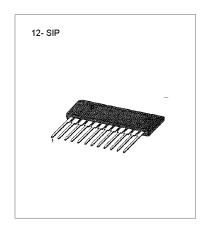


DC VOLUME, TONE CONTROL CIRCUIT


The KA2107 is a monolithic integrated circuit designed for 2 channel volume and tone control.

FUNCTIONS

- DC Volume Control
- DC Tone Control (Bass & Treble)
- Balance Control (R, L-Ch)

FEATURES

- Easier compact set design
- All function enable DC controllable

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature
KA2107	12-SIP	-20℃~+70℃

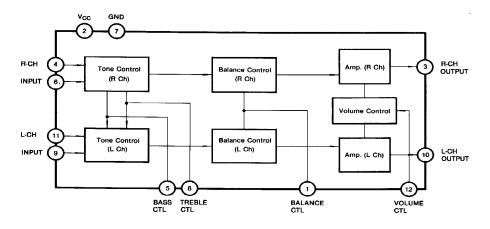


Fig. 1

ABSOLUTE MAXIMUM RATINGS (TA =25 $^{\circ}\mathrm{C}$)

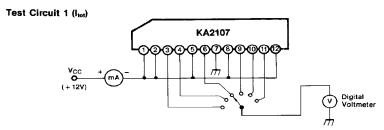
Characteristic		Symbol	Va	Unit	
	Supply Voltage	Vcc	14	V	
Voltage	Circuit Voltage	V _{1,4,5,6-7} V _{8,9,11,12-7}	0	V ₂₋₇	V
Current	Supply Current	l ₂	64		mA
	Circuit Current	l ₃ ,l ₁₀	-40	_	mA
Power Dissipation		P _D	920		mW
Temperature	Operating Temperature	T _{OPR}	-20~	°C	
	Storage Temperature	T _{STG}	-55~+150		°C

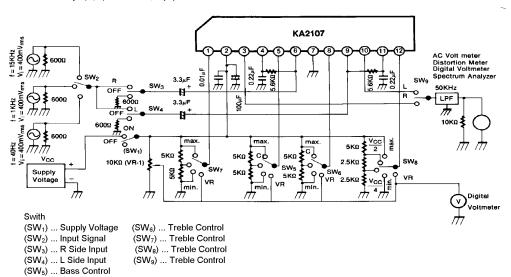
ELECTRICAL CHARACTERISTICS (V_{CC} =12V, T_A =25 $^{\circ}$ C)

Characteristic		Symbol			Тур	Max	Unit	Test Circuit
Supply Current		Ітот	V _{CC} =12V	24	38	50	mA	1
Supply Voltage		V ₃ , 10-7	No input, V ₁₂ =V _{CC} , V ₁ =V ₅ =V ₈ =V _{CC} /2		8.4	8.8	٧	2
Volume	Max Output Voltage	VOMAX	f=1KHz, V _i =400mVnis	190	230	270	μV ms	2
	Channel Balance	СВ	V ₁₂ =V _{CC} , V ₁ =V ₅ =V ₈ =V _{CC} /2	_	+0.2	±1.0	dB	2
	Output Starting Voltage	V _(ST)	f=1KHz, V ₁ =400mV _{IBS} V ₁₂ =VR, V ₁ =V ₅ =V ₆ =V _{CC} /2	0.40	0.65	0.90	٧	2
	Residual Noise Level	V _{MIN}	f=1KHz, V ₁ =400mV _{IIIS} V ₁₂ =0V, V ₁ =V ₅ =V ₈ =V _{CC} /2	_	25	50	μV ms	2
Balance	Attenuation (R-Ch)	ATTR	$ \begin{split} &f{=}1KHz,\ V_i{=}400mV_{IBS},\ V_{12}{=}V_{CC}, \\ &V_5{=}V_8{=}V_{CC}/2,\ V_{OR}{:}V_1{=}(5.5/12)\cdot V_{CC}(at\ VR\cdot 1),\ V_{OR2}{:}V_1{=}0V \end{split} $	-32	-45	_	dB	2
	Attenuation (L-Ch)	ATT∟	$ \begin{split} &\text{f=1KHz, V}_{i}\text{=}400\text{mV}_{100}\text{s, V}_{12}\text{=VCC,} \\ &\text{V}_{5}\text{=V}_{cc}\text{/2, V}_{0\text{L}1}\text{:V}_{1}\text{:}(6.5\text{/}12) \\ & $	-32	-45	_	dB	2
Tone	Low Frequency Boost Control	V ₄₀ /V _{1K}	V _{1K} : Output Voltage at f=1KHz, V;=400mViis V ₁₂ =V _{CC} , V₁=V ₅ =V ₈ =V _{CC} /2 V ₄₀ : Output Voltage at f=40Hz, V₁=40mViis V ₁₂ =V _{CC} , V ₅ =V ₈ =V _{CC}	8	10	12	dB	2
	Low Frequency Cut Control	V40/V1K	V _{1K} : Output Voltage at f=1KHz, V;=400mViis V ₁₂ =V _{CC} , V ₁ =V ₅ =V ₈ =V _{CC} /2 V ₄₀ : Output Voltage at f=40Hz, V ₁ =40mViis V ₁₂ =V _{CC} , V ₅ =V ₈ =0V	-7.5	-12	-16	dB	2
	High Frequency Boost Control	V _{15K} /V _{1K}	V _{1k} : Output Voltage at f=1KHz, V,=400mV _{IIIS} V ₁₂ =V _{CC} , V ₁ =V _S =V ₈ =V _{CC} /2 V _{15k} : Output Voltage at f=15KHz, V,=40mV _{IIIS} V ₁₂ =V _{CC} , V ₅ =V ₈ =V _{CC}	7.5	10	13	dB	2
	High Frequency Cut Control	V15K/V1K	V _{1K} : Output Voltage at f=1KHz, V ₁ =400mV _{IIIS} V ₁₂ =V _{CC} , V ₁ =V ₅ =V ₆ =V _{CC} /2 V _{15K} : Output Voltage at f=40Hz, V ₁ =40mV _{IIIS} V ₁₂ =V _{CC} , V ₅ =V ₆ =0V	-7.5	-12	-18	dΒ	2

 $\label{eq:cd-cond} \mbox{CD-ROM(Edition 3.0)} \quad \mbox{This Data Sheet is subject to change without notice.}$

(C) 1996 Samsung Electronics Printed in Korea.

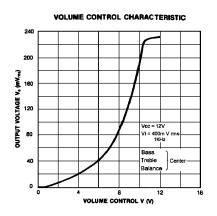

Page: 2 (KA2107)

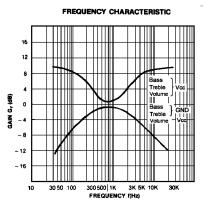

ELECTRICAL CHARACTERISTICS (Continued)

Characteristic	Symbol	Condition	Min	Тур	Max	Unit	Test Circuit
Cross Talk	ст	$f = 1KHz$, $V_1 = 400mV_{RMS}$ $V_{12} = V_{CC}$, $V_1 = V_5 = V_8 = V_{CC}/2$	-65	-80	_	dB	2
Output Noise Voltage	V _{NO}	No input, $V_{12} = V_{CC}$, $V_1 = V_5 = V_8 = V_{CC}/2$	-	80	120	μV _{RMS}	2
Total Harmonic Distorion	THD	$f = 1KHz$, $V_1 = 400mV_{RMS}$ $V_{12} = V_{CC}$, $V_1 = V_5 = V_8 = V_{CC}/2$	-	0.2	0.5	%	2
Input Resistance	R _{I (6),(9)}		8.2	11.0	13.5	kΩ	
	R _{I (4),(11)}	f=1KHz	11.0	16.0	22.0	kΩ	
Output Resistance	R _{O (3),(10)}	f =1KHz	60	110	160	Ω	

TEST CIRCUIT

 $\textbf{Test Circuit 2 (V_{3, \, 10\text{--}7,} \, V_{OMAX}, \, CB, \, V_{(ST)}, \, V_{MIN}, \, ATT_{R}, \, ATT_{L}, \, V_{40}/V_{1K}, \, V_{15K}/V_{1K}, \, CT, \, V_{NO}, \, THD)}$




CD-ROM(Edition 3.0) This Data Sheet is subject to change without notice.

(C) 1996 Samsung Electronics Printed in Korea.

Page: 3 (KA2107)

Note: 0dB is Output Voltage at fin = 1KHz, 400mVrm { Bass, Treble Control: Vcc/2 Volume: Vcc

TYPICAL APPLICATION CIRCUIT

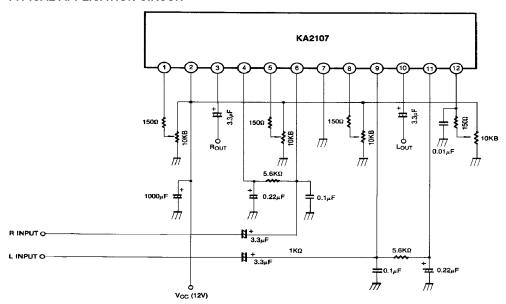
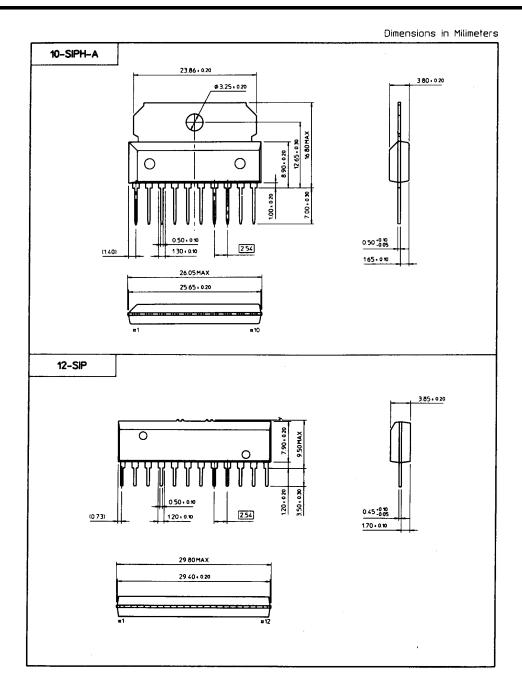



Fig.3

