

C9835

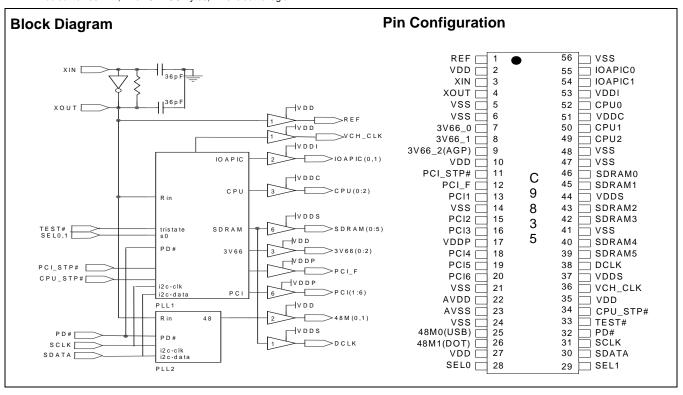
Low-EMI Clock Generator for Intel® Mobile 133-MHz/3 SO-DIMM Chipset Systems

Features

- Meets Intel's[®] Mobile 133.3MHz Chipset
- Three CPU Clocks (66.6/100/133.3 MHz, 2.5V)
- Six SDRAM Clocks, 1-DCLK (100/133.3 MHz, 3.3V)
- · Seven PCI Clocks (33MHz, 3.3V), one free running
- Two IOAPIC clocks, synchronous to CPU clock (33.3 MHz, 2.5V)
- One REF Clock

Table 1. Function Table^[1]

• Two 48-MHz fixed non-SSCG clocks (USB and DOT)


- Three 3V66 clocks (66.6 MHz, 3.3V) ICH, HUBLINK, and AGP memory
- One selectable frequency for VCH video channel clock (48-MHz non-SSCG, 66.6-MHz CPU-SSCG, 3.3V)
- · Power management using power-down, CPU stop, and PCI stop pins
- Three function select pins (include test-mode select)
- **Cypress Spread Spectrum for best electromagnetic** interference (EMI) reduction
- SMBUS support with readback
- 56-pin SSOP and TSSOP packages

TEST#	SEL1	SEL0	CPU(0:2)	SDRAM(0:5) DCLK	3V66(0:2)	PCIF(1:6)	48M(0:1)	REF	IOAPIC(0:10)
0	Х	0	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z
0	Х	1	TCLK/2	TCLK/2	TCLK/3	TCLK/6	TCLK/2	TCLK	TCLK/6
1	0	0	66.6	100.0 ^[2]	66.6	33.3	48	14.318	33.3
1	0	1	100.0	100.0 ^[2]	66.6	33.3	48	14.318	33.3
1	1	0	133.3	133.3	66.6	33.3	48	14.318	33.3
1	1	1	133.3	100.0 ^[2]	66.6	33.3	48	14.318	33.3

Note:

These are the frequencies that are selectable after power up using the SEL1 and SEL0 hardware pins. Other frequencies may be chosen using the devices

SMBUS interface. See the expanded frequency for a complete listing of all of the available frequencies. Will be set to 133MHz, when SMBUS Byte3, Bit 0 is set to logic 1. 2

Cypress Semiconductor Corporation Document #: 38-07303 Rev. *

3901 North First Street San Jose CA 95134 • 408-943-2600 Revised April 5, 2002

Pin	Name	PWR	Description		
1	REF	VDD	3.3V 14.318 MHz clock output		
3	XIN	VDD	Oscillator buffer input. Connect to a crystal or to an external clock.		
4	XOUT	VDD	Oscillator buffer output . Connect to a crystal. Do not connect when an external clock is applied at X_{IN} .		
49, 50, 52	CPU(0:2)	VDDC	2.5V Host bus clock outputs		
7, 8, 9	3V66(0:2)	VDD	3.3V Fixed 66.6 MHz clock outputs		
12	PCI_F	VDDP	3.3V PCI clock output . This clock continues to run when PCI_STP# is at a logic low level.		
13, 15, 16, 18, 19, 20	PCI (1:6)	VDDP	3.3V PCI clock outputs . These clocks synchronously stop in a low state when PCI_STP# is brought to a logic low level. They synchronously resume running when PCI_STP# is brought to a logic high state.		
25, 26	48M(0,1)	VDD	3.3V Fixed 48 MHz clock outputs		
36	VCH_CLK	VDD	3.3V selectable 66.6 MHz or 48 MHz clock output to VCH . Spread spectrum applies only when 66.6 MHz is selected. Select via SMBUS, byte 4 bit7.		
34	CPU_STP#	VDD	CPU0 stop clock control input . Stops only CPU0 in a low state when asserted low. Using this pin to start and stop CPU0 clock insures synchronous (no short or long clocks) transitioning of this clock.		
11	PCI_STP#	VDD	PCI stop clock control input . When this signal is at a logic low level (0), all PCI clocks (except PCI_F) stop at a logic low level. Using this pin to start and stop PCI clocks insures synchronous (no short or long clocks) transitioning of these clocks. This pin has no effect on the PCI_F clock.		
28, 29	SEL(0,1)	VDD	3.3V LVTTL inputs for logic selection . These pins have Internal pull-ups, typically 250k (range 200k to 800k).		
30	SDATA	VDD	Serial data input pin . Conforms to the SMBUS specification of a Slave Receive/Transmit device. This pin is an input when receiving data. It is an open drain output when acknowledging or transmitting data. See 2-Wire SMBUS Control Interface on page 7.		
31	SCLK	VDD	Serial clock input pin . Conforms to the SMBUS specification. See 2-Wire SMBUS Control Interface on page 7.		
32	PD#	VDD	3.3V LVTTL-compatible input . When held LOW, the device enters a power down mode. This pin has an Internal Pull-Up. See Power Management Functions on page 3.		
33	TEST#	VDD	3.3V LVTTL compatible input for selecting test mode. See Table 1.		
38	DCLK	VDDS	3.3V SDRAM feedback clock output . See <i>Table 1</i> for frequency selection. See <i>Figure 4</i> for timing relationship.		
39, 40, 42, 43, 45, 46	SDRAM(0:5)	VDDS	3.3V SDRAM clock outputs		
54, 55	IOAPIC(0,1)	VDDI	2.5V IOAPIC clock outputs. See Figure 4 for timing relationships.		
37, 44	VDDS		3.3V Power for SDRAM and DCLK clock output buffers		
17	VDDP		3.3V Power for PCI clock output buffers		
53	VDDI		2.5V Power for IOAPIC clock output buffers		
51	VDDC		2.5V Power for CPU clock output buffers		
2, 10, 27, 35	VDD		3.3V Common power supply		
22	AVDD		Analog power		
23	AVSS		Analog ground		
5, 6, 14, 21, 24, 41, 47, 48, 56	VSS		Common ground pins		
Note:					

A bypass capacitor (0.1μF) should be placed as close as possible to each positive power pin. If these bypass capacitors are not close to the pins their high-frequency filtering characteristic will be cancelled by the lead inductance of the traces.

TEST#	ESEL	ESEL	SEL	SEL	CPU(0:2)	SDRAM(0:5), DCLK	3V66(0:2)	PCI_F, PCI(1:6)	Notes
1	0	0	0	0	66.7	100 ^[6]	66.6	33	0% extension (Default)
	0	0	0	1	100	100 ^[6]	66.6	33	
	0	0	1	0	133.3	133.3	66.6	33	
	0	0	1	1	133.3	100 ^[6]	66.6	33	
	0	1	0	0	70	105 ^[6]	70	35	5% extension
	0	1	0	1	105	105 ^[6]	70	35	
	0	1	1	0	140	140	70	35	
	0	1	1	1	140	105 ^[6]	70	35	
	1	0	0	0	73.3	110 ^[6]	73.3	36.6	10% extension
	1	0	0	1	110	110 ^[6]	73.3	36.6	
	1	0	1	0	146.7	146.7	73.3	36.6	
	1	0	1	1	146.7	110 ^[6]	73.3	36.6	
	1	1	0	0	80	120 ^[6]	80	40	20% extension
	1	1	0	1	120	120 ^[6]	80	40	
	1	1	1	0	160	160	80	40	
	1	1	1	1	160	120 ^[6]	80	40	

Table 2. Expanded Frequency Selection (MHz)^[4, 5, 6]

Power Management Functions

Notes:

Power management on this device is controlled by the PD#, CPU_STP# and PCI_STP# pins. When PD# is high (default) the device is in normal running mode and all signals are active.

The PD# signal is used to bring all clocks to a low level in an orderly fashion prior to power (all except AVDD) being removed from the part. When PD# is asserted (forced) low, the device transitions to a shutdown (power down) mode and all power supplies (3.3V and 2.5V except for AVDD) may then be removed. When PD# is sampled low by two consecutive rising edges of the CPU clock, then all affected clocks are stopped in a low state on their next high-to-low transition. The REF and USB clocks are stopped in a low state as soon as possible. When in power down (and before power is removed), all outputs are synchronously stopped in a low state (see Figure 1), all PLLs are shut off, and the crystal oscillator is disabled. When the device is shutdown, the I²C function is also disabled.

At power-up, using the PD# select pin, all clocks are started in such a manner as to guarantee a glitch-free operation, no partial clock pulses.

- Extended frequencies are only available via SMBUS interface. They are accessable via SMBUS Byte 5 bits 0,1. 48M(0,1) clocks are constant at 48 MHz and REF is constant at 14.31818 MHz for all table selections. 4
- 5.
- 6. Will be set to 133 MHz and boosted accordingly, when Byte3,Bit 0 is set to logic 1.

Power Management Timing

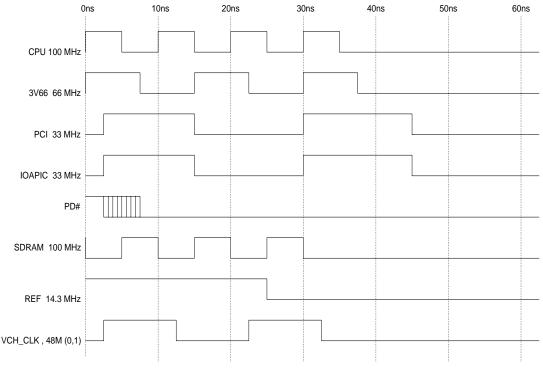


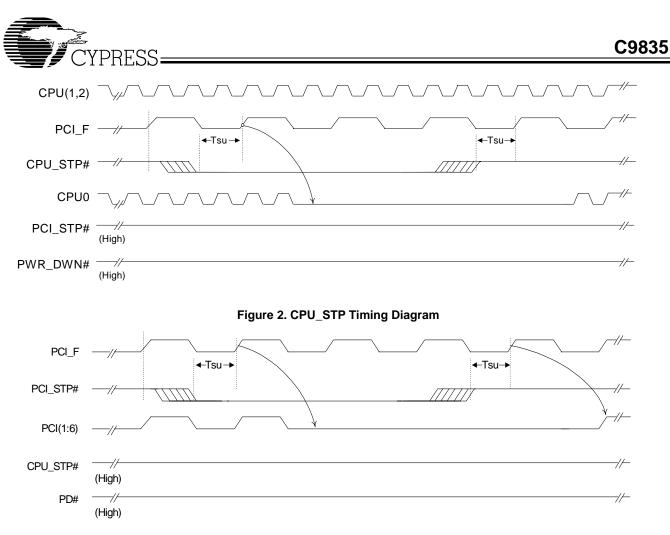
Figure 1.

Table 3. Power Management Current

Conditions	Maximum 2.5V Current Consumption (V _{DDC} = V _{DDI} = 2.625)	Maximum 3.3V Current Consumption ($V_{DD} = AV_{DD} = V_{DDS} = 3.465V$)
Power-down (PD# = LOW)	≤ 1mA	≤ 1mA
CPU = 66 MHz @ max loads	60 mA	295 mA
CPU = 100 MHz @ max loads	75 mA	295 mA
CPU = 133 MHz @ max loads	90 mA	295 mA

When exiting the power-down mode, the application must supply power to the V_{DD} pins a minimum of 200 ms before releasing the PD# pin high to insure that an orderly startup will occur and that the initial clocks that the device produces are full and correctly compliant with data sheet specified phase relationships.

CPU_STP# Timing


CPU_STP# is an input to the clock generator. CPU_STP# is asserted asynchronously by the external clock control logic and is internally synchronized to the external PCI_F output. All other clocks will continue to run while the CPU0 clock is disabled. The CPU0 is always stopped in a low state and Note:

- 7. All internal timing is referenced to the CPU clock.
- 8. CPU_STP# signal is an input signal that is made synchronous to free-running PCI_F.
- 9. Diagrams shown with respect to 133 MHz. Similar operation when CPU is 100 MHz.

started in such a manner as to guarantee that the high pulse width is a full pulse. Only one rising edge of PCI_F occurs after the clock control logic is switched for the CPU0 output to become enabled/disabled.

PCI_STP# Timing

PCI_STP# is an input to the clock generator and is made synchronous to the clock driver PCI_F output. It is used to turn off the PCI clocks for low power operation. PCI clocks are stopped in a low state and started such that a full high pulse width is guaranteed. ONLY one rising edge of PCI_F occurs after the clock control logic switched for the PCI outputs to become enabled/disabled.

Note:

- All the internal timing is referenced to the CPU clock
 PCI_STP# signal is an input signal that must be made synchronous to PCI_F output.
 All other clocks continue to run undisturbed.
 PD# is understood to in a high state.
 Diagrams shown with respect to 133 MHz. Similar operation when CPU is 100 MHz

Clock Phase

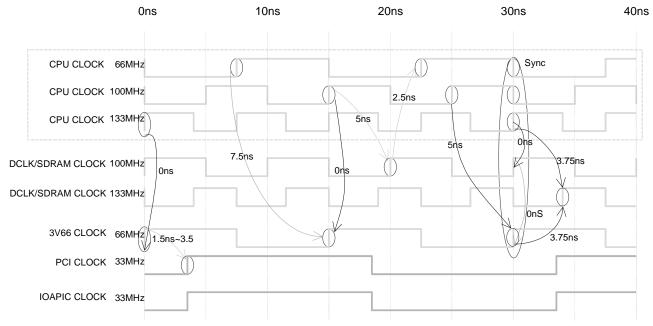


Figure 4.

Table 4. Group Timing Relationships and Tolerances

		CPU = 66.6 MHz, SDRAM = 100 MHz				
	Offset (ns)	Tolerance (ps)	Conditions			
CPU to SDRAM/DCLK	2.5	500				
CPU to 3V66	7.5	500	180 degrees phase shift			
SDRAM/DCLK to 3V66	0	500	When rising edges line up			
3V66 to PCI	1.5–3.5	500	3V66 leads			
PCI to IOAPIC	0	1000				
48M (0,1)	Async	N/A				
		CPU = 100 MHz, SE	DRAM = 100 MHz			
	Offset (ns)	Tolerance (ps)	Conditions			
CPU to SDRAM/DCLK	5	500	180 degrees phase shift			
CPU to 3V66	5	500	CPU leads			
SDRAM/DCLK to 3V66	0	500	When rising edges line up			
3V66 to PCI	1.5–3.5	500	3V66 leads			
PCI to IOAPIC	0	1000				
48M (0,1)	Async	N/A				
	CPU = 133.3 MHz, SDRAM = 100 MHz					
	Offset(ns)	Tolerance(ps)	Conditions			
CPU to SDRAM/DCLK	0	500	When rising edges line up			
CPU to 3V66	0	500				
SDRAM/DCLK to 3V66	0	500	When rising edges line up			
3V66 to PCI	1.5–3.5	500	3V66 leads			
PCI to IOAPIC	0	1000				
48M (0,1)	Async	N/A				

Document #: 38-07303 Rev. **

Table 4. G	Group Timing	Relationships and Tolerances	(continued)
------------	--------------	------------------------------	-------------

		CPU = 66.6 MHz, S	DRAM = 100 MHz	
	CPU = 133.3MHz, SDRAM = 133.3MHz			
	Offset(ns)	Tolerance(ps)	Conditions	
CPU to SDRAM/DCLK	3.75	500	180 degrees phase shift	
CPU to 3V66	0	500		
SDRAM/DCLK to 3V66	3.75	500		
3V66 to PCI	1.5–3.5	500	3V66 leads	
PCI to IOAPIC	0	1000		
48M (0,1)	Async	N/A		

2-Wire SMBUS Control Interface

The 2-wire control interface implements a read/write slave only interface according to SMBus specification. (See *Figure 5* below). The device can be read back by using standard SMBUS command bytes. Sub addressing is not supported, thus all preceding bytes must be sent in order to change one of the control bytes. The 2-wire control interface allows each clock output to be individually enabled or disabled. 100 Kbits/s (standard mode) data transfer is supported.

During normal data transfer, the SDATA signal only changes when the SCLK signal is low, and is stable when SCLK is high. There are two exceptions to this. A high to low transition on SDATA while SCLK is high is used to indicate the start of a data transfer cycle. A low to high transition on SDATA while SCLK is high indicates the end of a data transfer cycle. Data is always sent as complete 8-bit bytes, after which an acknowledge is generated. The first byte of a transfer cycle is an 8-bit address. The LSB address Byte = 0 in write mode.

The device will respond to transfers of 10 bytes (max) of data. The device will generate an acknowledge (low) signal on SDATA following reception of each byte. Data is transferred MSB first at a max rate of 100kbits/s. This device will also respond to a D3 address which sets it in a read mode. It will not respond to any other control interface conditions, and previously set control registers are retained.

When a clock driver is placed in power down mode, the SMBUS signals SDATA and SCLK must be tri-stated. In power down, the device retains all SMBUS programming information.

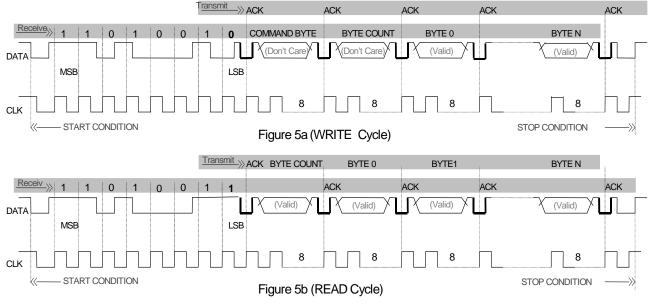


Figure 5. SMBus Communications Waveforms

Serial Control Registers

Following the acknowledge of the Address Byte, two additional bytes must be sent:

1) "Command Code " byte

2) "Byte Count" byte.

<u>Byte 0</u>: CPU Clock Register (1 = Enable, 0 = Disable)

Although the data (bits) in these two bytes are considered "don't care," they must be sent and will be acknowledged. After the Command Code and the Byte Count have been acknowledged, the sequence (Byte 0, Byte 1, and Byte 2) described below will be valid and acknowledged.

Bit	@Pup ^[15]	Pin# ^[16]	Description
7	1	36	VCH_CLK
6	1	49	CPU2
5	1	50	CPU1
4	1	52	CPU0
3	0	_	Spread Spectrum (1 = enabled)
2	1	26	48M1(DOT)
1	1	25	48M0(USB)
0	0	-	Reserved. Set to 0

Byte 1: SDRAM Clock Register (1 = Enable, 0 = Disable)

Bit	@Pup ^[15]	Pin# ^[16]	Description
7	0	-	Reserved. Set to 0
6	0	_	Reserved. Set to 0
5	1	39	SDRAM5
4	1	40	SDRAM4
3	1	42	SDRAM3
2	1	43	SDRAM2
1	1	45	SDRAM1
0	1	46	SDRAM0

Byte 2: 3C66 Clock Register (1 = Enable, 0 = Disable)

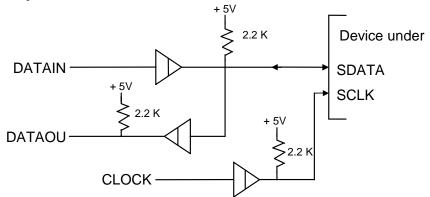
Bit	@Pup ^[15]	Pin# ^[16]	Description
7	1	9	3V66_2 (AGP)
6	1	8	3V66_1
5	1	7	3V66_0
4	0	-	Reserved. Set to 0
3	0	-	Reserved. Set to 0
2	0	-	Reserved. Set to 0
1	0	-	Reserved. Set to 0
0	0	-	Reserved. Set to 0

Byte 3: PCI Register (1 = Enable, 0 = Disable)

Bit	@Pup ^[17]	Pin# ^[18]	Description
7	0	_	Reserved. Set to 0
6	1	20	PCI6
5	1	19	PCI5
4	1	18	PCI4
3	1	16	PCI3
2	1	15	PCI2
1	1	13	PCI1
0	0	_	SDRAM 133- MHz Mode Enable. Default is disabled = "0," enabled = "1"

Notes:

The @Pup column gives the default state at power-up.
 The Pin# column lists the relevant pin number where applicable.


Byte 4: VCH Clock Register (1 = Enable, 0 = Disable)

Bit	@Pup ^[17]	Pin# ^[18]	Description
7	0	36	VCH_CLK SSC Mode Enable "0" = 48 MHZ (non-SSCG) "1" = 66.6 MHz (SSCG applicable when Byte 0,Bit3 = 1)
6	0	-	Reserved. Set to 0
5	0	-	Reserved. Set to 0
4	0	-	Reserved. Set to 0
3	0	-	Reserved. Set to 0
2	0	-	Reserved. Set to 0
1	0	_	Reserved. Set to 0
0	0	-	Reserved. Set to 0

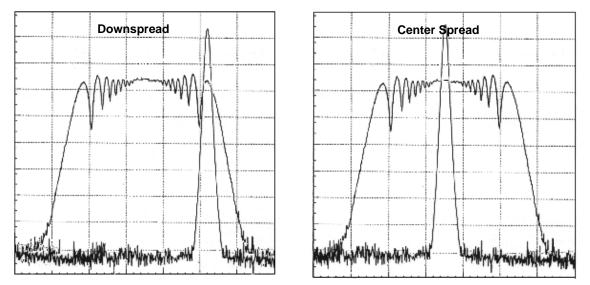
Byte 5: SSCG Control Register (1 = Enable, 0 = Disable)

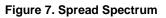
Bit	@Pup ^[17]	Pin# ^[18]	Description
7	0	-	Spread Mode (0 = down, 1 = center)
6	0	-	Selects spread bandwidth. See Table 5.
5	0	-	Selects spread bandwidth. See Table 5.
4	0	-	Reserved. Set to 0
3	0	_	Reserved. Set to 0
2	0	-	Reserved. Set to 0
1	0	-	ESEL1 Expanded Freq. Selection MSB, See Table 2.
0	0	-	ESEL0 Expanded Freq. Selection LSB, See Table 2.

SMBus Test Circuitry

Figure 6. SMBUS Test Circuitry^[19]

Spread Spectrum Clock Generation (SSCG)


Spread Spectrum is a modulation technique applied here for maximum efficiency in minimizing EMI radiation generated by repetitive digital signals, mainly clocks. A clock accumulates EM energy at the center frequency it is generating. Spread Spectrum distributes this energy over a small frequency bandwidth therefore distributing an even amount of energy over a wider spectrum. This technique is achieved by modulating the clock either down or around the center (see Figure 7 below) of its resting frequency by a certain percentage (which also determines the energy distribution bandwidth). In this device, Spread Spectrum is enabled by setting SMBUS Byte0,Bit3 = 1. The default of the device at Notes:


The @Pup column gives the default state at power-up
 The Pin# column lists the relevant pin number where applicable.

power up keeps the Spread Spectrum disabled, it is therefore, important to have SMBUS accessibility to turn-on the Spread Spectrum function. Once the Spread Spectrum is enabled, the spread bandwidth option is selected by SST(0:2) in SMBUS Byte 5, bits 5, 6, and 7 . See Table 7 below.

In Down Spread mode the center frequency is shifted down from its rested (non-spread) value by ½ of the total spread % (e.g., assuming the center frequency is 100 MHz in non-spread mode; when down spread of -0.5% is enabled, the center frequency shifts to 99.75 MHz.). In Center Spread Mode, the center frequency remains the same as in non-spread mode.

Spread Spectrum Selection Tables

Table 5. (I²C BYTE 5 Bit 7=0), Down Spread

l²C B B	Spread %	
6	5	
0	0	-0.5
0	1	-0.7
1	0	-1.0
1	1	-1.5

Note:

19. Buffer is 7407 with $V_{CC} @ \ 5.0V.$

Table 6. (I²C BYTE 5 Bit 7=0), Center Spread

I²C B B	I ² C Byte 5 Bit			
6	5			
0	0	±0.25		
0	1	±0.35		
1	0	±0.5		
1	1	±0.75		

Maximum Ratings

Maximum Input Voltage Relative to V_{SS}: V_{SS} - 0.3	V
Maximum Input Voltage Relative to V_{DD} : V_{DD} + 0.3	V
Storage Temperature:65°C to + 150°	С
Operating Temperature:0°C to +85°	С
Maximum ESD Protection	V
Maximum Power Supply:5.5	V

This device contains circuitry that protects the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, $V_{\rm IN}$ and $V_{\rm OUT}$ should be constrained to the range:

 $V_{SS} < (V_{IN} \text{ or } V_{OUT}) < V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (either $\rm V_{SS}~or~V_{DD}).$

DC Parameters $V_{DD} = V_{DDS} = 3.3V \pm 5\%$, V	$V_{DDC} = V_{DDI} = 2.5V \pm 5\%, T_A = 0^{\circ}C \text{ to } +70^{\circ}C^{[20]}$
--	--

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
VIL1	Input Low Voltage	Note 21			1.0	V
VIH1	Input High Voltage		2.0			V
VIL2	Input Low Voltage	Note 22			1.0	V
VIH2	Input High Voltage		2.2			V
IIL1	Input Low Current (@V _{IL} = V _{SS})	For internal pull-up resistors ^[23]			-20	μA
IIH1	Input High Current (@V _{IH} =V _{DD})				20	μA
loz	Three-state leakage Current				10	μA
Idd3.3V	Dynamic Supply Current				295	mA
Idd2.5V		CPU @ 66 MHz			60	mA
	Dynamic Supply Current	CPU @ 100 MHz			75	mA
		CPU @ 133 MHz			90	mA
lpd3.3V	Power Down Supply Current	PD# = "0"			1	mA
lpd2.5V	Power Down Supply Current	PD# = "0"			1	mA
Cin	Input pin capacitance				5	pF
Cout	Output pin capacitance				6	pF
Lpin	Pin inductance				7	nH
Cxtal	Crystal pin capacitance	Measured from Pin to Ground ^[24]	34	36	38	pF
V _{BIAS}	Crystal DC Bias Voltage		0.3V _{DD}	V _{DD} /2	$0.7V_{DD}$	V
Txs	Crystal Startup time	From stable 3.3V power supply.			40	μs

Table 7. Maximum Output Load

Clock Name	Max Load (in pF)
CPU(0:2), IOAPIC(0:1), REF, 48M0 (USB), VCH_CLK	20
PCI(0:6), SDRAM(0:5), DCLK, 3V66(0:2)	30
48M1 (DOT)	15

Notes:

- All outputs loaded per *Table 7*.
 Applicable to input signals : SEL(0:1), PD# (pull-up).
 Applicable to SDATA and SCLK.
 Internal pull-up and pull-down resistors affect this cur
 See Applications data that is presented later in this data.
- Internal pull-up and pull-down resistors affect this current. See Applications data that is presented later in this datasheet on crystal interfacing.

AC Parameters

Doromotor	Departmen	133 MHz Host 100 MHz Host 66 MHz H		z Host	Units			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
CPU	1							
TPeriod	CPU(0:2) period ^[25,26]	7.5	8.0	10.0	10.5	15.0	15.5	ns
THIGH	CPU(0:2) high time ^[30]	1.87		3.0		5.2		ns
TLOW	CPU(0:2) low time ^[31]	1.67		2.8		5.0		ns
Tr / Tf	CPU(0:2) rise and fall times ^[27]	0.4	1.6	0.4	1.6	0.4	1.6	ns
TSKEW	CPU0 to any CPU Skew ^[26,29]		150		150		150	ps
TCCJ	CPU(0:2) Cycle to Cycle Jitter ^[26,29]		250		250		250	ps
SDRAM	11							
TPeriod	SDRAM(0:5) 100 MHz and DCLK period ^[25,26]	10.0	10.5	10.0	10.5	10.0	10.5	ns
THIGH	SDRAM(0:5) 100 MHz and DCLK high time ^[30]	3.0		3.0		3.0		ns
TLOW	SDRAM(0:5) 100 MHz and DCLK low time ^[31]	2.8		2.8		2.8		ns
Tr / Tf	SDRAM(0:5) 100 MHz and DCLK rise and fall times ^[27]	0.4	1.6	0.4	1.6	0.4	1.6	ns
TSKEW	SDRAM(0:5) 100 MHzand DCLK Skew ^[26,29]		250		250		250	ps
TCCJ	SDRAM(0:5) 100 MHz, DCLK Cycle to Cycle Jitter ^[26,29]		250		250		250	ps
IOAPIC	11							
TPeriod	IOAPIC(0,1) period ^[25,26]	30.0		30.0		30.0		ns
THIGH	IOAPIC(0,1) high time ^[30]	12.0		12.0		12.0		ns
TLOW	IOAPIC(0,1) low time ^[31]	12.0		12.0	N/S	12.0		ns
Tr / Tf	IOAPIC(0,1) rise and fall times ^[27]	0.4	1.6	0.4	1.6	0.4	1.6	ns
TSKEW	IOAPIC(0,1) Skew ^[26,29]		250		250		250	ps
TCCJ	IOAPIC(0,1) Cycle to Cycle Jitter ^[26,29]		500		500		500	ps
3V66	11							
TPeriod	3V66-(0:2) period ^[25,26]	15.0	16.0	15.0	16.0	15.0	16.0	ns
THIGH	3V66-(0:2) high time ^[30]	5.25		5.25		5.25		ns
TLOW	3V66-(0:2) low time ^[31]	5.05		5.05	T	5.05		ns
Tr / Tf	3V66-(0:2) rise and fall times ^[28]	0.5	2.0	0.5	2.0	0.5	2.0	ns
TSKEW	(Any 3V66) to (any 3V66) Skew ^[26,29]		175		175		175	ps
TCCJ	3V66-(0:2) Cycle to Cycle Jitter ^[26,29]		500		500		500	ps
PCI_F								
TPeriod	PCI(_F,1:6) period ^[25,26]	30.0		30.0		30.0		ns
THIGH	PCI(_F, 1:6) high time ^[30]	12.0	Ī	12.0	Ì	12.0		ns

Notes:

This parameter is measured as an average over 1us duration, with a crystal center frequency of 14.31818 MHz.
 All outputs loaded per *Table 6*. Probes are placed on the pins and taken at 1.5V levels for 3.3V signals and at 1.25V for 2.5V signals (see *Figure 8*).
 Probes are placed on the pins, and measurements are acquired between 0.4V and 2.4V for 3.3V signals and between 0.4V and 2.0V for 2.5V signals (see *Figure 8*).

27. Propes are placed on the pins, and measurements are z-g28. Measured from when both SEL1 and SEL0 are switched to high (enable).
29. This measurement is applicable with Spread ON or Spread OFF.
30. Probes are placed on the pins, and measurements are acquired at 2.4V for 3.3V signals and at 2.0V for 2.5V signals (see *Figure 8*).
31. Probes are placed on the pins, and measurements are acquired at 0.4V.

AC Parameters (continued)

Devementer	Description	133 MHz Host		100 MHz Host		66 MHz Host		Unite
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
TLOW	PCI(_F, 1:6) low time ^[31]	12.0		12.0		12.0		ns
Tr / Tf	PCI(_F, 1:6) rise and fall times ^[27]	0.5	2.0	0.5	2.0	0.5	2.0	ns
TSKEW	(Any PCI) to (Any PCI) Skew ^[26,29]		500		500		500	ps
тссј	PCI(_F, 1:6) Cycle to Cycle Jitter ^[26,29]		500		500		500	ps
DOT and US	SB						J	
TPeriod	DOT and USB (48M[0,1]) period (conforms to +167 ppm max) ^[25,26]	20.8299	20.8333	20.8299	20.8333	20.829	20.833	ns
Tr / Tf	DOT and USB rise and fall times ^[27]	1.0	4.0	1.0	4.0	1.0	4.0	ns
тссј	DOT and USB Cycle to Cycle Jitter ^[26,29]		500		500		500	ps
тссј	VCH_CLK Cycle to Cycle Jitter ^[26]		250		250		250	ps
REF			•	•				
TPeriod	REF period ^[25,26]	69.8413	71.0	69.8413	71.0	69.8413	71.0	ns
Tr / Tf	REF rise and fall times ^[27]	1.0	4.0	1.0	4.0	1.0	4.0	ns
тссј	REF Cycle to Cycle Jitter ^[26]		1000		1000		1000	ps
tpZL, tpZH	Output enable delay (all outputs) ^[28]	1.0	10.0	1.0	10.0	1.0	10.0	ns
tpLZ, tpHZ	Output disable delay (all outputs) ^[33]	1.0	10.0	1.0	10.0	1.0	10.0	ns
tstable	All clock stabilization from power-up ^[32]		3		3		3	ms
Tduty	Duty cycle for all outputs ^[34]	45	55	45	55	45	55	%

Notes:

32. The time specified is measured from when all V_{DD}'s reach their respective supply rail (3.3V and 2.5V) till the frequency output is stable and operating within the specifications.33. Measured from when both SEL1 and SEL0 are switched to low (disable).34. Device designed for Typical Duty Cycle of 50%.

Output Buffer Characteristics

Table 8. CPU, IOAPIC

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
IOH ₁	Pull-up Current	Vout =VDDC - 0.5V (or VDDI -0.5V)	-15	-31	-51	mA
IOH ₂	Pull-up Current	Vout = 1.2V	-26	-58	-101	mA
IOL ₁	Pull-down Current	Vout = 0.4V	12	24	40	mA
IOL ₂	Pull-down Current	Vout = 1.2V	27	56	93	mA
Z0	Output Impedance		13.5		45	Ω

Table 9. PCI, 3V66, VCH

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
IOH ₁	Pull-up Current	Vout =VDD - 0.5V	-20	-25	-33	mA
IOH ₂	Pull-up Current	Vout = 1.5V	-30	-54	-184	mA
IOL ₁	Pull-down Current	Vout = 0.4V	9.4	18	38	mA
IOL ₂	Pull-down Current	Vout = 1.5V	28	55	148	mA
Z0	Output Impedance		12		55	Ω

Table 10. 48M0(USB), 481(DOT), REF

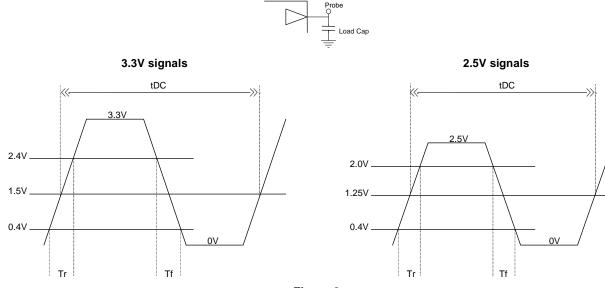

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
IOH ₁	Pull-up Current	Vout =VDD - 0.5V	-12	-16	-28	mA
IOH ₂	Pull-up Current	Vout = 1. 5V	-27	-43	-92	mA
IOL ₁	Pull-down Current	Vout = 0.4V	9	13	27	mA
IOL ₂	Pull-down Current	Vout = 1.5V	26	39	79	mA
Z0	Output Impedance		20		60	Ω

Table 11. SDRAM ($V_{DD} = V_{DDS} = 3.3V \pm 5\%$, $V_{DDC} = V_{DDI} = 2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$)

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
IOH ₁	Pull-up Current	Vout =VDD - 0.5V	-28	-40	-60	mA
IOH ₂	Pull-up Current	Vout = 1.5V	-67	-107	-184	mA
IOL ₁	Pull-down Current	Vout = 0.4V	23	34	53	mA
IOL ₂ Pull-down Current		Vout = 1.5V	64	98	159	mA
Z0	Output Impedance		10		24	Ω

Test Measurement Condition

Output under Test

Figure 8.

Table 12. Suggested Oscillator Crystal Parameters

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
Fo	Frequency		14.17	14.31818	14.46	MHz
т _с	Tolerance	Note 35			±100	PPM
Τ _S	Frequency Stability	Stability (T _A – 10 to +60C) ^[35]			±100	PPM
	Operating Mode	Parallel Resonant ^[35]				
C _{XTAL}	Load Capacitance	The crystal's rated load ^[35]		20		pF
R _{ESR}	Effective Series Resistance (ESR)	Note 36		40		Ohms

To obtain the maximum accuracy, the total circuit loading capacitance should be equal to CXTAL. This loading capacitance is the effective capacitance across the crystal pins and includes the clock generating device pin capacitance (C_{FTG}), any circuit trace capacitance (CPCB) and any onboard discrete load capacitance (C_{DISC}).

The following formula and schematic illustrates the application of the loading specification of a crystal (C_{XTAL}) for a design. $C_{L} = (C_{XINPCB} + C_{XINFTG} + C_{XINDISC}) X (C_{XOUTPCB} + C_{XOUTFTG} + C_{XOUTDISC})$

As an example and using a formula for this datasheet's device, a design that has no disrete loading capacitors (C_{DISC}) and each of the crystal to device PCB traces has a capacitance (C_{PCB}) to ground of 4pF (typical value) would calculate as:

Where:

 C_{XTAI} = the load rating of the crystal.

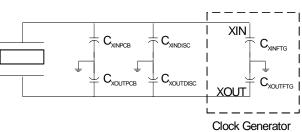
 $C_{XOUTFTG}$ = the clock generators XIN pin effective device internal capacitance to ground.

C_{XOUTETG} = the clock generators XOUT pin effective device internal capacitance to ground.

C_{XINPCB} = the effective capacitance to ground of the crystal to device PCB trace.

 $C_{XOUTPCB}$ = the effective capacitance to ground of the crystal to device PCB trace.

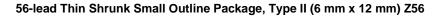
 $C_{XINDISC}$ = any discrete capacitance that is placed between the X_{IN} pin and ground.

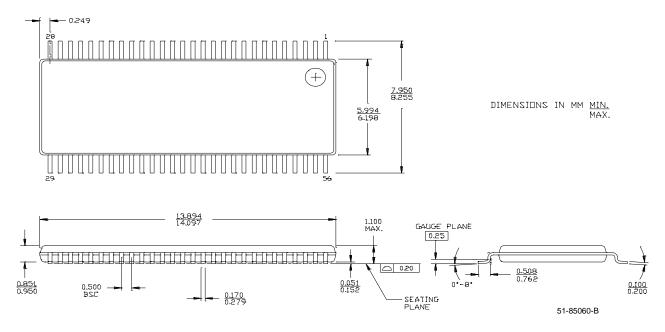

C_{XOUTDISC}= any discrete capacitance that is placed between the X_{OUT} pin and ground.

Notes:

For best performance and accurate frequencies from this device, it is recommended but not mandatory that the chosen crystal meets or exceeds these 35. specifications. Larger values may cause this device to to exhibit oscillator startup problems.

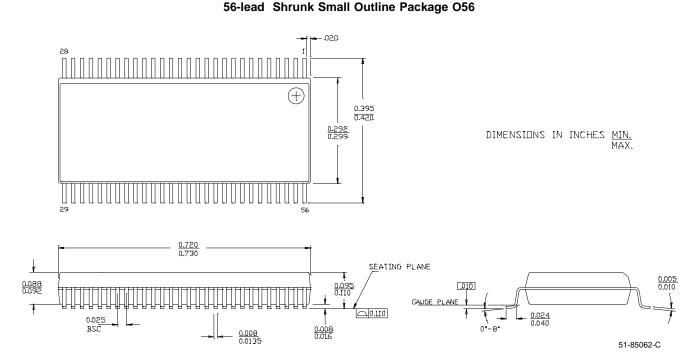
36.


Figure 9.


Therefore, to obtain output frequencies that are as close to this datasheets specified values as possible, in this design **Ordering Information**

example, you should specify a parallel cut crystal that is designed to work into a load of 20pF.

Part Number	Package Type	Product Flow
IMIC9835CY	56-pin Shrunk Small Outlie package (SSOP)	Commercial, 0° to 70°C
IMIC9835CYT	56-pin Shrunk Small Outlie package (SSOP)–Tape and Reel	Commercial, 0° to 70°C
IMIC9835CT	56-pin Thin Shrunk Small Outlie package (TSSOP)	Commercial, 0° to 70°C
IMIC9835CTT	56-pin Thin Shrunk Small Outlie package (TSSOP)-Tape and Reel	Commercial, 0° to 70°C


Package Diagrams

Package Diagrams (continued)

Purchase of I²C components from Cypress, or one of its sublicensed Associated Companies, conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Intel is a registered trademark of Intel Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges. Downloaded from Elcodis.com electronic components distributor

Document Title: C9835 Low-EMI Clock Generator for Intel[®] Mobile 133-MHz/3 SO-DIMM Chipset Systems Document Number: 38-07373

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	113556	05/28/02	DMG	New Data Sheet (converted from IMI format)