrm{MHz}$ CPUT and CPUC Period	Measured at crossing point V_{OX}	2.999100	3.000900	ns
TPERIOD	$400-\mathrm{MHz}$ CPUT and CPUC Period	Measured at crossing point $\mathrm{V}_{\text {OX }}$	2.499250	2.500750	ns
TPERIODSS	100-MHz CPUT and CPUC Period, SSC	Measured at crossing point $\mathrm{V}_{\text {OX }}$	9.997001	10.05327	ns
TPERIODSS	133-MHz CPUT and CPUC Period, SSC	Measured at crossing point $\mathrm{V}_{\text {OX }}$	7.497751	7.539950	ns
TPERIODSS	166-MHz CPUT and CPUC Period, SSC	Measured at crossing point $\mathrm{V}_{\text {OX }}$	5.998201	6.031960	ns
T PERIODSS	200-MHz CPUT and CPUC Period, SSC	Measured at crossing point V_{OX}	4.998500	5.026634	ns
TPERIODSS	266-MHz CPUT and CPUC Period, SSC	Measured at crossing point V_{OX}	3.748875	3.769975	ns
TPERIODSS	333-MHz CPUT and CPUC Period, SSC	Measured at crossing point V_{OX}	2.999100	3.015980	ns
TPERIODSS	400-MHz CPUT and CPUC Period, SSC	Measured at crossing point $\mathrm{V}_{\text {OX }}$	2.499250	2.513317	ns
TPERIODAbs	100-MHz CPUT and CPUC Absolute period	Measured at crossing point $\mathrm{V}_{\text {OX }}$	9.912001	10.08800	ns
TPERIODAbs	133-MHz CPUT and CPUC Absolute period	Measured at crossing point V_{OX}	7.412751	7.587251	ns
TPERIODAbs	166-MHz CPUT and CPUC Absolute period	Measured at crossing point V_{OX}	5.913201	6.086801	ns
TPERIODAbs	200-MHz CPUT and CPUC Absolute period	Measured at crossing point V_{OX}	4.913500	5.086500	ns
TPERIODAbs	266-MHz CPUT and CPUC Absolute period	Measured at crossing point $\mathrm{V}_{\text {OX }}$	3.663875	3.836125	ns
TPERIODAbs	333-MHz CPUT and CPUC Absolute period	Measured at crossing point V_{OX}	2.914100	3.085900	ns
TPERIODAbs	400-MHz CPUT and CPUC Absolute period	Measured at crossing point V_{OX}	2.414250	2.585750	ns
TPERIODSSAbs	$100-\mathrm{MHz}$ CPUT and CPUC Absolute period, SSC	Measured at crossing point V_{OX}	9.912001	10.13827	ns
TPERIODSSAbs	133-MHz CPUT and CPUC Absolute period, SSC	Measured at crossing point V_{OX}	7.412751	7.624950	ns
TPERIODSSAbs	166-MHz CPUT and CPUC Absolute period, SSC	Measured at crossing point V_{OX}	5.913201	6.116960	ns
TPERIODSSAbs	200-MHz CPUT and CPUC Absolute period, SSC	Measured at crossing point V_{OX}	4.913500	5.111634	ns
TPERIODSSAbs	266-MHz CPUT and CPU C Absolute period, SSC	Measured at crossing point V_{OX}	3.663875	3.854975	ns
TPERIODSSAbs	333-MHz CPUT and CPUC Absolute period, SSC	Measured at crossing point V_{OX}	2.914100	3.100980	ns
TPERIODSSAbs	400-MHz CPUT and CPUC Absolute period, SSC	Measured at crossing point V_{OX}	2.414250	2.598317	ns
TSKEW	CPU0 to CPU1	Measured at crossing point V_{OX}	-	100	ps

AC Electrical Specifications (continued)

Parameter	Description	Condition	Min.	Max.	Unit
$\mathrm{T}_{\text {CCJ }}$	CPUT/C Cycle to Cycle Jitter	Measured at crossing point $\mathrm{V}_{\text {OX }}$	-	80	ps
$\mathrm{L}_{\text {ACC }}$	Long Term accuracy	Measured using frequency counter over 0.15 seconds.	-	300	ppm
$\mathrm{T}_{\mathrm{R}} / \mathrm{T}_{\mathrm{F}}$	CPUT and CPUC Rise and Fall Times	Measured from $\mathrm{V}_{\mathrm{OL}}=0.175$ to $\mathrm{V}_{\mathrm{OH}}=0.525 \mathrm{~V}$	130	700	ps
$\mathrm{T}_{\text {RFM }}$	Rise/Fall Matching	Determined as a fraction of $2^{*}\left(T_{R}-T_{F}\right) /\left(T_{R}+T_{F}\right)$	-	20	\%
$\Delta \mathrm{T}_{\mathrm{R}}$	Rise Time Variation		-	125	ps
$\Delta \mathrm{T}_{\mathrm{F}}$	Fall Time Variation		-	125	ps
$\mathrm{V}_{\text {HIGH }}$	Voltage High	Math averages Figure 10	660	850	mV
$\mathrm{V}_{\text {LOW }}$	Voltage Low	Math averages Figure 10	-150	-	mV
$\mathrm{V}_{\text {OX }}$	Crossing Point Voltage at 0.7V Swing		250	550	mV
$\mathrm{V}_{\text {OVS }}$	Maximum Overshoot Voltage		-	$\mathrm{V}_{\text {HIGH }}+0.3$	V
$\mathrm{V}_{\text {UDS }}$	Minimum Undershoot Voltage		-0.3	-	V
V_{RB}	Ring Back Voltage	See Figure 10. Measure SE	-	0.2	V
SRC					
T_{DC}	SRCT and SRCC Duty Cycle	Measured at crossing point $\mathrm{V}_{\text {OX }}$	45	55	\%
T PERIOD	$100-\mathrm{MHz}$ SRCT and SRCC Period	Measured at crossing point $\mathrm{V}_{\text {OX }}$	9.997001	10.00300	ns
T PERIODSS	$100-\mathrm{MHz}$ SRCT and SRCC Period, SSC	Measured at crossing point $\mathrm{V}_{\text {OX }}$	9.997001	10.05327	ns
TPERIODAbs	100-MHz SRCT and SRCC Absolute Period	Measured at crossing point $\mathrm{V}_{\text {OX }}$	9.872001	10.12800	ns
TPERIODSSAbs	$100-\mathrm{MHz}$ SRCT and SRCC Absolute Period, SSC	Measured at crossing point $\mathrm{V}_{\text {OX }}$	9.872001	10.17827	ns
TSKEW	Any SRCT/C to SRCT/C Clock Skew	Measured at crossing point $\mathrm{V}_{\text {OX }}$	-	250	ps
$\mathrm{T}_{\text {CCJ }}$	SRCT/C Cycle to Cycle Jitter	Measured at crossing point $\mathrm{V}_{\text {OX }}$	-	65	ps
$\mathrm{L}_{\text {ACC }}$	SRCT/C Long Term Accuracy	Measured at crossing point V_{OX}	-	300	ppm
$\mathrm{T}_{\mathrm{R}} / \mathrm{T}_{\mathrm{F}}$	SRCT and SRCC Rise and Fall Times	Measured from $\mathrm{V}_{\mathrm{OL}}=0.175$ to $\mathrm{V}_{\mathrm{OH}}=0.525 \mathrm{~V}$	130	700	ps
TRFM	Rise/Fall Matching	Determined as a fraction of $2^{*}\left(T_{R}-T_{F}\right) /\left(T_{R}+T_{F}\right)$	-	20	\%
$\Delta \mathrm{T}_{\mathrm{R}}$	Rise TimeVariation		-	125	ps
$\Delta \mathrm{T}_{\mathrm{F}}$	Fall Time Variation		-	125	ps
$\mathrm{V}_{\text {HIGH }}$	Voltage High	Math averages Figure 10	660	850	mV
$\mathrm{V}_{\text {LOW }}$	Voltage Low	Math averages Figure 10	-150	-	mV
$\mathrm{V}_{\text {OX }}$	Crossing Point Voltage at 0.7V Swing		250	550	mV
$\mathrm{V}_{\text {OVS }}$	Maximum Overshoot Voltage		-	$\mathrm{V}_{\text {HIGH }}+0.3$	V
$\mathrm{V}_{\text {UDS }}$	Minimum Undershoot Voltage		-0.3	-	V
V_{RB}	Ring Back Voltage	See Figure 10. Measure SE	-	0.2	V
PCI/PCIF					
T_{DC}	PCI Duty Cycle	Measurement at 1.5 V	45	55	\%
TPERIOD	Spread Disabled PCIF/PCI Period	Measurement at 1.5 V	29.99100	30.00900	ns
TPERIODSS	Spread Enabled PCIF/PCI Period, SSC	Measurement at 1.5 V	29.9910	30.15980	ns
TPERIODAbs	Spread Disabled PCIF/PCI Period	Measurement at 1.5 V	29.49100	30.50900	ns
TPERIODSSAbs	Spread Enabled PCIF/PCI Period, SSC	Measurement at 1.5 V	29.49100	30.65980	ns
$\mathrm{T}_{\text {HIGH }}$	PCIF and PCI high time	Measurement at 2.4 V	12.0	-	ns
TLow	PCIF and PCI low time	Measurement at 0.4V	12.0	-	ns
Edge Rate	Rising edge rate	Measured between 0.8 V and 2.0 V	1.0	4.0	V/ns
Edge Rate	Falling edge rate	Measured between 0.8 V and 2.0 V	1.0	4.0	V/ns

AC Electrical Specifications (continued)

Parameter	Description	Condition	Min.	Max.	Unit
TSKEW	Any PCI clock to Any PCI clock Skew	Measurement at 1.5 V	-	500	ps
T ${ }_{\text {CCJ }}$	PCIF and PCI Cycle to Cycle Jitter	Measurement at 1.5 V	-	500	ps
DOT					
T_{DC}	DOT96T and DOT96C Duty Cycle	Measured at crossing point $\mathrm{V}_{\text {OX }}$	45	55	\%
TPERIOD	DOT96T and DOT96C Period	Measured at crossing point $\mathrm{V}_{\text {OX }}$	10.41354	10.41979	ns
TPERIODAbs	DOT96T and DOT96C Absolute Period	Measured at crossing point $\mathrm{V}_{\text {OX }}$	10.16354	10.66979	ns
$\mathrm{T}_{\text {CCJ }}$	DOT96T/C Cycle to Cycle Jitter	Measured at crossing point $\mathrm{V}_{\text {OX }}$	-	250	ps
$\mathrm{L}_{\text {ACC }}$	DOT96T/C Long Term Accuracy	Measured at crossing point $\mathrm{V}_{\text {OX }}$	-	100	ppm
$\mathrm{T}_{\text {LTJ }}$	Long Term jitter	Measurement taken from cross point V_{OX} @1 $\mu \mathrm{s}$	-	700	ps
		Measurement taken from cross point $\mathrm{V}_{\mathrm{OX}} @ 10 \mu \mathrm{~s}$	-	700	ps
$\mathrm{T}_{\mathrm{R}} / \mathrm{T}_{\mathrm{F}}$	DOT96T and DOT96C Rise and Fall Times	Measured from $\mathrm{V}_{\mathrm{OL}}=0.175$ to $\mathrm{V}_{\mathrm{OH}}=0.525 \mathrm{~V}$	130	700	ps
$\mathrm{T}_{\mathrm{RFM}}$	Rise/Fall Matching	Determined as a fraction of $2^{*}\left(T_{R}-T_{F}\right) /\left(T_{R}+T_{F}\right)$	-	20	\%
$\Delta \mathrm{T}_{\mathrm{R}}$	Rise Time Variation		-	125	ps
$\Delta \mathrm{T}_{\mathrm{F}}$	Fall Time Variation		-	125	ps
$\mathrm{V}_{\text {HIGH }}$	Voltage High	Math averages Figure 10	660	850	mV
$\mathrm{V}_{\text {LOW }}$	Voltage Low	Math averages Figure 10	-150	-	mV
$\mathrm{V}_{\text {OX }}$	Crossing Point Voltage at 0.7V Swing		250	550	mV
$\mathrm{V}_{\text {OVS }}$	Maximum Overshoot Voltage		-	$\begin{gathered} \mathrm{V}_{\mathrm{HIGH}^{+}}{ }^{+} \end{gathered}$	V
$\mathrm{V}_{\text {UDS }}$	Minimum Undershoot Voltage		-0.3	-	V
V_{RB}	Ring Back Voltage	See Figure 10. Measure SE	-	0.2	V
USB48, 24_48M					
T_{DC}	USB Duty Cycle	Measurement at 1.5 V	45	55	\%
$\mathrm{T}_{\text {PERIOD }}$	USB Period,	Measurement at 1.5 V , mean value over $1 \mu \mathrm{~s}$	20.83125	20.83542	ns
TPERIODabs	USB Period	Measurement at 1.5 V , max. and min. values over $1 \mu \mathrm{~s}$	20.48125	21.18542	ns
TPERIOD24	24M Period	Measurement at 1.5 V , mean value over $1 \mu \mathrm{~s}$	41.67083	41.66250	ns
$\mathrm{T}_{\text {PERIOD24abs }}$	24M Period	Measurement at 1.5 V , max. and min. values over $1 \mu \mathrm{~s}$	41.57083	41.76250	ns
L ${ }_{\text {ACC }}$	Long Accuracy	Measured at 1.5 V using frequency counter over 0.15 s	-	100	ppm
$\mathrm{T}_{\text {HIGH }}$	USB high time (High drive)	Measurement at 2.0 V	8.094	10.9	ns
TLow	USB low time (High drive)	Measurement at 0.8 V	7.694	11.5	ns
$\mathrm{T}_{\text {HIGH24 }}$	24M high time (High drive)	Measurement at 2.0 V	16.188	22.7	ns
TLow24	24M low time (High drive)	Measurement at 0.8V	15.388	22.6	ns
Edge rate	Rising edge rate (High drive)	Measured between 0.8 V and 2.0 V	1.0	3.0	V/ns
Edge rate	Falling edge rate (High drive)	Measured between 0.8 V and 2.0V	1.0	3.0	V/ns
$\mathrm{T}_{\text {CCJ }}$	USB Cycle to Cycle Jitter (High drive)	Measurement taken@1.5V waveform	-	300	ps
	24_48M Cycle to Cycle Jitter (High drive)	Measurement taken@1.5V waveform	-	350	ps
TLTJ	Long Term jitter	Measurement taken from cross point V_{OX} @ $1 \mu \mathrm{~s}$	-	700	ps

AC Electrical Specifications (continued)

Parameter	Description	Condition	Min.	Max.	Unit
TLTJ	Long Term jitter	Measurement taken from cross point V_{Ox} @ $10 \mu \mathrm{~s}$	-	700	ps
TLTJ	Long Term jitter	Measurement taken from cross point V_{OX} @ $125 \mu \mathrm{~s}$	-	700	ps
REF					
T_{DC}	REF Duty Cycle	Measurement at 1.5 V	45	55	ns
TPERIOD	REF Period	Measurement at 1.5 V	69.8203	69.8622	ns
TPERIODAbs	REF Absolute Period	Measurement at 1.5 V	68.82033	70.86224	ns
Edge Rate	Rising edge rate	Measured between 0.8 V and 2.0 V	1.0	4.0	V/ns
Edge Rate	Falling edge rate	Measured between 0.8 V and 2.0 V	1.0	4.0	V/ns
TCCJ	REF Cycle to Cycle Jitter	Measurement at 1.5 V	-	1000	ps
ENABLE/DISABLE and SET-UP					
T STABLE	Clock Stabilization from Power-up		-	1.8	ms

Test and Measurement Set-up

For PCI Single-ended Signals and Reference

The following diagrams show the test load configurations for the single-ended $\mathrm{PCI}, \mathrm{USB}$, and REF output signals.

Figure 8. Single-ended Load Configuration

Figure 9. Single-ended Load Configuration HIGH DRIVE OPTION

For Differential CPU, SRC and DOT96 Output Signals

The following diagram shows the test load configuration for the differential CPU and SRC outputs.

Figure 10. 0.7V Single-ended Load Configuration

Figure 11. Single-ended Output Signals (for AC Parameters Measurement)
Ordering Information

Part Number	Package Type	Product Flow
Lead-free	56 -pin SSOP	Commercial, 0° to $85^{\circ} \mathrm{C}$
CY28439OXC	56 -pin SSOP - Tape and Reel	Commercial, 0° to $85^{\circ} \mathrm{C}$
CY28439OXCT	56 -pin TSSOP	Commercial, 0° to $85^{\circ} \mathrm{C}$
CY28439ZXC	$56-$-pin TSSOP - Tape and Reel	Commercial, 0° to $85^{\circ} \mathrm{C}$
CY28439ZXCT		

Package Diagrams

56-Lead Shrunk Small Outline Package 056

DIMENSIONS IN INCHES MIN.

51-85062-*C
56-Lead Thin Shrunk Small Outline Package, Type II ($6 \mathrm{~mm} \times 12 \mathrm{~mm}$) Z56

DIMENSIONS IN MM[INCHES] MIN.

REFERENCE JEDEC MO-153
PACKAGE WEIGHT 0.42gms

PART \#
Z5624 STANDARD PKG.
ZZ5624 LEAD FREE PKG.

51-85060-*C
Purchase of $I^{2} \mathrm{C}$ components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips $I^{2} C$ Patent Rights to use these components in an $I^{2} \mathrm{C}$ system, provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips. Intel and Pentium are registered trademarks of Intel Corporation. Dial-A-Frequency is a registered trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

Document Title: CY28439 Clock Generator for Intel ${ }^{\circledR}$ Grantsdale Chipset Document Number: 38-07668				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	214024	See ECN	RGL	New data sheet
*A	268615	See ECN	RGL	Changed the tri-state mode from 12 mA to 2 mA Fixed single-ended loading diagram
*B	314353	See ECN	RGL	Swapped pins 19 and 20 swapped pins 50 and 51
*C	321473	See ECN	RGL	Minor Change: Fixed the line around the block diagram
*D	378834	See ECN	RGL	Changed CPU Cycle-cycle jitter max from 50 to 80 ps Changed CPU Rise/Fall Time min. from 175 to 130 ps Changed SRC Rise/Fall Time min. from 175 to 130 ps Changed DOT Rise/Fall Time min. from 175 to 130 ps Changed DOT Cycle-cycle Jitter max from 150 to 250 ps Changed USB,24_48M Rising/Falling Edge Rate max from 2 to $3 \mathrm{~V} / \mathrm{ns}$ Changed USB Cycle-cycle Jitter max from 200 to 350 ps Changed USB High Time max from 10.04 to 10.9 ns Changed USB Low Time max from 9.836 to 11.5 ns Changed 24M High Time max from 20.07 to 22.7 ns Changed 24M Low Time max from 19.67 to 22.6 ns Revised the Frequency Select table

