

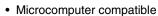
Vishay Semiconductors

Optocoupler, Phototriac Output, Zero Crossing

DESCRIPTION

The BRT21, BRT22, BRT23 product family consists of AC switch optocouplers with zero voltage detectors with two electrically insulated lateral power ICs which integrate a thyrister system, a photo detector and noise suppression at the output and an IR GaAs diode input.

High input sensitivity is achieved by using an emitter follower phototransistor and a SCR predriver resulting in an LED trigger current of less than 2 mA or 3 mA (DC). Inverse parallel SCRs provide commutating dv/dt greater than $10 \text{ kV/}\mu\text{s}$.


The zero cross line voltage detection circuit consists of two MOSFETS and a photodiode.

The BRT21/22/23 product family isolates low-voltage logic from 120, 230, and 380 VAC lines to control resistive, inductive or capacitive loads including motors, solenoids, high current thyristers or TRIAC and relays.

FEATURES

- High input sensitivity I_{FT} = 1.0 mA
- I_{TRMS} = 300 mA
- High static dV/dt 10000 V/μs
- Electrically insulated between input and output circuit

- Trigger current
 - (I_{FT} < 1.2 mA) BRT22**F**, BRT23**F**,
 - (I_{FT} < 2 mA) BRT21**H**, BRT22**H**, BRT23**H**
 - (I_{FT} < 3 mA) BRT21**M**, BRT22**M**, BRT23**M**
- · Available surface mount and on on tape and reel
- · Zero voltage crossing detector
- UL file E52744 system code J
- Lead (Pb)-free component
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

APPLICATIONS

- · Industrial controls
- Office equipment
- Consumer appliances

ORDER INFORMATION	
PART	REMARKS
BRT21H	$V_{DRM} \le 400 \text{ V, DIP-6, I}_{FT} = 2.0 \text{ mA}$
BRT21M	$V_{DRM} \le 400 \text{ V}, \text{ DIP-6}, I_{FT} = 3.0 \text{ mA}$
BRT22F	$V_{DRM} \le 600 \text{ V}, \text{ DIP-6}, I_{FT} = 1.2 \text{ mA}$
BRT22H	$V_{DRM} \le 600 \text{ V}, \text{ DIP-6}, I_{FT} = 2.0 \text{ mA}$
BRT22M	$V_{DRM} \le 600 \text{ V, DIP-6, I}_{FT} = 3.0 \text{ mA}$
BRT23F	$V_{DRM} \le 800 \text{ V, DIP-6, I}_{FT} = 1.2 \text{ mA}$
BRT23H	$V_{DRM} \le 800 \text{ V, DIP-6, I}_{FT} = 2.0 \text{ mA}$
BRT23M	$V_{DRM} \le 800 \text{ V, DIP-6, I}_{FT} = 3.0 \text{ mA}$
BRT21H-X006	$V_{DRM} \le 400 \text{ V}$, DIP-6 400 mil (option 6), $I_{FT} = 2.0 \text{ mA}$
BRT21H-X007	$V_{DRM} \le 400 \text{ V}$, SMD-6 (option 7), $I_{FT} = 2.0 \text{ mA}$
BRT21M-X006	$V_{DRM} \le 400 \text{ V}$, DIP-6 400 mil (option 6), $I_{FT} = 3.0 \text{ mA}$
BRT22F-X006	$V_{DRM} \le 600 \text{ V}$, SMD-6 (option 7), $I_{FT} = 1.2 \text{ mA}$
BRT22H-X007	$V_{DRM} \le 600 \text{ V}$, SMD-6 (option 7), $I_{FT} = 2.0 \text{ mA}$
BRT22M-X006	$V_{DRM} \le 600 \text{ V}$, DIP-6 400 mil (option 6), $I_{FT} = 3.0 \text{ mA}$
BRT23F-X006	$V_{DRM} \le 800 \text{ V}$, DIP-6 400 mil (option 6), $I_{FT} = 1.2 \text{ mA}$
BRT23F-X007	V _{DRM} ≤ 800 V, DIP-6 400 mil (option 6), I _{FT} = 1.2 mA

BRT21/22/23

Vishay Semiconductors

Optocoupler, Phototriac Output, Zero Crossing

ORDER INFORMATION	
PART	REMARKS
BRT23H-X006	$V_{DRM} \le 800 \text{ V}$, DIP-6 400 mil (option 6), $I_{FT} = 2.0 \text{ mA}$
BRT23H-X007	$V_{DRM} \le 800 \text{ V}$, SMD-6 (option 7), $I_{FT} = 2.0 \text{ mA}$
BRT23M-X006	$V_{DRM} \le 800 \text{ V}$, DIP-6 400 mil (option 6), $I_{FT} = 3.0 \text{ mA}$
BRT23M-X007	$V_{DRM} \le 800 \text{ V}$, SMD-6 (option 7), $I_{FT} = 3.0 \text{ mA}$

Note

For additional information on the available options refer to option information.

PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT
INPUT				<u>'</u>	
Reverse voltage	I _R = 10 μA		V_{R}	6.0	V
Forward current			I _F	60	mA
Surge current			I _{FSM}	2.5	Α
Power dissipation			P _{diss}	100	mW
Derate from 25 °C				1.33	mW/°C
OUTPUT					
Peak off-state voltage		BRT21	V_{DM}	400	V
	$I_{D(RMS)} = 70 \mu A$	BRT22	V_{DM}	600	V
		BRT23	V_{DM}	800	V
RMS on-state current			I _{TM}	300	mA
Single cycle surge current				3.0	Α
Power dissipation			P _{diss}	600	mW
Derate from 25 °C				6.6	mW/°C
COUPLER					
Isolation test voltage (between emitter and detector, climate per DIN 500414, part 2, Nov. 74)	t = 1.0 min		V _{ISO}	5300	V_{RMS}
Pollution degree (DIN VDE 0109)				2	
Creepage				≥ 7.0	mm
Clearance				≥ 7.0	mm
Comparative tracking index per DIN IEC 112/VDE 0303 part 1, group IIIa per DIN VDE 6110				≥ 175	
	V _{IO} = 500 V, T _{amb} = 25 °C		R _{IO}	≥ 10 ¹²	Ω
Isolation resistance	V _{IO} = 500 V, T _{amb} = 100 °C		R _{IO}	≥ 10 ¹¹	Ω
Storage temperature range			T _{stg}	- 55 to + 150	°C
Ambient temperature range			T _{amb}	- 55 to + 100	°C
Soldering temperature	max. ≤ 10 s dip soldering ≥ 0.5 mm from case bottom		T _{sld}	260	°C

Note

 T_{amb} = 25 °C, unless otherwise specified.

Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability.

Optocoupler, Phototriac Output, Zero Crossing

Vishay Semiconductors

ELECTRICAL CHARACTERISTICS									
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT			
INPUT									
Forward voltage	I _F = 10 mA	V _F		1.16	1.35	V			
Reverse current	V _R = 6 V	I _R		0.1	10	μΑ			
Capacitance	f = 1 MHz, V _F = 0 V	Co		25		pF			
Thermal resistance, junction to ambient		R _{thJA}		750		K/W			
ОИТРИТ									
Off-state voltage	I _{D(RMS)} = 70 μA	V _{D(RMS)}	424	460		V			
Repetitive peak off-state voltage	I _{DRM} = 100 μA	V_{DRM}	600			V			
Off-state current	$V_D = V_{DRM}, T_{amb} = 100 ^{\circ}\text{C},$ $I_F = 0 \text{mA}$	I _{D(RMS)}		10	100	μΑ			
On-state voltage	I _T = 300 mA	V_{TM}		1.7	3.0	V			
On-state current	PF = 1.0, V _{T(RMS)} = 1.7 V	I _{TM}			300	mA			
Surge (non-repetitive), on-state current	f = 50 Hz	I _{TSM}			3.0	Α			
		$\Delta I_{FT1}/\Delta T_{i}$		7.0	14	μA/K			
Trigger current temp. gradient		$\Delta I_{FT2}/\Delta T_{i}$		7.0	14	μA/K			
Inhibit voltage temp. gradient		$\Delta V_{DINH}/\Delta T_{i}$		- 20		mV/K			
Off-state current in inhibit state	$I_F = I_{FT1}, V_{DRM}$	I _{DINH}		50	200	μΑ			
Holding current		I _H		65	500	μΑ			
Latching current	V _T = 2.2 V	ΙL		5.0		mA			
Zero cross inhibit voltage	I _F = rated I _{FT}	V _{IH}		15	25	V			
Turn-on time	$V_{RM} = V_{DM} = V_{D(RMS)}$	t _{on}		35		μs			
Turn-off time	PF = 1.0, I _T = 300 mA	t _{off}		50		μs			
Critical rate of rise of off-state voltage	$V_D = 0.67 V_{DRM}, T_j = 25 ^{\circ}C$	dV/dt _{cr}	10000			V/µs			
	$V_D = 0.67 \ V_{DRM}, \ T_j = 80 \ ^{\circ}C$	dV/dt _{cr}	5000			V/µs			
Critical rate of rise of voltage at current commutation	$V_D = 0.67 V_{DRM}$, $dI/dt_{crq} \le 15 A/ms$, $T_j = 25 °C$	dV/dt _{crq}	10000			V/µs			
	$V_D = 0.67 V_{DRM},$ $dI/dt_{crq} \le 15 A/ms, T_j = 80 °C$	dV/dt _{crq}	5000			V/μs			
Critical rate of rise of on-state		dl/dt _{cr}	8.0			A/μs			
Thermal resistance, junction to ambient		R _{thJA}		125		K/W			
COUPLER									
Critical rate of rise of coupled input/output voltage	$I_T = 0 A$, $V_{RM} = V_{DM} = V_{D(RMS)}$	dV _{IO} /dt		10000		V/µs			
Common mode coupling capacitance		C _{CM}		0.01		pF			
Capacitance (input-output)	f = 1.0 MHz, V _{IO} = 0 V	C _{IO}		0.8		pF			
Isolation resistance	V _{IO} = 500 V, T _{amb} = 25 °C	R _{is}		≥ 10 ¹²		Ω			
	V _{IO} = 500 V, T _{amb} = 100 °C	R _{is}		≥ 10 ¹¹		Ω			
Trigger current	$V_D = 5.0 \text{ V}, \text{ F - versions}$	I _{FT}			1.2	mA			
	$V_D = 5.0 \text{ V}, \text{ H} - \text{versions}$	I _{FT}			2.0	mA			
	V _D = 5.0 V, M - versions	I _{FT}			3.0	mA			

Note

T_{amb} = 25 °C, unless otherwise specified.

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering. evaluation. Typical values are for information only and are not part of the testing requirements.

Vishay Semiconductors

Optocoupler, Phototriac Output, Zero Crossing

POWER FACTOR CONSIDERATIONS

A snubber is not needed to eliminate false operation of the TRIAC driver because of the high static and commutating dv/dt with loads between 1.0 and 0.8 power factors. When inductive loads with power factors less than 0.8 are being driven, include a RC snubber or a single capacitor directly across the device to damp the peak commutating dV/dt spike. Normally a commutating dV/dt causes a turning-off device to stay on due to the stored energy remaining in the turning-off device.

But in the case of a zero voltage crossing optotriac, the commutating dv/dt spikes can inhibit one half of the TRIAC from turning on. If the spike potential exceeds the inhibit voltage of the zero cross detection circuit, half of the TRIAC will be heldoff and not turn-on. This hold-off condition can be eliminated by using a snubber or capacitor placed directly across the optotriac as shown in Figure 1. Note that the value of the capacitor increases as a function of the load current. The hold-off condition also can be eliminated by providing a higher level of LED drive current. The higher LED drive provides a larger photocurrent which causes the phototransistor to turn-on before the commutating spike has activated the zero cross network. Figure 2 shows the

relationship of the LED drive for power factors of less than 1.0. The curve shows that if a device requires 1.5 mA for a resistive load, then 1.8 times 2.7 mA) that amount would be required to control an inductive load whose power factor is less than 0.3.

Fig. 1 - Shunt Capacitance vs. Load Current

TYPICAL CHARACTERISTICS

T_{amb} = 25 °C, unless otherwise specified

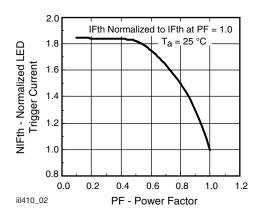


Fig. 2 - Normalized LED Trigger Current vs. Power Factor

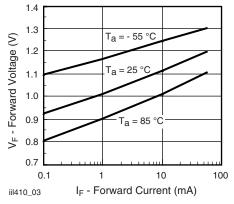


Fig. 3 - Forward Voltage vs. Forward Current

Optocoupler, Phototriac Output, Zero Crossing

Vishay Semiconductors

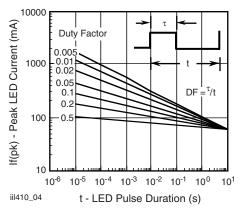


Fig. 4 - Peak LED Current vs. Duty Factor, Tau

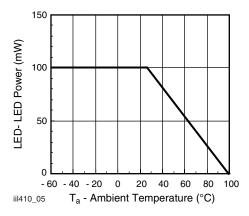


Fig. 5 - Maximum LED Power Dissipation

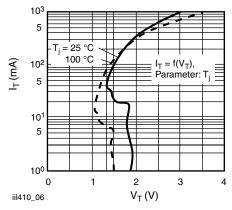


Fig. 6 - Typical Output Characteristics

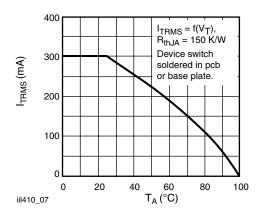


Fig. 7 - Current Reduction

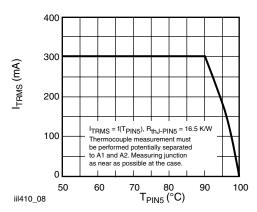


Fig. 8 - Current Reduction

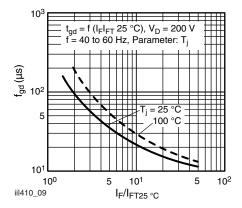


Fig. 9 - Typical Trigger Delay Time

Vishay Semiconductors

Optocoupler, Phototriac Output, Zero Crossing

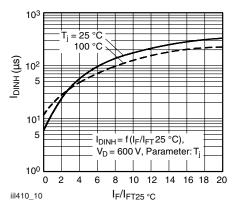


Fig. 10 - Typical Inhibit Current

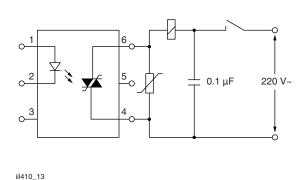


Fig. 13 - 1- Apply a Capacitor to the Supply Pins at the Load-Side

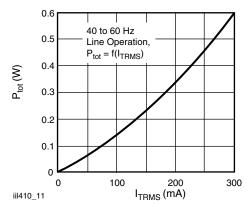


Fig. 11 - Power Dissipation 40 to 60 Hz Line Operation

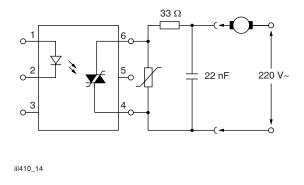


Fig. 14 - 2 - Connect a Series Resistor to the Output and Bridge Both by a Capacitor

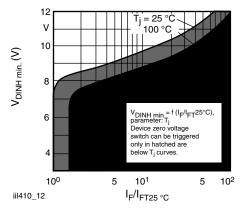


Fig. 12 - Typical Static Inhibit Voltage Limit

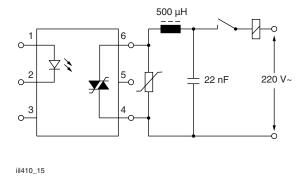
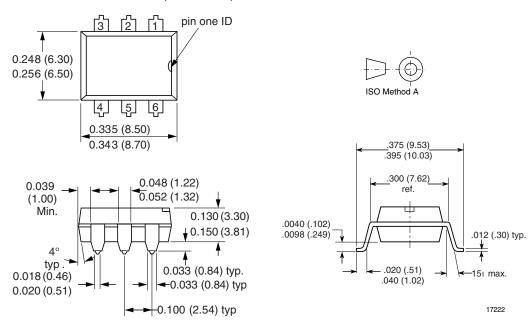
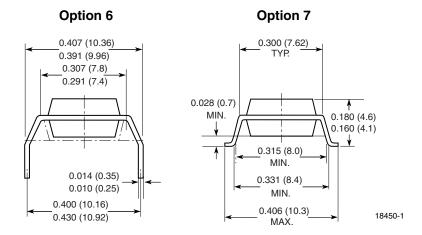


Fig. 15 - 3 - Connect a Choke of Low Winding Cap. in Series, e.g., a Ringcore Choke, with Higher Load Currents


Optocoupler, Phototriac Output, Zero Crossing


Vishay Semiconductors

TECHNICAL INFORMATION

See Application Note for additional information.

PACKAGE DIMENSIONS in inches (millimeters)

BRT21/22/23

Vishay Semiconductors

Optocoupler, Phototriac Output, Zero Crossing

OZONE DEPLETING SUBSTANCES POLICY STATEMENT

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively.
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 www.vishay.com
Revision: 08-Apr-05 1