00341 Low Power 8-Bit Shift Register

FAIRCHILD

SEMICONDUCTOR

100341 Low Power 8-Bit Shift Register

General Description

The 100341 contains eight edge-triggered, D-type flip-flops with individual inputs (P_n) and outputs (Q_n) for parallel operation, and with serial inputs (D_n) and steering logic for bidirectional shifting. The flip-flops accept input data a setup time before the positive-going transition of the clock pulse and their outputs respond a propagation delay after this rising clock edge.

The circuit operating mode is determined by the Select inputs S_0 and S_1 , which are internally decoded to select either "parallel entry", "hold", "shift left" or "shift right" as described in the Truth Table. All inputs have 50 k Ω pull-down resistors.

Features

- 35% power reduction of the 100141
- 2000V ESD protection
- Pin/function compatible with 100141
- Voltage compensated operating range = -4.2V to -5.7V
- Available to industrial grade temperature range

Ordering Code:

Order Number	Package Number	Package Description
10034SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
100341PC	N24E	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide
100341QI	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100341QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (–40°C to +85°C)

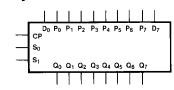
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Description

Logic Symbol

Pin Descriptions

CP


S₀, S₁

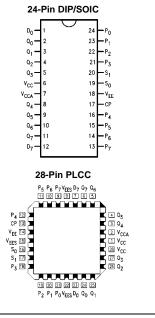
D₀, D₇

P₀-P₇

Q₀-Q₇

Pin Names

Clock Input


Select Inputs

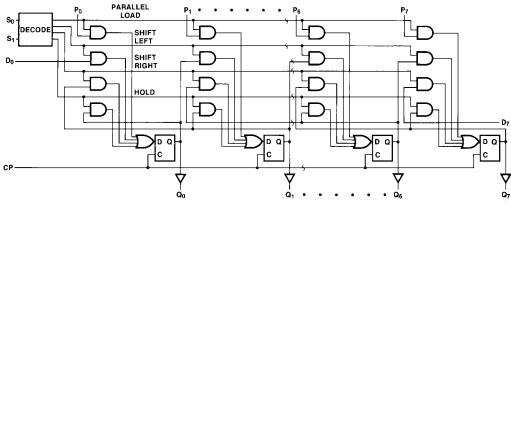
Serial Inputs

Parallel Inputs

Data Outputs

Connection Diagrams

© 2000 Fairchild Semiconductor Corporation DS009880


www.fairchildsemi.com

100341

Truth Table

Function		Inputs					Outputs						
Function	D ₇	D ₀	S ₁	S ₀	СР	Q ₇	Q_6	Q_5	Q_4	Q_3	Q ₂	Q ₁	Q_0
Load Register	Х	Х	L	L	~	P ₇	P ₆	P ₅	P ₄	P ₃	P ₂	P ₁	P ₀
Shift Left	Х	L	L	Н	~	Q ₆	Q_5	Q_4	Q ₃	Q ₂	Q ₁	Q ₀	L
Shift Left	Х	н	L	н	~	Q_6	Q_5	Q_4	Q_3	Q_2	Q ₁	Q_0	н
Shift Right	L	Х	Н	L	~	L	Q ₇	Q_6	Q_5	Q_4	Q ₃	Q ₂	Q ₁
Shift Right	н	х	н	L	~	н	Q ₇	Q_6	Q_5	Q_4	Q_3	Q_2	Q_1
Hold	Х	Х	Н	Н	Х								
Hold	Х	Х	Х	Х	н	No Change							
Hold	х	Х	Х	Х	L								

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 1)

Storage Temperature (T_{STG}) Maximum Junction Temperature (T_J) V_{EE} Pin Potential to Ground Pin Input Voltage (DC) Output Current (DC Output HIGH) ESD (Note 2) $\begin{array}{l} -65^{\circ}\text{C to} +150^{\circ}\text{C} \\ +150^{\circ}\text{C} \\ -7.0\text{V to} +0.5\text{V} \\ \text{V}_{\text{EE}} \text{ to} +0.5\text{V} \\ -50 \text{ mA} \\ \geq 2000\text{V} \end{array}$

Recommended Operating Conditions

Case Temperature (T _C)	
Commercial	0°C to +85°C
Industrial	$-40^{\circ}C$ to $+85^{\circ}C$
Supply Voltage (V _{EE})	-5.7V to -4.2V

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Min	Тур	Max	Units	Co	onditions		
V _{он}	Output HIGH Voltage	-1025	-955	-870	mV	$V_{IN} = V_{IH}$ (Max)	Loading with		
/ _{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	or V _{IL} (Min)	50 Ω to –2.0V		
/ _{онс}	Output HIGH Voltage	-1035			mV	$V_{IN} = V_{IH}$ (Min)	Loading with		
/ _{OLC}	Output LOW Voltage			-1610	mV	or V _{IL} (Max) 50Ω to			
V _{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal			
						for all Inputs			
V _{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Sign	nal		
						for all Inputs			
IL	Input LOW Current	0.50			μΑ	$V_{IN} = V_{IL}$ (Min)			
н	Input HIGH Current			240	μΑ	$V_{IN} = V_{IH}$ (Max)			
IEE	Power Supply Current					Inputs OPEN			
		-157		-75	mA	$V_{\mbox{\scriptsize EE}} = -4.2 \mbox{V}$ to $-4.8 \mbox{V}$			
		-167		-75	mA	$V_{EE} = -4.2V$ to $-5.7V$			

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter		T _C =	= 0°C	$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Units	Conditions
Symbol	Faialle	Min	Max	Min	Max	Min	Max	Units	Conditions	
f _{MAX}	Max Clock Frequency	/	400		400		400		MHz	Figures 2, 3
^I PLH ^I PHL	Propagation Delay CP to Output		0.90	1.90	1.00	2.00	1.00	2.10	ns	Figures 1, 3 (Note 4)
^і тін	Transition Time 20% to 80%, 80% to	20%	0.35	1.30	0.35	1.30	0.35	1.30	ns	Figures 1, 3
ts	Setup Time	D _n , P _n S _n	0.65 1.60		0.65 1.60		0.65 1.60		ns	Simon 4
t _H	Hold	D _n , P _n S _n	0.80 0.60		0.80 0.60		0.80 0.60		ns	Figure 4
t _{PW} (H)	Pulse Width HIGH	CP	2.00		2.00		2.00		ns	Figure 3

100341

100341

Commercial Version (Continued) SOIC and PLCC AC Electrical Characteristics

$V_{FF} = -4.2V$ to $-5.7V$, $V_{CC} = V_{CCA} = GND$	

Symbol	Parameter		T _C =	0°C	$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Units	Conditions
Cymbol			Min	Max	Min	Max	Min	Max	onita	conditions
f _{MAX}	Maximum Clock Frequency		425		425		425		MHz	Figures 2, 3
t _{PLH}	Propagation Delay		0.90	1.70	1.00	1.80	1.00	1.90	ns	Figures 1, 3
t _{PHL}	CP to Output		0.50	1.70	1.00	1.00	1.00	1.50	115	(Note 5)
t _{TLH}	Transition Time		0.35	1.20	0.35	1.20	0.35	1.20	ns	Figures 1, 3
t _{THL}	20% to 80%, 80% to 20%		0.55	1.20	0.55	1.20	0.55	1.20	115	riguies 1, 5
ts	Setup Time	D _n , P _n	0.55		0.55		0.55		ns	
		Sn	1.50		1.50		1.50		115	Figure 4
t _H	Hold Time	D _n , P _n	0.70		0.70		0.70		ns	Tigure 4
		Sn	0.50		0.50		0.50		115	
t _{PW} (H)	Pulse Width HIGH CP		2.00		2.00		2.00		ns	Figure 3
t _{OSHL}	Maximum Skew Common E	dge								PLCC Only
	Output-to-Output Variation			200		200		200	ps	(Note 6)
	Clock to Output Path									
t _{OSLH}	Maximum Skew Common Edge									PLCC Only
	Output-to-Output Variation			200		200		200	ps	(Note 6)
	Clock to Output Path									
t _{OST}	Maximum Skew Opposite E	dge								PLCC Only
	Output-to-Output Variation			250		250		250	ps	(Note 6)
	Clock to Output Path									
t _{ps}	Maximum Skew								1	PLCC Only
	Pin (Signal) Transition Varia	tion		250		250		250	ps	(Note 6)
	Clock to Output Path									

Note 5: The propagation delay specified is for the switching of a single output. Delays may vary up to 0.40 ns if multiple outputs are switching simultaneously. Note 6: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design

www.fairchildsemi.com

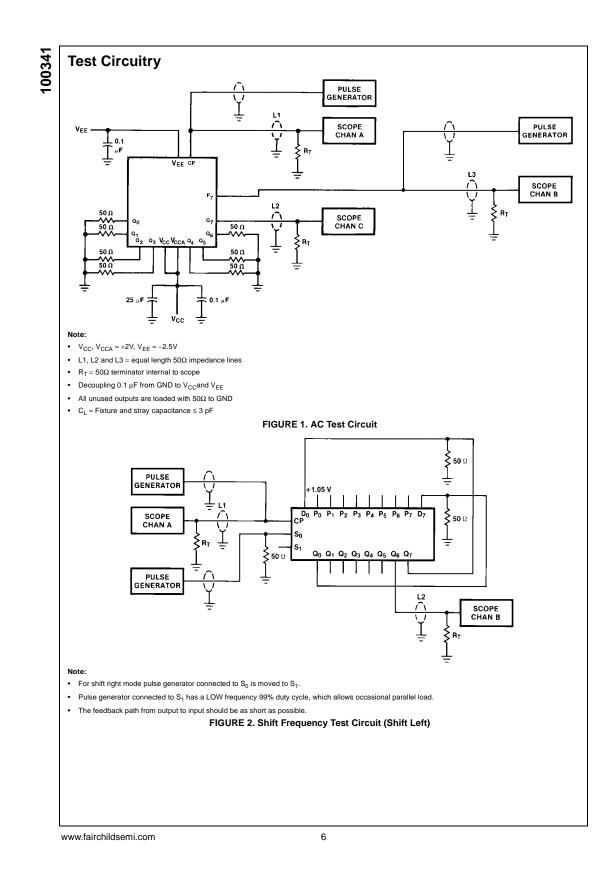
PLCC DC Electrical Characteristics (Note 7)

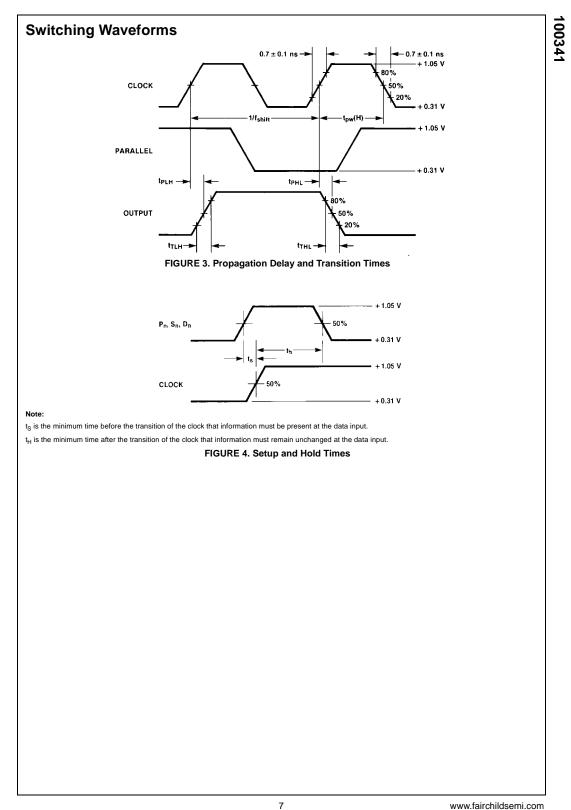
 $V_{EE} = -4.2V \text{ to } -5.7V, V_{CC} = V_{CCA} = \text{GND}, T_{C} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$

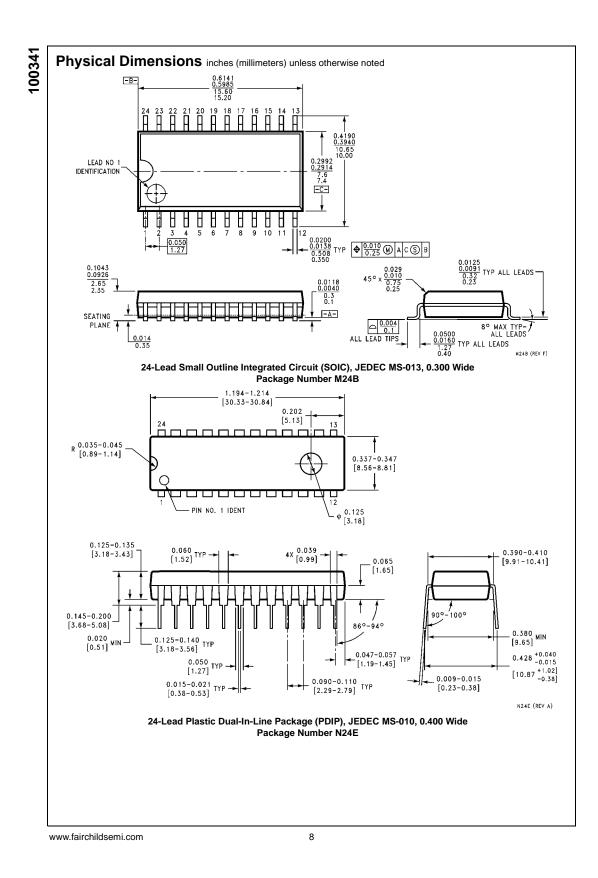
Symbol	Parameter	T _C = -	–40°C	$T_C = 0^{\circ}C$	to +85°C	Units	Conditions			
Symbol	Farameter	Min	Max	Min	Max	Units	Conditions			
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$V_{IN} = V_{IH}(Max)$	Loading with		
V _{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV	or V _{IL} (Min)	50Ω to -2.0V		
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	V _{IN} = V _{IH} (Min)	Loading with		
V _{OLC}	Output LOW Voltage		-1565		-1610	mV	or V _{IL} (Max)	50Ω to $-2.0V$		
V _{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal			
							for all Inputs			
VIL	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW S	Signal		
							for all Inputs			
I _{IL}	Input LOW Current	0.50		0.50		μA	$V_{IN} = V_{IL}$ (Min)			
I _{IH}	Input HIGH Current		240		240	μA	$V_{IN} = V_{IH}$ (Max)			
I _{EE}	Power Supply Current						Inputs OPEN			
		-157	-75	-157	-75	mA	$V_{EE} = -4.2V$ to -4.8	3V		
		-167	-75	-167	-75	mA	$V_{EE} = -4.2V$ to -5.7	7V		

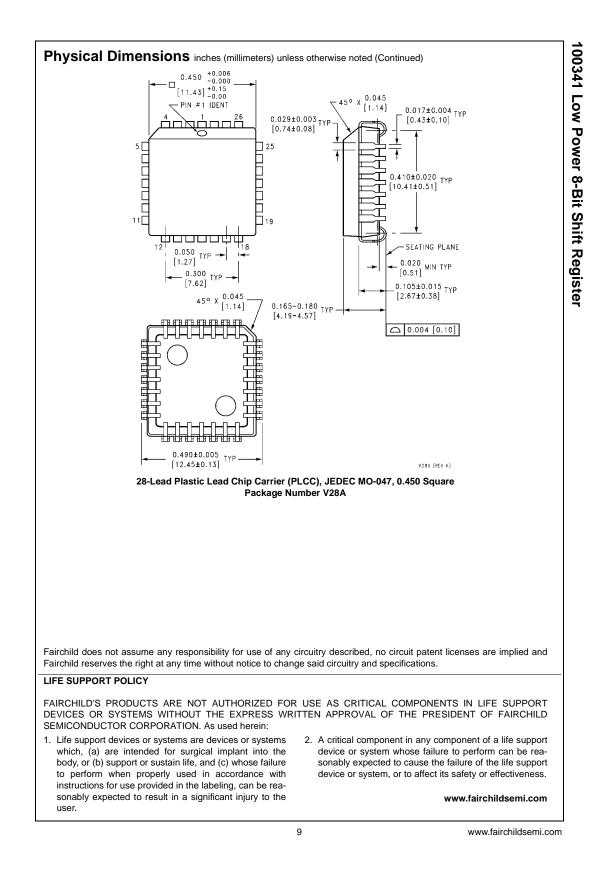
Note 7: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics


 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$


Symbol	Parameter		T _C = -	$T_C = -40^{\circ}C$		$T_C = +25^{\circ}C$		+85°C	Units	Conditions
	Faramete	Min	Max	Min	Max	Min	Max	Units	Conditions	
f _{MAX}	Max Clock Frequency		425		425		425		MHz	Figures 2, 3
t _{PLH}	Propagation Delay		0.90	1.80	1.00	1.80	1.00	1.90	ns	Figures 1, 3
t _{PHL}	CP to Output		0.50	1.00	1.00	1.00	1.00	1.50		(Note 8)
t _{TLH}	Transition Time		0.30	1.90	0.35	1.20	0.35	1.20	ns	Figures 1, 3
t _{THL}	20% to 80%, 80% to 20	o to 80%, 80% to 20%		1.50	0.55	1.20	0.00	1.20	113	rigules 1, 5
t _S	Setup Time	D _n , P _n	0.60		0.55		0.55		ns	
		Sn	1.70		1.50		1.50			Figure 4
t _H	Hold Time	D _n , P _n	0.90		0.70		0.70		ns	Tigule 4
		Sn	0.50		0.50		0.50			
t _{PW} (H)	Pulse Width HIGH	CP	2.00		2.00		2.00		ns	Figure 3


Note 8: The propagation delay specified is for the switching of a single output. Delays may vary up to 0.40 ns if multiple outputs are switching simultaneously.


100341

www.fairchildsemi.com

