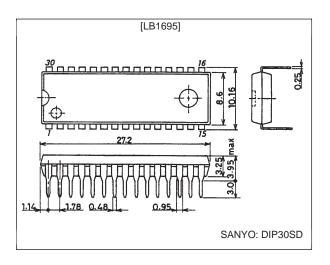
LB1695

Three-Phase Brushless Motor Driver

Overview

The LB1695 is a three-phase brushless motor driver IC that is optimal for DC fan motor drive in home appliances such as on-demand water heaters.


Features

- · Three-phase brushless motor drive
- 45-V voltage handling capacity, 2-A output current

- Current limiter circuit
- Low-voltage protection circuit
- · Thermal shutdown protection circuit
- · Hall amplifiers with hysteresis characteristics
- FG output function

Package Dimensions

3196-DIP30SD

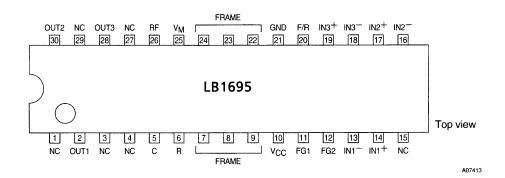
Specifications Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Quarteristica	V _{CC}		10	V
Supply voltage	VM		45	V
Output current	lo		2.0	A
Allowable power dissipation	Pd max	Mounted on a printed circuit board (114.3 \times 76.2 \times 1.6 mm^3 glass-epoxy board)	2.5	w
Operating temperature	Topr		-20 to +100	°C
Storage temperature	Tstg		-55 to +150	°C

Allowable Operating Ranges at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Deven and the line of the second	V _{CC}		4.5 to 5.5	V
Power-supply voltage range	VM		5 to 42	V
Marian and a state of a	$\Delta V_{CC}/\Delta t$	At $V_{CC} = V_{LVSD}(OFF)^*$	No more than 0.04	V/µs
Maximum power-supply slew rate at power on	$\Delta V_M / \Delta t$	At $V_M = 0 V^*$	No more than 0.16	V/µs

Note: *These items are stipulated because output through currents can occur if the speed with which the power-supply voltage rises is too fast when power is first applied.


SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

Parameter	Symbol	Conditions	Ratings			Unit
Parameter	Symbol	Conditions		typ	max	Unit
Current drain	Icc	Forward rotation		13	19	mA
Output saturation voltage	V _O (sat)1	$I_0 = 0.5 \text{ A}, V_0 \text{ (sink)} + V_0 \text{ (source)}$		1.8	2.4	V
	V _O (sat)2	$I_0 = 1.0 \text{ A}, V_0 \text{ (sink)} + V_0 \text{ (source)}$		2.1	2.8	V
Output leakage current	l _O leak				100	μA
[Hall Amplifier]	•					
Input bias current	I _{HB}			1	4	μA
Common-mode input voltage range	VICM		1.5		3.2	V
Hysteresis	ΔV_{IN}		21	30	37	mV
Input voltage (low \rightarrow high)	V _{SLH}		5	15	25	mV
Input voltage (high \rightarrow low)	V _{SHL}		-25	-15	-5	mV
[FG Pin] (Speed pulse output)						
Output low-level voltage	V _{FGL}	I _{FG} = 5 mA			0.4	V
Pull-up resistance	R _{FG}		7.5	10.0	12.5	kΩ
[Forward/Reverse Operation]			-1			
Forward	V _{FR1}			0	0.8	V
Reverse	V _{FR2}		4.2	5.0		V
[Current Limiter Operation]	I		-1			
Limiter	V _{RF}		0.42	0.5	0.6	V
[Thermal Shutdown Operation]	I		-1			L
Operating temperature	TSD	*	150	180		°C
Hysteresis	ΔTSD	*		40		°C
[Low-Voltage Protection Operation]			1			
Operating voltage	V _{LVSD}		3.5	3.8	4.1	V
Release voltage	V _{LVSD(OFF)}			4.3	4.5	V
Hysteresis	ΔV _{LVSD}		0.4	0.5	0.6	V
[Pin C]			-1			
Charge current	I _{CL}	R = 33 kΩ	30	40	50	μA
Discharge current	I _{CH}	R = 33 kΩ	90	120	150	μA
Charge start voltage	V _{CL}	R = 33 kΩ	0.3	0.4	0.5	V
Discharge start voltage	V _{CH}	R = 33 kΩ	1.5	2.0	2.5	V
Output current ignored time	t _{sm}	R = 33 kΩ, C = 4700 pF	58	68	78	μs
Output off time	t _{so}	R = 33 kΩ, C = 4700 pF	164	193	222	μs

Electrical Characteristics at Ta = 25°C, V_{CC} = 5 V, V_M = 30 V

Note: *The items marked with an asterisk are design target values and are not tested.

Pin Assignment

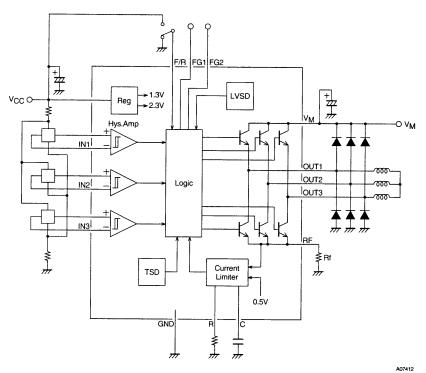
Truth Table

	Input			Forward/reverse control	Output	FG o	utput
	IN1	IN2	IN3	F/R	Source \rightarrow sink	FG1	FG2
		H L	н	L	$OUT2 \rightarrow OUT1$	L	L
1	н			Н	$OUT1 \rightarrow OUT2$		
				L	$OUT3 \rightarrow OUT1$	L	н
2	Н	L	L	Н	$OUT1 \rightarrow OUT3$		
				L	$OUT3 \rightarrow OUT2$		
3	нн	н	HL	Н	$OUT2 \rightarrow OUT3$	L	L
		н	H L	L	$OUT1 \rightarrow OUT2$	н	н
4	4 L			Н	$OUT2 \rightarrow OUT1$		
_		н	н	L	$OUT1 \rightarrow OUT3$	н	
5	L	н		Н	$OUT3 \rightarrow OUT1$	н	L
	6 L	. L	н	L	$OUT2 \rightarrow OUT3$	н	н
6				Н	$OUT3 \rightarrow OUT2$		
F/R FG Output Forward (low): 0.0 to 0.8 V							

Pin Functions

Reverse (high): 4.2 to 5.0 V

Pin No.	Pin	Pin voltage(V)	Pin function	Equivalent circuit
2 30 28 25 26	OUT1 OUT2 OUT3 V _M RF		 Output pin 1 Output pin 2 Output pin 3 Power supply pin that provides the output Output current detection Connect the resistor Rf between this pin and ground. The current limiter limits the output current to the value set by V_{RF}/Rf (current limiter operation). 	
6	C		 The capacitor connected to this pin determines both the time the output is turned off when the current limiter operates and the time the output current is ignored. The resistor connected to this pin determines the charge current for the pin C capacitor. 	V_{CC}


FG2 _____

Continued on next page.

Continued from preceding page.

Pin No.	Pin	Pin voltage(V)	Pin function	Equivalent circuit
7, 8, 9, 22, 23, 24	FRAME		This pin is used for heat dissipation. Electrically, it must be left open.	
10	V _{CC}		Power for all circuits other than the output block.	
11	FG1		First speed pulse output. A pull-up resistor is built in.	
12	FG2		 Second speed pulse output. A pull-up resistor is built in. 	
13 14	IN1- IN1+ IN2-	1.5 V min V _{CC} –1.8V max	 Hall element input Logic high is defined as IN+ > IN Hall element input 	<u>Vcc</u>
16 17	IN2 ⁺		 Hall element input Logic high is defined as IN+ > IN[−]. 	
18 19	IN3- IN3+		 Hall element input Logic high is defined as IN+ > IN−. 	
20	F/R	0.0 V min V _{CC} max	Forward/reverse control	V _{CC} 10kΩ 10kΩ 10kΩ 20kΩ 20kΩ 20 μ μ μ μ μ μ μ μ μ μ μ μ μ
21	GND		 Ground for all circuits other than the output block. The lowest potential of the output transistors will be the potential of the Rf pin. 	

Block Diagram and Peripheral Circuits

LB1695 Functional Description

1. Hall element input circuits

The Hall element input circuits are differential amplifiers with a hysteresis of about 30 mV (typical). The operating DC level must be within the common-mode input voltage range (1.5 V to $V_{CC} - 1.8$ V). We recommend providing input levels that exceed the hysteresis by at least a factor of three (120 to 160 mVp-p) to assure that circuit operation is not affected by noise. If the ability to withstand noise is determined to be a problem during noise evaluation or other testing, insert capacitors (of about 0.01 μ F) between the Hall input IN⁺ and IN⁻ pins.

- 2. Protection circuit
 - 2.1 Low-voltage protection circuit

The sink side output transistors are turned off if the V_{CC} voltage falls below the stipulated voltage (V_{LVSD}). This circuit prevents incorrect operation when the V_{CC} voltage is reduced.

2.2 Thermal shutdown circuit

The sink side output transistors are turned off if the junction temperature exceeds the stipulated temperature (TSD). This circuit prevents the IC from being destroyed by overheating. Applications must be designed so that this circuit does not operate except in unusual situations.

3.FG output circuit

The LB1695 combines the IN1, IN2, and IN3 inputs and then wave shapes the combined signal. The FG1 output has the same frequency as the Hall inputs, and the FG2 output has a frequency three times that of the Hall inputs.

4. Forward/reverse control circuit

This circuit was designed with the assumption that the direction will not be switched from the F/R pin while the motor is turning. If the direction is switched while the motor is turning, through currents will flow in the output and ASO will become a problem. We recommend only using F/R switching when the V_M power supply is in the off state, i.e. with the motor in the stopped state.

 $5.V_{CC}$ and V_{M} power supplies

If the speed with which the power-supply voltages (V_{CC} and V_M) rise when power is first applied is too fast, through currents will flow in the output and ASO will become a problem. Applications must assure that the power supply rise speeds do not exceed 0.04 V/µs ($\Delta V_{CC}/\Delta t$) and 0.16 V/µs ($\Delta V_M/\Delta t$). When applying power, it is desirable to apply V_{CC} first and then apply V_M . When turning the power off, it is desirable to first turn off V_M , then to wait for the motor to stop, and only then turn off V_{CC} . If V_{CC} is turned off after V_M is turned off but while the motor is still turning due to inertia, certain motor types may cause the V_M voltage at the IC to rise and generate voltages that exceed the voltage handling capacity of the IC.

6. Power supply stabilization capacitor

The low-voltage protection circuit may operate or other problems may occur if large fluctuations occur in the V_{CC} line voltage. The V_{CC} line must be stabilized by a capacitor (of a few μ F) inserted between V_{CC} and ground. Also, the large switching currents that flow in the V_M line can cause fluctuations in the IC V_M voltage due to inductive components in the circuit wiring. The V_M line must also be stabilized by a capacitor inserted between V_M and ground to prevent fluctuations in the ground line potential, incorrect operation, and voltages that exceed the voltage handling capacity of the IC. In particular, applications that have long circuit lines for V_M , V_{CC} , and ground must have adequate stabilization capacitors inserted in the power lines.

7. Current limiter circuit

The current limiter circuit turns off the sink side output transistors when the output current reaches the set limit value (the limit current). The RF pin is used for current detection, and the output current is detected as a voltage by inserting the resistor R_f between the RF pin and ground. The current limiter circuit operates when the RF pin reaches 0.5 V (typical), and thus the output current is limited to the current limit set by the term $0.5/R_f$.

7.1 Output off time

After the current limiter circuit operates and turns off the sink side output transistors, it then turns the output on again after a fixed period (the output off time) has elapsed. This current limiter circuit output switching technique adopted in the LB1695 is much less susceptible to problems with ASO than are output limitation techniques in which the output is not operated at the saturated level. The output off time it determined by the charge time for the capacitor connected to the C pin. When the current limiter circuit operates, the C pin capacitor begins to charge, and the time required to charge this capacitor to the C voltage, which is 2 volts (typical), is the output off time. When the capacitor is charged to the C voltage of 2 volts, the sink side output transistors are turned on again. The C pin charge current is a fixed current determined by the resistor R connected to the R pin. The capacitor charge current I_{CL} and the output off time t_{off} are related as follows.

 $I_{CL} \approx 1.3/R$ (R must be set to a value in the range 13 to 100 k Ω)

 $t_{off} \approx C/I_{CL} \times 2.0$

 $\approx 1.53 \times R \times C$

7.2 Output current ignored time

While the current limiter circuit is operating and the sink side output is off, a regenerative current flows in the external diode provided to absorb regenerative currents in the upper side of the output circuit that was turned off. When the sink side output is turned off after the output off time has elapsed, a reverse current flows instantaneously in this diode due to the diode's reverse recovery time. Due to this phenomenon, a current that may reach the current limit value flows instantaneously in the output. If the current limiter operated again due to this current, the output would be turned off and the average current level would fall. This could result in significantly lower torque during, for example, motor startup. Therefore, to prevent this current from being detected, the current limiter circuit also provides a fixed period (the output current ignored time) during which the output current is not detected at the point where the sink side output is turned on again after being turned off. The output current ignored time is determined by the discharge time for the capacitor connected to the C pin. This discharge starts at the point where the capacitor is charged to 2 volts following operation of the current limiter circuit. The output current ignored time is the time for the capacitor to discharge to 0.4 volts (typical). The capacitor discharge current is a fixed current and is set to be a current about three times the charge current. Therefore, the output current ignored time is about 1/3 the output off time. The capacitor discharge current I_{CH} and the output current ignored time t_{sm} are related as follows.

 $I_{CH} \approx 1.3/R \times 3$

 $t_{sm} \approx C/I_{CH} \times 1.6$

 $\approx 0.41 \times R \times C$

Since the current limiter circuit provides a slope to the on time when the sink side output is turned on again, the reverse circuit never becomes significantly large, even if a rectifying diode (i.e. a diode whose reverse recovery time is not particularly short) is used as the regenerative current absorption external diode.

7.3 Output off time setting

The output off time must be set to a period optimal for the type of motor used. This time is set by the values of the external resistor attached to the R pin and the external capacitor attached to the C pin. Figure 1 shows the waveforms during current limiter operation.

(1) If a shorter output off time is used:

Since the output off time and the output current ignored time are set to have a ratio of about 3:1 by IC internal circuits, it is not possible to set these periods independently. Thus the output current ignored period may become insufficient if the output off time is set to an excessively short period. If the output current ignored period is too short, the reverse current in the regenerative current absorption external diode may cause the current limiter circuit to operate. (See Section 7.2.) Also, if the output off time is decreased, the diode reverse current will increase and ASO may become a problem.

(2) If a longer output off time is used:

If an excessively long output off time is used, the average current will decrease resulting in reduced torque during motor startup. For some motor types, this may make it impossible to switch from the current limiter operating state to steady state operation.

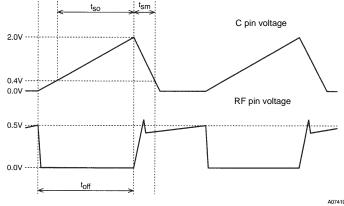


Figure 1. Current Limiter Operating Waveforms

8.IC internal power dissipation calculation

 $Pd = (V_{CC} \times I_{CC}) + (V_M \times I_M) - (power dissipated in the motor coils)$

9. Techniques for measuring IC internal temperature increases

Since it is not possible to measure the IC internal temperature directly, one of the following techniques is normally used for temperature measurement.

9.1 Thermocouple measurement

When using a thermocouple for temperature measurement, the thermocouple is attached to a fin on the heat sink. While this measurement technique is simple, it suffers from large measurement errors when the thermal generation process is not at steady state.

9.2 Measurement using IC internal diode properties

We recommend using the properties of the parasitic diode that exists between FG1 and ground for measuring the temperature of this IC. Set FG1 to the high (off) state and measure the V_F voltage of the parasitic diode. Then calculate the temperature from the temperature characteristics of the V_F voltage.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - Intersection 20 Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1997. Specifications and information herein are subject to change without notice.