ISL3685

### 2.4GHz RF/IF Converter and Synthesizer



The ISL3685 is a monolithic SiGe half duplex RF/IF transceiver designed to operate in the 2.4 GHz ISM band. The receive chain features a low noise, gain selectable amplifier (LNA) followed by a down-converter mixer. An up-converter mixer and a high performance preamplifier compose the transmit chain. The remaining circuitry comprises a high frequency Phase Locked Loop (PLL) synthesizer with a three wire programmable interface for local oscillator applications.

A reduced filter count is realized by multiplexing the receive and transmit IF paths and by sharing a common differential matching network. Furthermore, both transmit and receive RF amplifiers can be directly connected to mixers as bandwidth characteristics attenuate image frequencies. The inherent image rejection of both the transmit and receive functions allows this economic advantage.

The ISL3685 is housed in a 44 lead MLFP package well suited for PCMCIA board and MINI PCI applications.

## Ordering Information

| PART NUMBER | TEMP RANGE <br> $\left({ }^{\circ} \mathbf{C}\right)$ | PACKAGE | PKG. NO |
| :--- | :---: | :--- | :--- |
| ISL3685IR | -40 to 85 | 44 Ld MLFP | L44.7x7 |
| ISL3685IR96 | -40 to 85 | Tape and Reel |  |

## Simplified Block Diagram



## Features

- Highly Integrated
- Multiplexed RX/TX IF Path prescribes Single IF Filter
- Programmable Synthesizer
- Gain Selectable LNA
- Power Management/Standby Mode
- Single Supply 2.7V to 3.3V Operation

Cascaded LNA/Mixer (High Gain)

- Gain

25dB

- SSB Noise Figure. . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7dB
- Input IP3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -12dBm
- IF Frequency . . . . . . . . . . . . . . . . . . 280 MHz to 600 MHz


## Cascaded LNA/Mixer (Low Gain)

- Gain $-9 d B$
- Input P1dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . $+2.5 d B m$
- IF Frequency . . . . . . . . . . . . . . . . . . . 280 MHz to 600 MHz


## Cascaded Mixer/Preamplifier

- Transmit Cascaded Mixer/Preamplifier Gain . . . . . . .25dB
- SSB Noise Figure. . . . . . . . . . . . . . . . . . . . . . . . . . . .10dB
- Output P1dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4dBm
- IF Frequency . . . . . . . . . . . . . . . . . . . 280 MHz to 600 MHz


## Applications

- IEEE802.11 1 Mbps and 2Mbps Standard
- Systems Targeting IEEE802.11, 11Mbps Standard
- Wireless Local Area Networks
- PCMCIA Wireless Transceivers
- ISM Systems
- TDMA Packet Protocol Radios
- MINI PCI Wireless Transceivers


## Pinout



## Pin Description

| PIN | NAME |  |
| :---: | :---: | :--- |
| 1 | LNA_VCC1 | Low Noise Amplifier Positive Power Supply. |
| 3 | RX_IN | Low Noise Amplifier RF Input, internally DC coupled and requires an external blocking capacitor. A shunt capacitor to <br> ground matches the input for return loss and optimum NF. |
| 4 | BIAS1_VCC1 | Bias Positive Power Supply for the LNA and Preamplifier. |
| 5 | H/L | High or Low Gain Select, controls the LNA high and low gain modes. |
| 6 | PE2 | This pin along with pin PE1 and bit M(0) of PLL_PE determine which of various operational modes will be active. Please <br> refer to the Power Enable Truth Table. |
| 7 | PE1 | This pin along with pin PE2 and bit M(0) of PLL_PE determine which of various operational modes will be active. Please <br> refer to the Power Enable Truth Table. |
| 8 | TX_VCC1 | Transmit Amplifier Positive Power Supply, requires a high quality decoupling capacitor and a short return path. |
| 10 | TXA_OUT | Transmit Amplifier Output, internally matched to $50 \Omega$, requires an external DC blocking capacitor. |
| 12 | TX_VCC1 | Transmit Amplifier Positive Power Supply. |
| 13 | TXA_IN | Transmit Amplifier Input, internally AC coupled. |
| 15 | LE | Synthesizer Latch Enable, the serial interface is active when LE is low and the serial data is latched into defined <br> registers on the rising edge of LE. |
| 16 | DATA | Synthesizer Serial Data Input, clocked in on the rising edge of the serial clock, MSB first. |
| 17 | CLK | Synthesizer Clock, DATA is clocked in on the rising edge of the serial clock, MSB first. |
| 18 | REF_BY | Synthesizer Reference Frequency Input Bypass, internally DC coupled and requires an external bypass to ground <br> when REF_IN is used as a Single Ended input, requires an external AC coupling capacitor when used as a differential <br> input. |

## Pin Description (Continued)

| PIN | NAME | DESCRIPTION |
| :---: | :---: | :---: |
| 19 | REF_IN | Synthesizer Reference Frequency Input, internally DC coupled and requires an external AC coupling capacitor. |
| 20 | SYN_VCC2 | Synthesizer Positive Power Supply. |
| 21 | CP_VCC2 | Synthesizer Charge Pump Positive Power Supply. |
| 22 | CP_DO | Synthesizer Charge Pump Output, feeds the PLL loop filter. |
| 23 | TX_MX_VCC1 | Transmit Mixer Positive Power Supply. |
| 24 | TX_MX_OUT | Transmit Mixer RF output, internal AC coupled and internally matched to $50 \Omega$. |
| 25 | TX_MX_VCC1 | Transmit Mixer Positive Power Supply. |
| 26 | TX_LO_Driver_ VCC1 | Transmit LO Driver Positive Power Supply. |
| 27 | LO_IN+ | Local Oscillator Positive Input, internally AC coupled, internally matched to $50 \Omega$ when the LO is driven single ended and the LO_IN- is grounded. |
| 28 | LO_IN- | Local Oscillator Negative Input, internally AC coupled, differential or single ended capability, ground externally for single ended operation. |
| 29 | LO_VCC1 | LO Buffer Positive Power Supply. |
| 30 | $\underset{\text { _VCC1 }}{\text { RX_LO_DRIVER }}$ | Receiver LO Driver Positive Power Supply. |
| 32 | TX_MX_IN- | Transmit Mixer Negative Input, internally DC coupled, high impedance input. Designed to share a common IF matching network/IF SAW filter with the receive mixer. Care should be exercised regarding the PC board layout to avoid interference and noise pickup. Layout symmetry and management of PC board parasitics is also critical for maximizing the bandwidth of the IF matching network. |
| 33 | RX_MX_OUT- | Receive Mixer Negative Output, open collector, high impedance output. Designed to share a common IF matching network/IF SAW filter with the transmit mixer. Care should be exercised regarding the PC board layout to avoid interference and noise pickup. Layout symmetry and management of PC board parasitics is also critical for maximizing the bandwidth of the IF matching network. |
| 34 | RX_MX_OUT+ | Receive Mixer Positive Output, open collector, high impedance output. Designed to share a common IF matching network/IF SAW filter with the transmit mixer. Care should be exercised regarding the PC board layout to avoid interference and noise pickup. Layout symmetry and management of PC board parasitics is also critical for maximizing the bandwidth of the IF matching network. |
| 35 | TX_MX_IN+ | Transmit Mixer Positive Input, internally DC coupled, high impedance input. Designed to share a common IF matching network/IF SAW filter with the receive mixer. Care should be exercised regarding the PC board layout to avoid interference and noise pickup. Layout symmetry and management of PC board parasitics is also critical for maximizing the bandwidth of the IF matching network. |
| 36 | RX_MX_IN | Receive Mixer RF Input, internally DC coupled and requires external AC coupling as well as RF matching. The recommend network consists of a 3.3 pF series capacitor followed by a small series inductance of 1.4 nH and then a 1.2 nH shunt inductor. The series inductance is best implemented on the PC board using a narrow transmission line inductor. |
| 37 | PRE_VCC1 | PLL Prescaler Positive Power Supply. |
| 38 | ITAT_RES1 | Connection to external resistor sets the receive and transmit mixers tail currents, independent of Absolute Temperature. |
| 39 | PTAT_RES | Connection to external resistor sets the receive and transmit mixers tail currents, proportional of Absolute Temperature. |
| 40 | BIAS2_VCC1 | Bias Positive Power Supply for the receive and transmit mixers. |
| 41 | ITAT_RES2 | Connection to external resistor sets the LNA and Preamplifier bias currents, independent of Absolute Temperature. |
| 42 | RF_OUT | Low Noise Amplifier RF Output, internally AC coupled and internally matched to $50 \Omega$. |
| 44 | COL_OUT | LNA Collector Output, requires a bypass capacitance which is resonant with the PC board parasitics. A small resistance $(20 \Omega)$ in series with the main PC board $V_{C C}$ bus is recommended to provide isolation from other $V_{C C}$ bypass capacitors. This ensures the image rejection performance of the LNA is maintained. |
| All Others | GND | Circuit Ground Pins (Quantity 6 each). |

## Absolute Maximum Ratings

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6V
$\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{CC}}$ Decouple . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +0.3 V
Any GND to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 to +0.3 V

## Operating Conditions

Temperature Range -40 to $85^{\circ} \mathrm{C}$
Supply Voltage Range
2.7V to 3.3 V

## Thermal Information

| Thermal Resistance (Typical, Note 1) | $\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ |
| :---: | :---: |
| MLFP Package. | 25 |
| Maximum Junction Temperature (Plastic Package). | $150^{\circ} \mathrm{C}$ |
| Maximum Storage Temperature Range . | ${ }^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |
| Maximum Lead Temperature (Soldering 10s) (MLF - Lead Tips Only) | $.300^{\circ} \mathrm{C}$ |

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:

1. $\theta_{\mathrm{JA}}$ is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features. See Intersil TB379.

General Electrical Specifications $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ Unless Otherwise Specified

| PARAMETER | MIN | TYP | MAX | UNITS |
| :--- | :---: | :---: | :---: | :---: |
| Supply Voltage | 2.7 | - | 3.3 | V |
| Receive Total Supply Current (LNA in High Gain) | - | 32 | 38 | mA |
| Receive Total Supply Current (LNA in Low Gain) | - | 25 | 32 | mA |
| Transmit Total Supply Current | - | 41 | 45 | mA |
| Standby Total Supply Current (PLL and LO Buffers Active) | - | 6.5 | 10 | mA |
| TX/RX Power Down Supply Current (Note 2) | - | - | 100 | $\mu \mathrm{~A}$ |
| TX/RX/Power Down Time (Note 3) | - | 1 | 10 | $\mu \mathrm{~s}$ |
| RX/TX, TX/RX Switching Time (Note 3) | - | 0.2 | 1 | $\mu \mathrm{~s}$ |
| CMOS Low Level Input Voltage | - | - | $0.3^{*} V_{\text {DD }}$ | V |
| CMOS High Level Input Voltage, Any $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{CC}}$ | $0.7^{*} \mathrm{~V}_{\mathrm{DD}}$ | - | 3.6 | V |
| CMOS High or Low Level Input Current | -3.0 | - | +3.0 | $\mu \mathrm{~A}$ |

NOTES:
2. Standby current is measured after a long elapsed time ( 20 seconds).
3. TX/RX/TX switching time and power Down/Up time are dependent on external components.

Cascaded LNA/Mixer AC Electrical Specifications Assumes a direct connection between the LNA and Mixer, IF $=374 \mathrm{MHz}$, $\mathrm{LO}=2075 \mathrm{MHz}$ at $-6 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=2.7$ Unless Otherwise Specified, $25^{\circ} \mathrm{C}$

| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RF Frequency Range |  | 2400 | - | 2500 | MHz |
| IF Frequency Range |  | 280 | 374 | 600 | MHz |
| LO Frequency Range |  | 1800 | - | 2220 | MHz |
| LO Input Drive Level | Single End or Differential | -10 | -6 | 0 | dBm |
| Power/Voltage Gain | High Gain Mode | 21.5 | 25 | 29 | dB |
| Noise Figure SSB |  | - | 3.7 | 5.0 | dB |
| Input IP3 |  | -17.5 | -12 | - | dBm |
| Input P1dB |  | -27.5 | -23 | - | dBm |
| Power/Voltage Gain | Low Gain Mode | -11 | -9 | -1 | dB |
| Noise Figure |  | - | 25 | - | dB |
| Output IM3 at -12dBm Input Tones |  | - | -58 | -40 | dBc |
| Input P1dB |  | -1 | - | - | dBm |

Cascaded LNA/Mixer AC Electrical Specifications Assumes a direct connection between the LNA and Mixer, IF = 374MHz, $\mathrm{LO}=2075 \mathrm{MHz}$ at $-6 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=2.7$ Unless Otherwise Specified, $25^{\circ} \mathrm{C}$ (Continued)

| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: |
| LNA Input $50 \Omega$ VSWR with Match Network | High Gain Mode | - | - | $2.0: 1$ | - |
|  | Low Gain Mode | - | - | $2.0: 1$ | - |
| LO VSWR (Direct) | LO = Single End | - | - | $2.0: 1$ | - |
| Differential IF Output Load | Shared with TX | - | 200 | - | $\Omega$ |
| IF Output Capacitance (Single Ended) |  | - | 1.2 | - | pF |
| IF Output Resistance (Single Ended) |  | - | 5.5 | - | $\mathrm{k} \Omega$ |
| LO to LNA Input Feedthrough (Cascaded, no Filter) |  | - | -65 | -50 | dBm |
| Gain Switching Speed at Full Scale - High to Low | $\pm 1 \mathrm{~dB}$ settling | 0.03 | 0.1 | $\mu \mathrm{~m}$ |  |
| Gain Switching Speed at Full Scale - Low to High | $\pm 1 \mathrm{~dB}$ settling | - | 0.25 | 0.3 | $\mu \mathrm{~s}$ |
| Image Rejection (Cascaded, No Filter) | With Matching Network | - | 14 | - | dB |

Cascaded Transmit Mixer AC Electrical Specifications Assumes a direct connection between the Mixer and Preamplifier, $\mathrm{F}=374 \mathrm{MHz}, \mathrm{LO}=2075 \mathrm{MHz}$ at $-6 \mathrm{dBm}, \mathrm{VCC}=2.7$ Unless Otherwise Specified, $25^{\circ} \mathrm{C}$.

| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNITS |
| :--- | :---: | :---: | :---: | :---: | :---: |
| RF Frequency Range |  | 2400 | - | 2500 | MHz |
| IF Frequency Range |  | 280 | 374 | 600 | MHz |
| LO Frequency Range |  | 1800 | - | 2220 | MHz |
| Power Conversion Gain | $200 \Omega$ In, $50 \Omega$ Out | 21 | 25 | 29 | dB |
| SSB Noise Figure |  | - | 10 | 15 | dB |
| Output IP3 |  | +12 | +14 | - | dBm |
| Output P1dB |  | +2.8 | +4 | - | dBm |
| LO Input Drive Level | Same as RX | -10 | -6 | 0 | dBm |
| LO to Transmit Amp. Output Feedthrough (Cascaded, No <br> Filter) |  | - | -25 | - | dBm |
| Preamplifier Output 50 $\Omega$ VSWR |  | - | - | $3.0: 1$ | - |
| LO 50 $\Omega$ VSWR | LO = Single End | - | $1.4: 1$ | $2.0: 1$ | - |
| Differential IF Input Load | Shared with RX | - | 200 | - | $\Omega$ |
| IF Input Capacitance (Single Ended) |  | - | 1.1 | - | pF |
| IF Input Resistance (Single Ended) |  | - | 0.7 | - | $\mathrm{k} \Omega$ |

Phase Lock Loop Electrical Specifications (See Notes 4 through 12)

| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNITS |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Operating LO Frequency (32/33 Prescaler) |  | 1800 | - | 2220 | MHz |
| Operating LO Frequency (64/65 Prescaler) |  | 1800 | - | 3500 | MHz |
| Reference Oscillator Frequency |  | - | - | 50 | MHz |
| Selectable Prescaler Ratios (P) |  | $32 / 33$ | - | $64 / 65$ | - |
| Swallow Counter Divide Ratio (A Counter) |  | 0 | - | 127 | - |
| Programmable Counter Divide Ratio (B Counter) |  | 3 | - | 2047 | - |
| Reference Counter Divide Ratio (R Counter) |  | 0.5 | - | 32767 | - |
| Reference Oscillator Sensitivity, Single or Differential <br> Sine Inputs |  | - | $\mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{PP}}$ |  |

## Phase Lock Loop Electrical Specifications (See Notes 4 through 12) (Continued)

| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Reference Oscillator Sensitivity, CMOS Inputs, Single Ended or Complementary |  | - | CMOS | - | Note 7 |
| Reference Oscillator Duty Cycle | CMOS Inputs | 40 | - | 60 | \% |
| Charge Pump Sink/Source Current/Tolerance | $250 \mu \mathrm{~A}$ Selection $\pm 25 \%$ | 0.18 | 0.25 | 0.32 | mA |
| Charge Pump Sink/Source Current/Tolerance | $500 \mu \mathrm{~A}$ Selection $\pm 25 \%$ | 0.375 | 0.50 | 0.625 | mA |
| Charge Pump Sink/Source Current/Tolerance | $750 \mu \mathrm{~A}$ Selection $\pm 25 \%$ | 0.56 | 0.75 | 0.94 | mA |
| Charge Pump Sink/Source Current/Tolerance | 1 mA Selection $\pm 25 \%$ | 0.75 | 1.0 | 1.25 | mA |
| Charge Pump Sink/Source Mismatch |  | - | - | 15 | \% |
| Charge Pump Output Compliance | Charge Pump $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} 2}$ | 0.5 | - | $\mathrm{V}_{\text {CC2 }}-0.5$ | V |
| Charge Pump Supply Voltage |  | 2.7 | - | 3.6 | V |
| Serial Interface Clock Width | High Level t CWH | 20 | - | - | ns |
|  | Low Level tcwL | 20 | - | - | ns |
| Serial Interface Data/CIk Set-Up Time tcs |  | 20 | - | - | ns |
| Serial Interface Data/CIk Hold Time ter |  | 10 | - | - | ns |
| Serial Interface CIk/LE Set-Up Time $\mathrm{t}_{\text {ES }}$ |  | 20 | - | - | ns |
| Serial Interface LE Pulse Width tew |  | 20 | - | - | ns |

NOTES:
4. The Serial data is clocked on the Rising Edge of the serial clock, MSB first. The serial Interface is active when LE is LOW. The serial Data is latched into defined registers on the rising edge of LE.
5. As long as power is applied, all register settings will remain stored, including the power down state. The system may then come in and out of the power down state without requiring the registers to be rewritten.
6. CMOS Reference Oscillator input levels are given in the General Electrical Specification section.

POWER ENABLE TRUTH TABLE

| PE1 | PE2 | PLL_PE <br> (SERIAL BUS) | STATUS |
| :---: | :---: | :---: | :--- |
| 0 | 0 | 1 | Power Down State, PLL in Save Mode, Active Serial Interface |
| 1 | 1 | 1 | Receive State |
| 1 | 0 | 1 | Transmit State |
| 0 | 1 | 1 | PLL Inactive, Inactive RX, TX, Active Serial Interface |
| $X$ | $X$ | 0 | PLL Disabled, Disabled PLL Registers, Active Serial Interface |

NOTE:
7. PLL_PE is controlled via the serial interface, and can be used to disable the synthesizer. The actual synthesizer control is a logic AND function of PLL_PE and the result of the logic OR function of PE1 and PE2. PE1 and PE2 directly control the power enable functionality of the LO buffers.

## PLL Synthesizer Table

| SERIAL BITS | REGISTER DEFINITION |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | LSB 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | MSB |
| R Counter | 0 | 0 | $\mathrm{R}(0)$ | $\mathrm{R}(1)$ | $\mathrm{R}(2)$ | $\mathrm{R}(3)$ | $\mathrm{R}(4)$ | $\mathrm{R}(5)$ | $\mathrm{R}(6)$ | $\mathrm{R}(7)$ | $\mathrm{R}(8)$ | R(9) | $\mathrm{R}(10)$ | $\mathrm{R}(11)$ | $\mathrm{R}(12)$ | $\mathrm{R}(13)$ | $\mathrm{R}(14)$ | X (D | on't C | are) |
| A/B Counter | 0 | 1 | A(0) | A(1) | A(2) | A(3) | A(4) | A(5) | A(6) | B(0) | $B(1)$ | $\mathrm{B}(2)$ | $B(3)$ | $\mathrm{B}(4)$ | $\mathrm{B}(5)$ | B(6) | B(7) | B(8) | B(9) | B(10) |
| Operational Mode | 1 | 0 | M(0) | 0 | M(2) | M(3) | $\mathrm{M}(4)$ | M(5) | M(6) | M(7) | $\mathrm{M}(8)$ | 0 | 0 | 0 | 0 | M (13) | $\mathrm{M}(14)$ | M(15) | X | X |

Reference Frequency Counter/Divider

| BIT | DESCRIPTION |
| :---: | :--- |
| $R(0-14)$ | Least significant bit $R(0)$ to most significant bit $R(14)$ of the divide by $R$ counter. The Reference signal frequency is divided down <br> by this counter and is compared with a divided LO by a phase detector. |

## LO Frequency Counters/Dividers

| BIT | DESCRIPTION |
| :---: | :--- |
| $A(0-6)$ | Least significant bit $A(0)$ to most significant bit $A(6)$ of a 7-bit Swallow counter and LSB B(0) to MSB B(10) of the 11-bit divider. <br> The LO frequency is divided down by $[P * B+A]$, where $P$ is the Prescaler divider set by bit $M(2)$. This divided signal frequency is <br> compared by a phase detector with the divided Reference signal. |
| $B(0-11)$ |  |

## Operational Modes

| BIT | DESCRIPTION |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M(0) | (PLL_PE), Phase Lock Loop Power Enable. 1 = Enable, 0 = Power Down. Serial port always on. |  |  |  |  |
| M(2) | Prescaler Select. $0=32 / 33,1=64 / 65$. |  |  |  |  |
| $\begin{aligned} & M(3) \\ & M(4) \end{aligned}$ | Charge Pump Current Setting |  | M(4) | M(3) | OUTPUT SINK/SOURCE |
|  |  |  | 0 | 0 | 0.25 mA |
|  |  |  | 0 | 1 | 0.50 mA |
|  |  |  | 1 | 0 | 0.75 mA |
|  |  |  | 1 | 1 | 1.00 mA |
| $\begin{aligned} & M(5) \\ & M(6) \end{aligned}$ | Charge Pump Sign | M(6) | M(5) |  |  |
|  |  | 0 | 0 | Source if LO/ [P*B+A] < Ref/R |  |
|  |  | 0 | 1 | Source if LO/ [P*B+A]>Ref/R |  |
| $\begin{gathered} M(7) \\ M(8) \\ M(13) \end{gathered}$ | LD Pin Multiplex Operation | M(13) | M(8) | M(7) | OUTPUT AT PIN LD |
|  |  | 0 | 0 | X | Lock Detect Operation |
|  |  | 0 | 1 | X | Short to GND |
|  |  | 1 | 0 | X | Serial Register Read Back |
|  |  | 1 | 1 | 0 | Ref. Divided by R Waveform |
|  |  | 1 | 1 | 1 | LO Divided by $[\mathrm{P} * \mathrm{~B}+\mathrm{A}]$ Waveform |
| $\begin{aligned} & M(14) \\ & M(15) \end{aligned}$ | Charge Pump Operation/Test | M(15) | M(14) | OPERATION/TEST |  |
|  |  | 0 | 0 | Normal Operation |  |
|  |  | 0 | 1 | Charge Pump Constant Current Source |  |
|  |  | 1 | 0 | Charge Pump Constant Current Sink |  |
|  |  | 1 | 1 | High Impedance State |  |



NOTES:
8. Parenthesis data indicates programmable reference divider data.
9. Data shifted into register on clock rising edge.
10. Data is shifted in MSB first.

FIGURE 1. SERIAL DATA INPUT TIMING


NOTES:
11. Phase difference detection range: $-2 \pi$ to $+2 \pi$.
12. The minimum width pump up and pump down current pulses occur at the $\mathrm{D}_{\mathrm{O}}$ pin when the loop is locked.

FIGURE 2. PHASE COMPARATOR AND INTERNAL CHARGE PUMP CHARACTERISTICS



## Typical Performance Curves



Marker $1=1.7 \mathrm{GHz}$, Real $=16.7 \Omega$, Imaginary $=-31.8 \Omega$ Marker $3=2.45 \mathrm{GHz}$, Real $=15.0 \Omega$, Imaginary $=-8.0 \Omega$ Marker $5=3.0 \mathrm{GHz}$, Real $=16.5 \Omega$, Imaginary $=10.5 \Omega$

FIGURE 3. S11 LNA in HIGH GAIN

| SCALE |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | $\bigcirc$ |  |  |
|  |  |  |  |  | $4$ |  |  |  |
|  |  |  |  |  |  |  |  |  |
| $\left[\begin{array}{l} \mathrm{V}_{\mathrm{CC}}=3.30 \\ \mathrm{RF}-20 \mathrm{t} \end{array}\right.$ | $\begin{aligned} & \mathrm{OV} \\ & \mathrm{~Hz} \text { TO } 3 \end{aligned}$ | $3.0 \mathrm{GHz}$ |  |  |  |  |  |  |
| ROOM TEM |  |  |  |  |  |  |  |  |
| $\text { Pin }=-30 . d$ | IBm |  |  |  |  |  |  |  |

Marker $1=1.7 \mathrm{GHz},-46.4 \mathrm{~dB}$
Marker $3=2.45 \mathrm{GHz},-44.1 \mathrm{~dB}$
Marker $5=3.0 \mathrm{GHz},-35.4 \mathrm{~dB}$
FIGURE 5. S12 LNA in HIGH GAIN

| SCALE <br> 5dB/DIV <br> 2 |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | a |  |  |

Marker $1=1.7 \mathrm{GHz}, 7.0 \mathrm{~dB}$
Marker $3=2.45 \mathrm{GHz}, 15.3 \mathrm{~dB}$
Marker $5=3.0 \mathrm{GHz}, 12.5 \mathrm{~dB}$
FIGURE 4. S21 LNA in HIGH GAIN


Marker $1=1.7 \mathrm{GHz}$, Real $=8.2 \Omega$, Imaginary $=-43.5 \Omega$
Marker $3=2.45 \mathrm{GHz}$, Real $=39.4 \Omega$, Imaginary $=19.4 \Omega$
Marker $5=3.0 \mathrm{GHz}$, Real $=-50.6 \Omega$, Imaginary $=-45.4 \Omega$
FIGURE 6. S22 LNA in HIGH GAIN

## Typical Performance Curves (Continued)



Marker $1=1.7 \mathrm{GHz}$, Real $=19.2 \Omega$, Imaginary $=-26.1 \Omega$ Marker $3=2.45 \mathrm{GHz}$, Real $=16.7 \Omega$, Imaginary $=-2.1 \Omega$ Marker $5=3.0 \mathrm{GHz}$, Real $=14.1 \Omega$, Imaginary $=15.0 \Omega$

FIGURE 7. S11 LOW GAIN LNA


Marker $1=1.7 \mathrm{GHz},-12.4 \mathrm{~dB}$
Marker $3=2.45 \mathrm{GHz},-18.9 \mathrm{~dB}$
Marker $5=3.0 \mathrm{GHz},-15.7 \mathrm{~dB}$
FIGURE 9. S12 LOW GAIN LNA


Marker $1=1.7 \mathrm{GHz},-12.4 \mathrm{~dB}$
Marker $3=2.45 \mathrm{GHz},-18.9 \mathrm{~dB}$
Marker $5=3.0 \mathrm{GHz},-15.4 \mathrm{~dB}$
FIGURE 8. S21 LOW GAIN LNA


Marker $1=1.7 \mathrm{GHz}$, Real $=28.2 \Omega$, Imaginary $=-31.7 \Omega$
Marker $3=2.45 \mathrm{GHz}$, Real $=32.5 \Omega$, Imaginary $=24.2 \Omega$
Marker $5=3.0 \mathrm{GHz}$, Real $=64.7 \Omega$, Imaginary $=-12.8 \Omega$
FIGURE 10. S22 LOW GAIN LNA

## Typical Performance Curves (Continued)



Marker $1=1.7 \mathrm{GHz}$, Real $=18.6 \Omega$, Imaginary $=-84.7 \Omega$ Marker $3=2.45 \mathrm{GHz}$, Real $=13.0 \Omega$, Imaginary $=-46.8 \Omega$ Marker $5=3.0 \mathrm{GHz}$, Real $=8.0 \Omega$, Imaginary $=-25.3 \Omega$

FIGURE 11. S11 RX MIXER


Marker $1=1.7 \mathrm{GHz}$, Real $=7.8 \Omega$, Imaginary $=-47.0 \Omega$
Marker $3=2.45 \mathrm{GHz}$, Real $=15.4 \Omega$, Imaginary $=7.53 \Omega$ Marker $5=3.0 \mathrm{GHz}$, Real $=37.9 \Omega$, Imaginary $=-12.5 \Omega$

FIGURE 13. S11 TX PREAMP


Marker $1=1.7 \mathrm{GHz}$, Real $=21.0 \Omega$, Imaginary $=-54.8 \Omega$ Marker $3=2.45 \mathrm{GHz}$, Real $=42.1 \Omega$, Imaginary $=6.4 \Omega$ Marker $5=3.0 \mathrm{GHz}$, Real $=54.4 \Omega$, Imaginary $=-34.6 \Omega$

FIGURE 12. S22 TX_MIX_OUT


Marker $1=1.7 \mathrm{GHz}, 5.6 \mathrm{~dB}$
Marker $3=2.45 \mathrm{GHz}, 15.6 \mathrm{~dB}$
Marker $5=3.0 \mathrm{GHz}, 15.3 \mathrm{~dB}$
FIGURE 14. S21 TX PREAMP

## Typical Performance Curves (Continued)



Marker $1=1.7 \mathrm{GHz},-46.2 \mathrm{~dB}$
Marker $3=2.45 \mathrm{GHz},-30.7 \mathrm{~dB}$
Marker $5=3.0 \mathrm{GHz},-32.8 \mathrm{~dB}$
FIGURE 15. S12 TX PREAMP


RF 2.4 GHz
RF 2.5 GHz

FIGURE 17. LNA HIGH SETTING, GAIN AND NF


Marker $1=1.7 \mathrm{GHz}$, Real $=7.2 \Omega$, Imaginary $=-27.1 \Omega$ Marker $3=2.45 \mathrm{GHz}$, Real $=39.5 \Omega$, Imaginary $=2.7 \Omega$ Marker $5=31.8 \Omega$, Real $=31.8 \Omega$, Imaginary $=-17.2 \Omega$

FIGURE 16. S22 TX PREAMP


RF 2.4 GHz
RF 2.5 GHz

FIGURE 18. LNA HIGH SETTING GAIN AND NF

## Typical Performance Curves (Continued)



RF 2.4 GHz
RF 2.5 GHz
FIGURE 19. LNA LOW SETTING GAIN AND NF


FIGURE 21. RX MIXER GAIN AND NF


RF 0.365 GHz
RF 0.385 GHz
FIGURE 23. TX MIXER GAIN AND NF


RF 2.4GHz
RF 2.5 GHz
FIGURE 20. LNA LOW SETTING GAIN AND NF


RF 2.4 GHz
RF 2.5 GHz IF 325.000 MHz IF 425.000 MHz

FIGURE 22. RX MIXER GAIN AND NF
NOISE FIGURE AT CURSOR 8.1dB AT 2.7V, 8.7dB AT 3.3V


FIGURE 24. TX MIXER GAIN AND NF

Typical Performance Curves (Continued)

$\leqslant 172 n s \rightarrow$
FIGURE 25. GAIN SWITCHING SPEED AT FULL SCALE LNA LOW TO HIGH AT BASEBAND


FIGURE 27. RECEIVE TOTAL SUPPLY CURRENT (LNA IN LOW GAIN)


FIGURE 29. POWER/VOLTAGE GAIN HIGH GAIN MODE


FIGURE 26. RECEIVE TOTAL SUPPLY CURRENT (LNA IN HIGH GAIN)


FIGURE 28. TRANSMIT TOTAL SUPPLY CURRENT


FIGURE 30. INPUT IP3 HIGH GAIN MODE

Typical Performance Curves (Continued)


FIGURE 31. INPUT P1dB HIGH GAIN MODE


FIGURE 33. RX OUTPUT IM3 AT -5dBm INPUT TONES


FIGURE 35. INPUT P1dB LOW GAIN MODE


FIGURE 32. POWER/VOLTAGE GAIN LOW GAIN MODE


FIGURE 34. RX OUTPUT IM3 AT -12dBm INPUT TONES


FIGURE 36. LO TO LNA INPUT FEEDTHROUGH (CASCADED, NO FILTER)

Typical Performance Curves (Continued)


FIGURE 37. POWER CONVERSION GAIN




FIGURE 40. LO TO TRANSMIT AMP OUTPUT FEEDTHROUGH (CASCADED, NO FILTER)

## Micro Lead Frame Plastic Package (MLFP)



FOR ODD TERMINAL/SIDE

L44.7x7
44 LEAD MICRO LEAD FRAME PLASTIC PACKAGE (COMPLIANT TO JEDEC MO-220-VKKD-1 ISSUE A)

| SYMBOL | INCHES |  | MILLIMETERS |  | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |  |
| A | - | 0.039 | - | 1.00 |  |
| A1 | - | 0.002 | - | 0.05 |  |
| A2 | - | 0.031 | - | 0.80 |  |
| A3 | 0.008 REF |  | 0.20 REF |  |  |
| b | 0.007 | 0.012 | 0.18 | 0.30 | 5 |
| D | 0.275 BSC |  | 7.00 BSC |  |  |
| D1 | 0.265 BSC |  | 6.75 BSC |  |  |
| D2 | - | 0.130 | - | 3.30 | 7 |
| E | 0.275 BSC |  | 7.00 BSC |  |  |
| E1 | 0.265 BSC |  | 6.75 BSC |  |  |
| E2 | - | 0.130 | - | 3.30 | 7 |
| e | 0.019 BSC |  | 0.50 BSC |  |  |
| L | 0.019 | 0.029 | 0.50 | 0.75 |  |
| N | 44 |  | 44 |  | 2 |
| Nd | 11 |  | 11 |  | 3 |
| Ne | 11 |  | 11 |  | 3 |
| P | 0.009 | 0.024 | 0.24 | 0.60 |  |
| $\theta$ | - | 12 | - | 12 |  |

Rev. 1 8/00
NOTES:

1. Dimensioning and tolerancing per ASME Y14.5-1994.
2. $N$ is the number of terminals.
3. Nd is the number of terminals in the X direction, and Ne is the number of terminals in the Y direction.
4. Controlling dimension: Millimeters. Converted dimensions to inches are not necessarily exact. Angles are in degrees.
5. Dimension b applies to the plated terminal and is measured between 0.20 mm and 0.25 mm from the terminal tip.
6. The Pin \#1 identifier exists on the top surface as an indentation mark in the molded body.
7. Dimensions D2 and E2 are the maximum exposed pad dimensions for improved grounding and thermal performance.

All Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at website www.intersil.com/quality/iso.asp.

[^0]For information regarding Intersil Corporation and its products, see web site www.intersil.com


[^0]:    Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

