

CMOS Single-Supply Rail-to-Rail Input/Output Operational Amplifier

OP150/OP250/OP450

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

quad is available in 14-pin DIPs, TSSOP and narrow 14-pin SO

packages. Consult factory for TSSOP availability.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700 Fax: 617/326-8703

OP150/OP250/OP450-SPECIFICATIONS

$\hline \textbf{ELECTRICAL CHARACTERISTICS} \quad (@V_S = +3.0 \text{ V}, V_{CM} = 0.05 \text{ V}, V_O = 1.4 \text{ V}, T_A = +25 ^{\circ}\text{C}, \text{ unless otherwise noted})$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage OP150	V _{OS}				5	mV
OS - 11 1 OD250/OD450	***	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			_	mV
Offset Voltage OP250/OP450	V _{OS}	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			5	mV mV
Input Bias Current	I_{B}	$-40 \text{ C} \le 1_{\text{A}} \le +123 \text{ C}$		10	60	pA
input Bias Current	1B	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		10	00	pA pA
Input Offset Current	I_{OS}	10 C = 1A= +125 C		25		pA pA
1		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$				pA
Input Voltage Range			0		3	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 \text{ V to } 3 \text{ V}$	60			dB
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$				dB
Large Signal Voltage Gain	A_{VO}	$R_L = 10 \text{ k}\Omega, V_O = 0.3 \text{ V to } 2.7 \text{ V}$		40		V/mV
Lhan Signal Valtada Chia	1	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		1.6		V/mV
Large Signal Voltage Gain Large Signal Voltage Gain	AVO	$R_L = 2 \text{ k}\Omega, V_O = 0.3 \text{ V to } 2.7 \text{ V}$ $R_L = 1 \text{ k}\Omega, V_O = 0.3 \text{ V to } 2.7 \text{ V}$		16 10		V/mV V/mV
Offset Voltage Duft	$\begin{pmatrix} A_{VO} \\ \Delta V_{SS}/\Delta T \end{pmatrix}$	$R_L = 1 \text{ K22}, V_0 = 0.3 \text{ V to } 2.7 \text{ V}$		10		μV/°C
Bias Current Drift	$\Delta I_{\rm B}/\Delta I$					pA/°C
Offset Current Drift	$\Delta I_{OS}/\Delta T$		_			pA/°C
			/			
OUTPUT CHARACTERISTICS		$I_L \downarrow 100 \mu A$	2.95	\int_{299}	_	V
Output Voltage High	VOH	100 JA 40°C to +125°C	£.93	299		W
		$I_{L} = 10 \text{ mA}$		2.95		/ _V
		-40°C to +125°C		2.,,,	/ /	$\sqrt{}$
Output Voltage Low	V_{OL}	$I_L = 100 \mu\text{A}$		2 / /	10 /	mV
	l or	-40°C to +125°C		-	- /	m₩
		$I_L = 10 \text{ mA}$		30	55 /	<u>L</u> mV
		−40°C to +125°C			_	$m\nabla$
Output Current	I_{OUT}			±250		mA
		-40°C to +125°C				mA
Open Loop Impedance	Z _{OUT}	$f = 1 \text{ MHz}, A_V = 1$				Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 2.7 \text{ V to 6 V}$	70			dB
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	68			dB
Supply Current/Amplifier	I_{SY}	$V_O = 0 V$		500	600	μΑ
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		650		μΑ
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$		2.7		V/µs
Settling Time	$t_{\rm S}$	To 0.01%				μs
Gain Bandwidth Product	GBP			2		MHz
Phase Margin	Øо			75		Degrees
Channel Separation	CS	$f = 1 \text{ kHz}, R_L = 10 \text{ k}\Omega$				dB
NOISE PERFORMANCE						
Voltage Noise	e n-n	0.1 Hz to 10 Hz				μV p-p
Voltage Noise Density	e _n p-p e _n	f = 1 kHz		55		nV/\sqrt{Hz}
Current Noise Density	i _n			55		pA/\sqrt{Hz}
- Carrent 1.0150 Delibity	*n					Printing

Specifications subject to change without notice.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

REV.0

$\hline \textbf{ELECTRICAL CHARACTERISTICS} \ (@V_S = +5.0 \ \text{V}, \ V_{CM} = 0.05 \ \text{V}, \ V_O = 1.4 \ \text{V}, \ T_A = +25 \ \text{°C}, \ unless \ otherwise \ noted)$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage OP150	V_{OS}	400G 4 T 4 1250G			5	mV
Offset Voltage OP250/OP450	V_{OS}	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			5	mV mV
Offset Voltage OF 250/OF 450	VOS	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			3	mV
Input Bias Current	I_{B}	10 0 = 1A = 1120 0		30	50	pA
•	_	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			60	pA
Input Offset Current	I_{OS}	4000		0.1	8	pA
Innut Waltaga Danga		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	0		16 5	pA V
Input Voltage Range Common Mode Rejection Ratio	CMRR	$V_{CM} = 0 \text{ V to 5 V}$	60		3	dB
amon/vioce rejection relate		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$				dB
Large Signal Voltage Gain	A_{VO}	$R_L = 10 \text{ k}\Omega, V_O = 0.3 \text{ V to } 4.7 \text{ V}$		40		V/mV
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$				V/mV
Large Signal Voltage Gain	(A _{VO})	$R_L = 2 \text{ k}\Omega, V_O = 0.3 \text{ V to } 2.7 \text{ V}$		16		V/mV
Large Signal Voltage Sain	Avo	$R_{\rm L} = 1 \text{ kQ}$, $V_{\rm O} = 0.3 \text{ V to } 2.7 \text{ V}$		10		V/mV
Offset Voltage Drift	$\Delta V_{OS}\Delta T$	$40^{\circ}C \leq T \leq +\sqrt{25^{\circ}C}$		1.5 100		μV/°C
Bias Current Drift Offset Current Drift	$\Delta I_{OS}/\Delta T$ $\Delta I_{OS}/\Delta T$ $\Delta I_{OS}/\Delta T$			20		pA/°C pA/°C
	OS/2/1	\		20		pA/ C
OUTPUT CHARACTERISTICS			_ `		\supset \sim	
Output Voltage High	V_{OH}	$I_{\perp} = 100 \mu \text{A}$	7	4.99	~ / ~	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		$\begin{array}{c c} -40^{\circ}\text{C to} + 125^{\circ}\text{C} \\ I_{L} = 10 \text{ mA} \end{array}$	7	4.96		V
		$I_L = 10 \text{ mA}$ -40°C to +125°C	-	14.90	/ ~	V
Output Voltage Low	V_{OL}	$I_{L} = 100 \mu\text{A}$	\longrightarrow	/ 2/		m\/
output vollage 20 W	· OL	-40°C to +125°C				mV
		$I_L = 10 \text{ mA}$		30		$m\nabla$
		−40°C to +125°C				m√
Output Current	I_{OUT}			±250		mA
Ones I see Insuedones	7	-40°C to +125°C				mA
Open Loop Impedance	Z _{OUT}	$f = 1 \text{ MHz}, A_V = 1$				Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{S} = 2.7 \text{ V to 6 V}$	75			dB
	<u>.</u>	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	70			dB
Supply Current/Amplifier	I_{SY}	$V_0 = 0 \text{ V}$		550	<i>(5</i> 0	μΑ
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		550	650	μΑ
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$		6.5		V/µs
Full Power Bandwidth	BW_p	1% Distortion				kHz
Settling Time	t _S	To 0.01%				μs
Gain Bandwidth Product	GBP			4		MHz
Phase Margin Channel Separation	Øo CS	$f = 1 \text{ kHz}, R_L = 10 \text{ k}\Omega$		75		Degrees dB
	CD	1 - 1 K112, IV10 K22				uD
NOISE PERFORMANCE						
Voltage Noise	e _n p-p	0.1 Hz to 10 Hz				μV p-p
Voltage Noise Density	e _n	f = 1 kHz		55 25		nV/\sqrt{Hz}
Voltage Noise Density	e _n	f = 10 kHz		35		nV/\sqrt{Hz}
Current Noise Density	1 _n					pA/√ Hz

Specifications subject to change without notice.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

OP150/OP250/OP450

WAFER TEST LIMITS (@ $V_S = +5.0 \text{ V}$, $V_{CM} = 0 \text{ V}$, $T_A = +25 ^{\circ}\text{C}$ unless otherwise noted.)

Parameter	Symbol	Conditions	Limit	Units
Offset Voltage	V _{OS}		±10	mV max
Input Bias Current	I_B		50	pA max
Input Offset Current	I_{OS}		10	pA max
Input Voltage Range	V_{CM}		V- to V+	V min
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 \text{ V to } 10 \text{ V}$	60	dB min
Power Supply Rejection Ratio	PSRR	V = +2.7 V to +7 V	70	dB min
Large Signal Voltage Gain	A _{VO}	$R_L = 10 \text{ k}\Omega$		V/mV min
Output Voltage High	V_{OH}	$R_L = 2 k\Omega$ to GND	2.9	V min
Output Voltage Low	V_{OL}	$R_L = 2 k\Omega \text{ to } V+$	55	mV max
Supply Current/Amplifier	I_{SY}	$V_O = 0 V, R_L = \infty$	650	μA max

Electrical tests and wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to pegotiate specifications based on dice lot qualifications through sample lot assembly and testing.

	~)				
ABSOLUTE MAXIMUN	ratings!				
Supply Voltage)) . .	<u>.</u>	f FTV		
Input Voltage		$\cdots q$	ND to V _s		
Differential Input Voltage	· · · · · · · · · · · · · · · · · · ·	۱۰۱۰۰ (د.ب	[7 V		
Output Short-Circuit Duration to GND ² Indefinite					
Storage Temperature Range					
P, S, RT, RU Package		65°C t	to +150°C		
Operating Temperature R	ange				
OP150/OP250/OP450G40°C to +125°C					
Junction Temperature Range					
P, S, RT, RU Package65°C to +150°C					
Lead Temperature Range	(Soldering, 60	sec)	. +300°C		
Poelzago Tymo	Δ 3	Δ	Linite		

Package Type	θ_{JA}^{3}	$\theta_{ m JC}$	Units
5-Pin SOT (RT)	325		°C/W
8-Pin Plastic DIP (P)	103	43	°C/W
8-Pin SOIC (S)	158	43	°C/W
8-Pin TSSOP (RU)	240	43	°C/W
14-Pin Plastic DIP (P)	76	33	°C/W
14-Pin SOIC (S)	120	36	°C/W
14-Pin TSSOP(RU)	180	35	°C/W

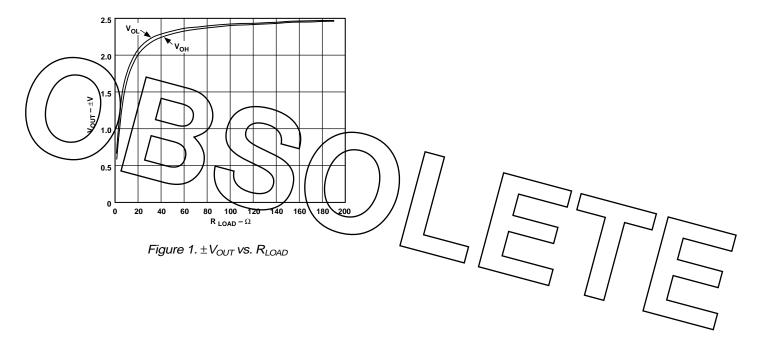
NOTES

ORDERING GUIDE

Model	Temperature Range	Package Option
OP150GS OP150GRT OP150GRC OP250GP OP250GS OP250GRU OP250GBC OP450GP	-40°C to +125°C -40°C to +125°C +25°C -40°C to +125°C -40°C to +125°C -40°C to +125°C -40°C to +125°C	8-Pin SOIC 5-Pin SOT DICE 8-Pin Plastic DIP 8-Pin SOIC 8-Pin TSSOP DICE 14-Pin Plastic DIP
OP450GS OP450GRU OP450GBC	-40°C to +125°C -40°C to +125°C -40°C to +125°C +25°C	14-Pin SOIC 14-Pin TSSOP DICE

CAUTION_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP150/OP250/OP450 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.


This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

¹Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

 $^{^2\}theta_{JA}$ is specified for the worst case conditions, i.e., θ_{JA} is specified for device in socket for P-DIP packages; θ_{JA} is specified for device soldered in circuit board for SOIC package.

DICE CHARACTERISTICS

OP150 Die Size 0.00 × 0.00 Inch, 00 Sq. Mils Substrate (Die Backside) Is Connected to V– Transistor Count, 00. OP250 Die Size 0.044 × 0.045 Inch, 1,980 Sq. Mils Substrate (Die Backside) Is Connected to V– Transistor Count, 0. OP450 Die Size 0.052 × 0.058 Inch, 3,016 Sq. Mils Substrate (Die Backside) Is Connected to V– Transistor Count, 127.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.