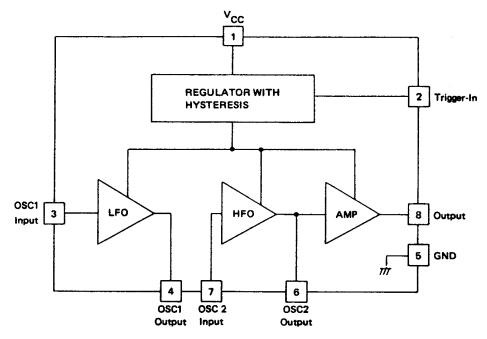

DBL 5001/2

TONE RINGER

The oscillator frequencies can be adjusted over a wide range by selection of external components

☐ FEATURES

- O Designed telephone bell replacement
- O Adjustable 2-frequency tone
- O Low current drain
- Built-in hysteresis prevents false triggering and rotary dial "Chirp"
- O External triggering ringer disable(5001)
- O Adjustable for reduced supply initiation current(5002)


□ APPLICATIONS

- O Telephone tone ringers
- O Alarms or other alerting devices
- O Extension tone ringer modules

Characteristics	Symbol	Rating	Unit	
Supply Voltage	V _{CC}	30	V	
Power Dissipation	P _D 400		mW	
Operating Temperature	Topr	Topr −45~+65		
Storage Temperature	Pstg	-65~+150	°C	

☐ BLOCK DIAGRAM

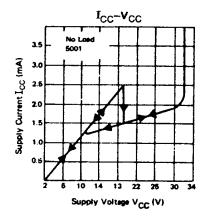
LFO: Low Frequency Osc. HFO: High Frquency Osc.

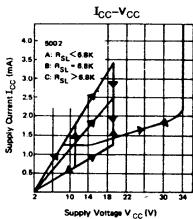
Pin 3, 4: Low Frequency Time Constant Pin 6, 7: High Frequency Time Constant

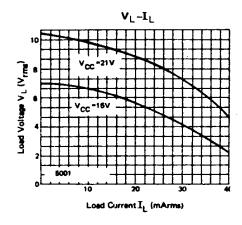
☐ ELECTRICAL CHARACTERISTICS

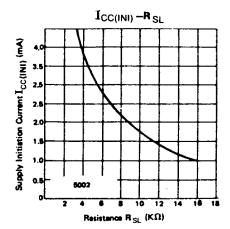
(Unless otherwise specified, Ta = 25°C)

Characteristic	Symbol	Test condition	Min.	Тур.	Max.	Unit
Operating Supply Voltage	V _{CC}	_	_		29	٧
Initiation Supply Voltage	V _{CC(INI)}	Trigger-In Open, No Load	17	19	21	٧
Sustaining Voltage	V _{SUS}	Trigger-In Open, No Load	9.7	11	13	٧
Initiation Supply Current	I _{CC(INI)}	$R_{SL} = 6.8 \text{K}\Omega(5002)$	1.4	2.5	4.2	mA
Sustaining Current	I _{SUS}	Vcc = Vsus, No Load	0.7	1.2	_	mA
Trigger Voltage	V _{TR}	5001	10.5	11	-	٧
Trigger Current	I _{TR}	5001	10	20	1000	μΑ
Disable Voltage	V _{DIS}	5001	_	0.4	0.8	٧
Disable Current	I _{DIS}	5001	-40	-50	_	μΑ
Output Voltage	Vout	V _{CC} =21V, No Load	17	19	21	٧
Oscillator Frequency Tolerance	Δf_{O}	-	_	-	±7	%

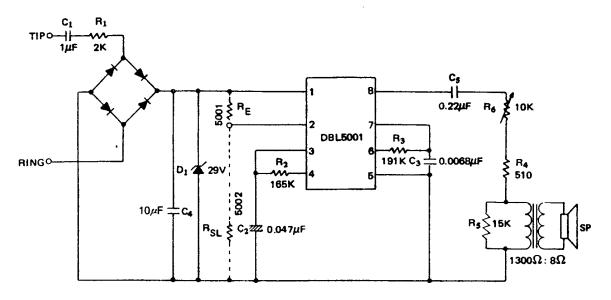

^{*}Regulator circuit has built-in hysteresis to prevent false triggering and rotary dial "Chirps".


DBL 5001/2


☐ ELECTRICAL CHARACTERISTICS (continued)

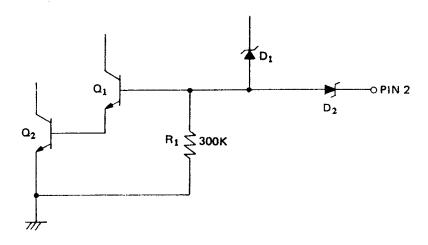

- *1. Initiation supply voltage V CC(INI) must be exceeded to trigger oscillation.
- 2. Sustaining voltage(V_{SUS}) is the supply voltage required to maintain oscillation.
- 3. Trigger voltage(V_{TR}) and trigger current(I_{TR}) are the conditions applied to trigger in to start oscillation for V_{SUS} \leq V_{CC} \leq V_{CC(INI)}.
- 4. Disable voltage(V_{DIS}) and disable current(I_{DIS}) are the conditions applied to trigger in to inhibit oscillation for $V_{CC(IINI)}$ (V_{CC}
- 5. Trigger current must be limited to this value externally.
- 6. Oscillator frequencies are given by equations:
 - \circ f_L = 1/(1.234RC) where R is the resistance connected between pins 3 and 4, and C is the capacitance connected between pin 3 and ground.
 - O f_{H1} = 1/(1.515RC) where R is the resistance connected between pins 6 and 7, and C is capacitance connected between pin 6 and ground.
 - Norminal rate(fha) is the HFO when the output of LFO is high
 - \bigcirc f_{H2} = 1.25f_{H1}, higher rate(f_{H2}) is the HFO when the output of LFO is low.

TYPICAL PERFORMANCE CHARACTERISTICS



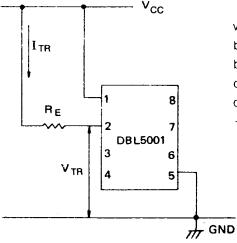
APPLICATION CIRCUITS AND INFORMATION

1. Typical Tone Ringer


The AC ringing voltage appears across the TIP and RING inputs of the circuit and is attenuated by capacitor (C_1) and resistor (R_1). C_1 also provides isolation from DC voltages (48V) on the line. After full wave rectification by the bridge, the waveform is filtered by capacitor (C_4) to provide a DC sypply for Tone Ringer chip. As this voltage exceeds the initiation voltage V_{CCIIND} oscillation starts. With the components shown, the output frequency chops between f_{H1} and f_{H2} at a f_L rate. The loudspeaker load is coupled through a 1300 Ω to 8 Ω transformer. To prevent DC power supply regulation problems due to high source impedance of the telephone line and coupling components C_1 and C_2 , while the output impedance of the 5001 circuit is qutie low, the load impedancd must be kept fairly high. The output coupling capacitor (C_5) is required with transformer coupled loads. The variable resistor (C_5) is used to adjust the audio amplitude and resistor (C_5) is a current limiting resistor. Resistor C_5 is a quenching resistor used to limit back emf generated by the inductive load when ringing stops. When driving a piezo-ceramic transducer type load, the coupling capacitor (C_5) is not required. However, a current limiting resistor is required as is a 29V zener diode in parallel with the transducer. This diode limits the voltage transients than can be generated by mechanical shocking of piezo-ceramic transducer.

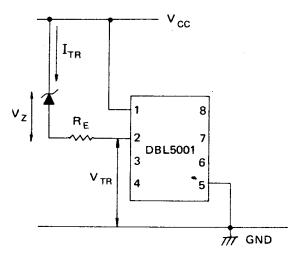
In the 5002 circuit, the initiation supply current I $_{CC(INI)}$ can be changed by using external resistor(R $_{SL}$). The resistor (R $_{SL}$) is connected to GND from pin2. As this initiation voltage remains constant independent of R $_{SL}$, the supply initiation current f $_{CC(INI)}$ varies inversely with R $_{SL}$. Thus, increasing the value of R $_{SL}$ will decrease the amount of AC ringing current required to trigger the device. R $_{SL}$ can also be used to compensated for smaller AC line coupling capacitors which can be used to alter the ringer equivalence number of a tone ringer circuit I $_{CC}$ -V $_{CC}$ (5002) graph in typical performance characteristic illustrates the variation of supply current with supply voltage. Curve B(R $_{SL}$ = 6.8K $_{OL}$) shows the I $_{CC}$ -V $_{CC}$ characteristic for 5001 circuit Tone Ringer. Curve A is a plot with R $_{SL}$ < 6.8K $_{OL}$ and shows a increase in the current drawn up to the initiation voltage V $_{CC(INI)}$. The I $_{CC}$ -V $_{CC}$ characteristic after initiation remains unchanged. Curve C shows the effect of increasing R $_{SL}$ above 6.8K $_{OL}$. Initiation current decreases but again current after triggering is unchanged.

DBL 5001/2

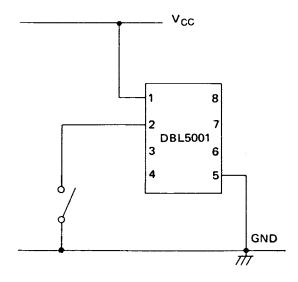

☐ APPLICATION CIRCUITS AND INFORMATION(continued)

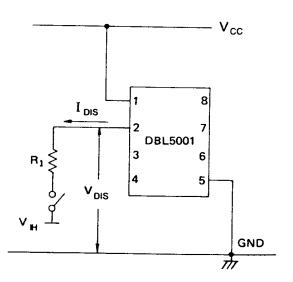
2. Pin 2 Input Equivalent Circuit(5001)

Usually pin 2 is used at an open state, but in the 5001 circuit the trigger in terminal may be used to externally trigger osciallation for voltage in the range $V_{SUS} \leq V_{CC} \leq V_{CC(INI)'}$ or disable ringer operation. The ringer circuit can only oscillate when Q_1 and Q_2 are conducting. Normally when supply voltageV conducts exceeds the supply initiation voltage $V_{CC(INI)}$ base Current flows into Q_1 via D_1 causing Q_1 and Q_2 conduct. This continues until V_{CC} is taken below the minimum sustaining voltage(V_{SUS})


3. Enabling Oscillation of the 5001 circuit for Supply Voltages less than V CC(INI)-

The 5001 Circuit can oscillate when powered from supply voltages in the range $V_{SUS} \leqq V_{CC} \leqq V_{CC(INI)}$. Oscillation is ensured by forcing a current $I_{TR}(10\mu\text{A}\leqq I_{TR}\leqq 1\text{mA})$ into pin 2 should be exceeded V_{TR} by the sum of zener voltage of D_3 , the V_{BE} of Q_1 and the V_{BE} of Q_2 (Typ. 11V). The required current drive can be provided by connecting a resistor $R_E(20\text{K}\Omega \leqq R_E \leqq (V_{CC}-11)/10\text{M}\Omega)$ bewteen pin1 and V_{CC} .


☐ APPLICATION CIRCUITS AND INPORMATION(continued)


4. Reducing the Effective Value of V_{CC(INI)} for the 5001 circuit.

To operate the 5001 circuit from a DC 12V supply, R_E should be typically $50 \text{K}\Omega$. This operation can also be used to reduce the effective value of the V $_{\text{CC(INI)}}$, by inserting a zener diode in series with R_E. Then, this initiating voltage V $_{\text{CC(INI)}}$ is V $_{\text{IR}} + \text{V}_{\text{Z}} + 10 \text{R}_{\text{E}}$.

5. Inhibiting Oscillation of the 5001 circuit.

When the 5001 circuit is oscillating, this circuit may be inhibited for voltage in the range $V_{CC(INI)} < V_{CC} \le V_{CC(MAX.)}$ by sinking the current from D_1 , starving Q_1 of base current. This is achieved by either grounding pin 2 or applying a voltage V_{IH} via a resistor R_1 to pin 2.