
SIEMENS

1L101B

HIGH SPEED THREE STATE OPTOCOUPLER

NC T GATE 240 (6 10) (6 60) 260 GROUND لها (1 02) (1 27) (3.8) (203) (305) (012

Package Dimensions in Inches (mm)

FEATURES

- High Speed
- Faraday Shielded Photodetector Improves Common Mode Rejection
- DTL/TTL Compatible, 5 V Supply
- Three State Output Logic for Multiplexing
- Built-in Schmitt Trigger Avoids Oscillation
- UL Approval #E52744

DESCRIPTION

IL101B is an optically coupled pair with a Gallium Arsenide Phosphide LED and a silicon monolithic integrated circuit including a photodetector. High speed digital information can be transmitted while maintaining a high degree of electrical isolation between input and output The IL101B can be used to replace pulse transformers in many digital interface applications A built-in Schmitt Trigger provides hysteresis reducing oscillation possibility.

Maximum Ratings

Lead Solder Temperature

Input Diode Forward DC Current Reverse Voltage					
Output IC					
Supply Voltage (V _{cc}) .		 			7 V
Enable Input Voltage (V _F)					
(not to exceed V _{cc} by more than 5	500 mV)				55V
Output Collector Current (ic)					100 mA
Output Collector Power Dissipation		 •	 		100 mW
Output Collector Voltage (Vour) .		 			7 V
Isolation Voltage (Input-Output), DC		 			6000 V
Package					
Storage Temperature .			 	55°C to	+125°C
Operating Temperature				 0°C	to +70°C

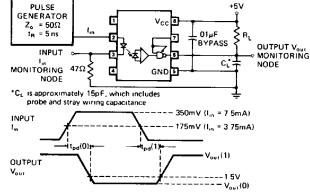
Electrical Characteristics (T_{amb}=0°C to 70°C)

		v an	סו	,	
Parameter I _{in} (1) – Logic (1) Input Current for Logic (0) Output	Min.	Тур.	Max.	Unit	Test Condition
(Figure 1) I _m (0) – Logic (0) Input Current for Logic (1) Output	12			mA	
(Figure 1) V _a (1) – Logic (1)			250	mA	
Gate Voltage V _a (0) – Logic (0)	20			٧	
Gate Voltage V _{our} (0) – Logic (0)			8	٧	
Output Voltage		35	6	V	V _{cc} =5 5 V, V _G =2 4 V, I _n =12 mA I _{sut} (sinking) =16 mA
I _{cc}		18	22	mA	V _{cc} = 55 V, V _G =05 V I_=0 10 mA

.260°C for 10 sec

T-41-89

Parameter Parameter	Min.	Тур.	Max.	Unit	Test Condition
t _{pe} (1) –					
Propagation					
Delay Time to					
Logic Level (1)					
(Fig. 1, Note 1)		175	300	ns	$R_L = 350 \Omega$, $C_L = 15 pF$,
t _{ar} (0)					I _m = 12 mA
Propagation					
Delay Time to					
Logic Level (0)					
• , ,		70	000		n
(Fig. 1, Note 2)		70	300	ns	$R_{L} = 350 \Omega, C_{L} = 15 pF,$ $I_{m} = 12 mA$
<u>է</u> լ- էլ(0) –					
Output Rise-					
Fall Time (10-90%)		15		ns	$R_{L}=350 \Omega$, $C_{L}=15 pF$, $I_{m}=12 mA$


Electrical Characteristics (T_{amb}=25°C) - Input to Output

Parameter Insulation Voltage Input-Output	Min.	Тур.	Max.	Unit	Test Condition
(BV ₁₀) (Note 3)	6000	7500		VDC	t = 1 sec.
Resistance, Input-Output (R ₁₋₂) (Note 3) Capacitance	1012			Ω	V _{1.0} = 500 V
input-Output (C ₁₋₀) (Note 3)	0.5	0.8		рF	f = 1 MHz

Electrical Characteristics (T_{amb}=25°C) - Input Diode

Parameter	Min.	Тур.	Max.	Unit	Test Condition
Forward Voltage					
(V _F)		15	175	ν	!_ = 10 mA
Reverse Breakdown					**1
Voltage (V _m)	5			V	l _a = 10 mA
Capacitance (I _n)		10		рF	$\vec{V} = 0$, $f = 1MHz$

FIGURE 1. TEST CIRCUIT FOR $t_{\rm pd}$ (0) AND $t_{\rm pd}$ (1)

Notes:

- The t_s(1) propagation delay is measured from the 3.75 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse
- The t_{st}(0) propagation delay is measured from the 3.75 mA point on the input pulse to the 1.5 V point on the leading edge of the output pulse 3. Pins 2 and 3 are shorted together, and pins 5, 6, 7, and 8 shorted
- together. 4. At 10 mA V_F decreases with increasing temperature at the rate of

OPERATING PROCEDURES AND DEFINITIONS

Logic Convention: The IL101B is defined in terms of positive logic.

Bypassing: A ceramic capacitor (.01mF min.) should be connected from pin 8 to pin 5 to stabilize the switching amplifier operation. Switching properties may be impaired by not providing for bypassing.

Polarities: All voltages are referenced to network ground (pin 5). Current flowing toward a terminal is considered positive.

Gate input: No external pull-up required for a logic (1).

TRUTH TABLE (Positive Logic)

Input*	Enable	Output
1	1	0
0	1	1
1	0	off
0	0	off

^{*}See definition of terms for logic state.