

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
$\Omega=$ LOW-to-HIGH Transition

Logic Diagram

Absolute Maximum Ratings(Note 1)
Storage Temperature ($\mathrm{T}_{\text {STG }}$)
Maximum Junction Temperature (T_{J})
V_{EE} Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
ESD (Note 2)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
-7.0 V to +0.5 V
V_{EE} to +0.5 V
$-50 \mathrm{~mA}$
$\geq 2000 \mathrm{~V}$

Recommended Operating Conditions

Case Temperature (T_{C})

Commercial	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Supply Voltage (V_{EE})
-5.7 V to -4.2 V
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	Loading with
V_{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	or V_{IL} (Min)	50Ω to -2.0V
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage	-1035			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Min})$	Loading with
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610	mV	or $\mathrm{V}_{\text {IL }}$ (Max)	50Ω to -2.0 V
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for all Inputs	
$\overline{\mathrm{V} \text { IL }}$	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for all Inputs	
I_{IL}	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min)	
IIH	Input HIGH Current			240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$	
l_{EE}	Power Supply Current	$\begin{aligned} & -157 \\ & -167 \end{aligned}$		$\begin{aligned} & -75 \\ & -75 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	Inputs OPEN $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DIP AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {MAX }}$	Max Clock Frequency	400		400		400		MHz	Figures 2, 3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay CP to Output	0.90	1.90	1.00	2.00	1.00	2.10	ns	Figures 1, 3 (Note 4)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.30	0.35	1.30	0.35	1.30	ns	Figures 1, 3
t_{S}	Setup Time D_{n}, P_{n} S_{n}	$\begin{aligned} & 0.65 \\ & 1.60 \end{aligned}$		$\begin{aligned} & \hline 0.65 \\ & 1.60 \end{aligned}$		$\begin{aligned} & 0.65 \\ & 1.60 \end{aligned}$		ns	Figure 4
t_{H}	Hold D_{n}, P_{n} S_{n}	$\begin{aligned} & 0.80 \\ & 0.60 \end{aligned}$		$\begin{aligned} & \hline 0.80 \\ & 0.60 \end{aligned}$		$\begin{aligned} & 0.80 \\ & 0.60 \end{aligned}$		ns	Figure 4
$\mathrm{t}_{\text {PW }}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figure 3

Note 4: The propagation delay specified is for the switching of a single output. Delays may vary up to 0.40 ns if multiple outputs are switching simultaneously.

Commercial Version (Continued) SOIC and PLCC AC Electrical Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\dagger_{\text {max }}$	Maximum Clock Frequency	425		425		425		MHz	Figures 2, 3
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation Delay CP to Output	0.90	1.70	1.00	1.80	1.00	1.90	ns	Figures 1, 3 (Note 5)
$\begin{array}{\|l\|l\|} \hline t_{\text {TLH }} \\ t_{T H L} \end{array}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.20	0.35	1.20	0.35	1.20	ns	Figures 1, 3
$\mathrm{t}_{\text {s }}$	$\begin{array}{ll}\text { Setup Time } & D_{n}, P_{n} \\ & S_{n}\end{array}$	$\begin{aligned} & \hline 0.55 \\ & 1.50 \end{aligned}$		$\begin{aligned} & \hline 0.55 \\ & 1.50 \end{aligned}$		$\begin{aligned} & \hline 0.55 \\ & 1.50 \end{aligned}$		ns	
t_{H}	Hold Time $\begin{array}{ll} \\ & D_{n}, P_{n} \\ S_{n}\end{array}$	$\begin{aligned} & 0.70 \\ & 0.50 \end{aligned}$		$\begin{aligned} & \hline 0.70 \\ & 0.50 \end{aligned}$		$\begin{aligned} & 0.70 \\ & 0.50 \end{aligned}$		ns	Figure 4
${ }_{\text {tpw }}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figure 3
toshl	Maximum Skew Common Edge Output-to-Output Variation Clock to Output Path		200		200		200	ps	$\begin{array}{\|l} \hline \text { PLCC Only } \\ \text { (Note 6) } \end{array}$
tosth	$\begin{aligned} & \text { Maximum Skew Common Edge } \\ & \text { Output-to-Output Variation } \\ & \text { Clock to Output Path } \end{aligned}$		200		200		200	ps	$\begin{aligned} & \hline \text { PLCC Only } \\ & \text { (Note 6) } \end{aligned}$
tost	Maximum Skew Opposite Edge Output-to-Output Variation Clock to Output Path		250		250		250	ps	$\begin{aligned} & \text { PLCC Only } \\ & \text { (Note 6) } \end{aligned}$
t_{ps}	Maximum Skew Pin (Signal) Transition Variation Clock to Output Path		250		250		250	ps	$\begin{aligned} & \text { PLCC Only } \\ & \text { (Note 6) } \end{aligned}$
Note 5: The propagation delay specified is for the switching of a single output. Delays may vary up to 0.40 ns if multiple outputs are switching simultaneously. Note 6: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (toshL), or LOW-to-HIGH (tosLh), or in opposite directions both HL and $\mathrm{LH}\left(\mathrm{t}_{\mathrm{OST}}\right)$. Parameters $\mathrm{t}_{\mathrm{OST}}$ and t_{PS} guaranteed by design									

Industrial Version								
PLCC DC Electrical Characteristics (Note 7)								
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$								
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
		Min	Max	Min	Max			
V_{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\operatorname{Max}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\operatorname{Min}) \end{aligned}$	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1575	-1830	-1620	mV		
$\mathrm{V}_{\text {OHC }}$	Output HIGH Voltage	-1095		-1035		mV	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Min}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\mathrm{Max}) \end{aligned}$	Loading with 50Ω to -2.0 V
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage		-1565		-1610	mV		
V_{IH}	Input HIGH Voltage	-1170	-870	-1165	-870	mV	Guaranteed HIGH Signal for all Inputs	
$\overline{\mathrm{V} \text { IL }}$	Input LOW Voltage	-1830	-1480	-1830	-1475	mV	Guaranteed LOW Signal for all Inputs	
$\overline{I_{L L}}$	Input LOW Current	0.50		0.50		$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}}$ (Min)	
I_{IH}	Input HIGH Current		240		240	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ (Max)	
l_{EE}	Power Supply Current	$\begin{aligned} & -157 \\ & -167 \end{aligned}$	$\begin{aligned} & -75 \\ & -75 \end{aligned}$	$\begin{aligned} & -157 \\ & -167 \end{aligned}$	$\begin{aligned} & -75 \\ & -75 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	Inputs OPEN$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

Note 7: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {MAX }}$	Max Clock Frequency	425		425		425		MHz	Figures 2, 3
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to Output	0.90	1.80	1.00	1.80	1.00	1.90	ns	Figures 1, 3 (Note 8)
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.30	1.90	0.35	1.20	0.35	1.20	ns	Figures 1, 3
t_{s}	$\begin{array}{ll}\text { Setup Time } & \mathrm{D}_{\mathrm{n}}, \mathrm{P}_{\mathrm{n}} \\ & \mathrm{S}_{\mathrm{n}}\end{array}$	$\begin{aligned} & \hline 0.60 \\ & 1.70 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.55 \\ & 1.50 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.55 \\ & 1.50 \end{aligned}$		ns	Figure
t_{H}	Hold Time $\mathrm{D}_{\mathrm{n}}, \mathrm{P}_{\mathrm{n}}$ S_{n}	$\begin{aligned} & \hline 0.90 \\ & 0.50 \end{aligned}$		$\begin{aligned} & 0.70 \\ & 0.50 \end{aligned}$		$\begin{aligned} & \hline 0.70 \\ & 0.50 \end{aligned}$		ns	Figure
$\mathrm{t}_{\text {PW }}(\mathrm{H})$	Pulse Width HIGH CP	2.00		2.00		2.00		ns	Figure 3

Note:

- $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
- L1, L2 and L3 = equal length 50Ω impedance lines
- $\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
- Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
- All unused outputs are loaded with 50Ω to GND
- $\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 1. AC Test Circuit

Note:

- For shift right mode pulse generator connected to S_{0} is moved to S_{1}.
- Pulse generator connected to S_{1} has a LOW frequency 99% duty cycle, which allows occasional parallel load.
- The feedback path from output to input should be as short as possible.

FIGURE 2. Shift Frequency Test Circuit (Shift Left)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
