Audio ICs

PLL frequency synthesizer for tuners BU2616F

BU2616F PLL frequency synthesizers work up through the FM band.
Featuring low power dissipation and highly sensitive built-in RF amps, they detect intermediate frequencies.

-Applications

Tuners (Mini components, radio cassette players, radio equipment, etc.)

- Features

1) Built-in high-speed prescaler can divide 130 MHzVCO .
2) Intermediate frequency detection circuit
3) Low current dissipation (during operation: 6 mA PLL OFF: 1 mA)
4) In addition to the standard FM and AM , also offers the following 7 frequencies: $25 \mathrm{kHz}, 12.5 \mathrm{kHz}, 6.25 \mathrm{kHz}$, $10 \mathrm{kHz}, 9 \mathrm{kHz}, 5 \mathrm{kHz}$, and 1 kHz .
5) SD (station detector) input circuit.
-Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits	Unit	Conditions
Power supply voltage	Vod	$-0.3 \sim+7.0$	V	Vod
Maximum input voltage 1	VIN1	$-0.3 \sim+7.0$	V	CE, CK, DA, SD
Maximum input voltage 2	Vin2	$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V	XIN, FMIN, AMIN, IFIN
Maximum output voltage 1	Vout1	$-0.3 \sim+10.0$	V	$\mathrm{P}_{\mathrm{P},}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{DO}$
Maximum output voltage 2	Vouta	$-0.3 \sim \mathrm{VDD}^{+0.3}$	V	PD ${ }_{1}, \mathrm{PD}_{2}, \mathrm{XOUT}$
Maximum output current	lout	$0 \sim+3.0$	mA	Po, P1, P2, P3, DO
Power dissipation	Pd	450*	mW	
Operating temperature	Topr	$-10 \sim+75$	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	$-55 \sim+125$	\%	

* Reduced by 4.5 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.

Recommended operating conditions $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits	Unit
Power supply voltage	VDD	$4.0 \sim 6.0$	V

Block diagram

-Pin descriptions

Pin No.	Symbol	Pin name	Function	1/O
1	XOUT	Crystal oscillation	For generation of standard frequency and internal clock. Connected to 7.2 MHz crystal resonator.	OUT
2	XIN			IN
3	CE	Chip enable	When CE is H, DA is synchronous with the rise of CK and read to the internal shift register. DA is then latched at the timing of the fall of CE. Also, output data is output from the CD terminal synchronous to the rise of CK.	IN
4	DA	Serial data		
5	CK	Clock signal		
6	DO	Data out	Comes ON during IF frequency detection or SD detection.	Nch open drain
7	SD	SD input	SD signal is input. Observed by DO terminal. Input is for IF frequency.	IN
8	IFIN	IF input		
9	P3	Output port	Controlled on the basis of input data.	Nch open drain
10	PO			
11	P1			
12	P2			
13	AMIN	AM input	Local input for AM	IN
14	FMIN	FM input	Local input for FM	IN
15	$V_{D D}$	Power supply	Power supply, with 4.0 V to 6.0 V applied voltage.	-
16	PD1	Phase comparison output	High level when value obtained by dividing local output is higher than standard frequency. Low level when value is lower. High impedance when value is same.	3-state
17	PD2			
18	$V_{s s}$	GROUND	-	-

Electrical characteristics (unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}} 1=\mathrm{V}_{\mathrm{DD}} 2=5 \mathrm{~V}$)

Olnput data format
Explanation of the data
(1) Division data: For D_{0} through D_{15} (When $S=0$, use D_{4} through D_{15}.)

Example: $S=0, S W=0$
When divide ratio $=1000$, the actual set value is 500 since it passes through $1 / 2$ the circuit. This translates to 1 F4 (H) in HEX notation, and to (MSB) 0000000111110100 (LSB) in binary notation. This data is used from LSB to D0 through D15.

D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	D_{8}	D_{9}	D_{10}	D_{11}	D_{12}	D_{13}	D_{14}	D_{15}
0	0	1	0	1	1	1	1	1	0	0	0	0	0	0	0

Example: $S=1, S W=1$
When divide ratio $=1000$, the actual set value is 1000 since it does not pass through $1 / 2$ the circuit. This translates to 3E8 (H) in HEX notation, and to (MSB) 0000001111101000 (LSB) in binary notation. This data is used from LSB to D0 through D15.

Example: $S=1, S W=0$
When divide ratio = 1000, D0 through D3 can be anything since it does not pass through the prescalar. This translates to 3E8 (H) in HEX notation, and to (MSB) 000111110100 (LSB) in binary notation. This data is used from LSB to D0 through D15.

D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	D_{8}	D_{9}	D_{10}	D_{11}	D_{12}	D_{13}	D_{14}	D_{15}
X	X	X	X	$\mathbf{0}$	0	0	1	0	1	1	1	1	1	0	0

(2) Output port control data: $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$

1: Nch open drain output ON
0 : Nch open drain output OFF
(3) R_{0}, R_{1}, R_{2}, standard frequency data

Data			
R_{0}	R_{1}	R_{2}	Standard frequency
0	0	0	25 kHz
0	0	1	12.5 kHz
0	1	0	6.25 kHz
0	1	1	10 kHz
1	0	0	5 kHz
1	0	1	9 kHz
1	1	0	1 kHz
1	1	1	$*$ PLL OFF

* $\mathrm{FMIN}=$ pulldown, $\mathrm{AMIN}=$ pulldown, $\mathrm{PD}=$ high impedance
(4) S: switch between FMIN and AMIN

0: FMIN
1: AMIN
(7) GT: Control of frequency measurement time
$0: 32 \mathrm{~ms}$
1: 64 ms
(8) SW: If this bit is set to ON while AMIN is selected, swallow counter division is possible.

Ontermediate frequency detection circuit and the DO output.
(1) Structure

(3) Explanation of the DO
*1 When the IF counter is OFF (CT = 0), SD input appears at the DO.
*2 When the IF counter is set to $\mathrm{ON}(\mathrm{CT}=1)$, the control system keeps it at LO level until the measurement is finished.
3 After the measurement is finished, it goes to HIl level if it is within the range of input frequency settings, and is kept at LO level if it is beyond the range of input frequency settings. When $\mathrm{CT}=0$, it returns to the conditions described under paragraph $ 1$.
(9) PL PH: Control of charge pump output
$P L=0, P H=0$ PD1, PD2 go to PLL operation.
$P L=1, P H=0$ PD1, PD2 go to LO level.
$\mathrm{PL}=0, \mathrm{PH}=1 \mathrm{PD} 1, \mathrm{PD} 2$ go to H l level.
$P L=1, \mathrm{PH}=1 \mathrm{PD} 1, \mathrm{PD} 2$ go to LO level.
(10) TS: Test data (0) is input
(2) How the IF frequency detection circuit operates When control data CT is set to ON, the counter and the amp go into operation. When CT equals 0 , the amp input pulldown counter is reset.

SD

$$
\mathrm{CE} \underset{\mathrm{CT}=0 \mathrm{CT}=1}{\zeta \mathrm{CT}=0} \mathrm{CE} \underset{\mathrm{CT}=0 \mathrm{CT}=1}{C T=0}
$$

